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Abstract

POMDPs are a popular framework for representing de-
cision making problems that contain uncertainty. The
high computational complexity of finding exact solu-
tions to POMDPs has spawned a number of research
projects which are investigating means of quickly find-
ing high quality approximate solutions. This work uses
information gained at runtime to reduce the cost of rea-
soning in POMDP type domains. Run-time dynamic
decision network construction is introduced and the
role it plays in an agent architecture for reasoning in
POMDP domains targeted to run locally on personal
digital assistants (PDAs) is evaluated. The ability to
suport reactive, high quality approximate planners on
lightweight devices should help to open the door for lo-
calizable and personalizable POMDP applications.

Introduction
Recent market research (Gartner 2006) indicates continued
growth in the PDA and Smartphone market. As these de-
vices become more popular, more and more people will have
at hand lightweight portable computing devices. The ques-
tion of how to exploit these devices beyond the standard cel-
lular, scheduling, and Internet access capabilities is an inter-
esting and important question.

Recent work suggests that there are several mobile device
application domains where incorporating AI, and in partic-
ular decision theoretic, algorithms could be of practical use.
Tambe’s Electronic Elves (Scerri, Pynadath, & Tambe 2001)
agents incorporate Markov Decision Processes (MDPs) as
their reasoning mechanism and use these to control au-
tonomous decision making, including re-scheduling meet-
ings and ordering the PDA owner’s lunch. Bohnenberger
(Bohnenberger et al. 2002) has used MDPs to support PDA-
based location aware shopping assistance. POMDP appli-
cations applicable to PDAs have been proposed in the re-
cent past, including WiFi-based localization and navigation
(Ocana et al. 2005), ad-hoc network packet routing (Chang,
Ho, & Kaelbling 2004), and intelligent wireless spectrum
usage (Zhao & Swami To appear). A potential and very ex-
citing example of a POMDP application that is amenable to
PDA usage is intelligent tutoring. POMDP-based tutoring
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systems (Murray, VanLehn, & Mostow 2004) available on
PDAs could allow for novel learning mechanisms.

This paper describes an architecure that has been devel-
oped for reasoning in POMDPs on lightweight hardware.
Due to the difficulty of finding exact solutions to problems
modeled as POMDPs, a significant portion of POMDP re-
search in the past couple of years has been on efficiently
finding high-quality approximate solutions. The core of
the developed architure outlined in this paper involves the
use of dynamic decision networks (DDNs) to perform run-
time decision making. The intent of a move away from
pre-execution policy optimization to run-time decision mak-
ing is to exploit any information gained at runtime to sim-
plify the decision making problem. The developed approach
is approximate: a limit on the number of timepoints rep-
resented in the DDN must exist to ensure computational
feasability, and that limited lookahead requires a heuristic
estimate of the future value of states. The key point of
this paper, however, is to describe the process of dynamic
DDN construction and state how it can be used to reduce the
computational requirements of decision-network based ac-
tion selection. Dynamic DDN construction as used in this
work is quality-preserving, as it allows the same solutions
to be found that would have been found if dynamic DDN
construction was not used.

The developed planning architecture has been designed
with lightweight and lowcost hardware and software in
mind. Development over the last year has been on the HP
Ipaq 4150 PDA and has used freely available software tools.

Background
Partially Observable Markov Decision Processes (Cassandra
1999) can be used to represent scenarios in which there ex-
ists uncertainty in both the outcomes of actions an agent may
perform and in the observations an agent may receive from
the environment. An agent in a POMDP environment main-
tains a probability distribution, called a belief state, over the
possible states of the world. Given a belief state, an agent se-
lects an action to perform through a reasoning mechanism,
such as policy lookup or DDN lookahead, and then updates
its belief state given the observation received as feedback.
Implemented reasoning mechanisms return the maximum
utility action for the current state of the world (this maxi-
mum utility action may not be the true optimal action, how-
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ever, if approximate reasoning algorithms are used, but it
should be considered as the best choice given the imple-
mented reasoning mechanism). For a deeper introduction
to POMDPs and exact approaches to solving POMDPs, see
(Cassandra 1999).

Dynamic decision networks (DDNs) are an extension of
Bayesian networks (Jensen 2001) which can be used to im-
plement utility based planning. Dynamic decision networks
extend Bayesian networks over a finite planning horizon and
can represent both partially observable states and probabilis-
tic action outcomes (Russell & Norvig 2002). A decision
node exists at each time slice to represent the action to be
performed in that slice, and the effects of a combination of
the agent’s current state and potential actions to be taken can
be propagated through the decision network. Utilities can be
represented in each time slice if the reward is time-separable
or at the end of the sequence of actions (Russell & Norvig
2002; Forbes et al. 1995).

The use of dynamic construction of Bayesian networks
to allow for effective representations of problems has been
studied in the past (Provan 1993; Nicholson & Russell 1993;
Nicholson & Brady 1994; Ngo et al. 1997). This work has
primarily been directed towards dynamic construction from
a knowledge base in response to a query presented by the
user. Provan (Provan 1993) specifically states that, due to
the complexity of inference in temporal networks, dynamic
construction is key to being able to perform inference un-
der reasonable time constraints. Provan’s work is directed
towards construction of temporal influence diagrams for use
in medical applications. He describes heuristic techniques
such as temporal modeling of just a subset of the variables
(such as those driving the network or just the observation
variables) and metrics for evaluating the effects of the loss
of information from such pruning. Nicholson and Brady
(Nicholson & Brady 1994) describe an exact technique for
removing unneeded states from a network. Removing states
is possible when the probability of being in a given state is
set to zero. This state no longer needs to be modeled and
can be removed from a given variable. When such a state
is removed, states in the successor variables can also be re-
moved if they are no longer possible given the states with
probability greater than zero. A combination of these ideas
is used in this work as part of a general DDN architecture
for reasoning in POMDP-type domains.

In a set of informal notes (Cassandra 2003), Cassandra
describes a subclass of problems that can be modeled as
POMDPs that can be optimally solved in polynomial instead
of exponential time. The problems discussed by Cassandra
have the following properties: a uniform initial distribution
over states, observational uncertainty that only stems from
states that look similar (leading to a set of states that go to
zero probability after each action is taken and observation
is received), and, after each iteration, the set of states with
non-zero probability shrinks.

It is exactly this type of information gathering that a dy-
namic DDN construction algorithm is able to exploit. In
these types of domains, the agent is taking significant ad-
vantage of its information-gathering actions in reducing un-
certainty, and its reasoning mechanisms should also be able

to exploit such a reduction in uncertainty. While for the ex-
act set of problems described by Cassandra, an exact ap-
proach can (and should) be used, a dynamic DDN construc-
tion algorithm should be effective in reducing planning costs
for other problems that don’t fit the Cassandra definition but
where a reduction in uncertainty occurs. The critical point
is that the cost of building a reduced network and then plan-
ning with that network has to be less than planning with the
original full state space network. For domains with noisy
observations and significant action uncertainty, the construc-
tion process may often result in a network being built much
like an original network. The overhead of doing construction
will then outweigh the usefulness of the dynamic construc-
tion approach. The algorithms developed in this work per-
form a significant amount of pre-construction activity, trad-
ing space (storage of reachability information) for time, as a
means of reducing the actual construction time required.

Dynamic DDN Construction
An uninformed implementation of DDNs for planning con-
tains factored representations of the entire state space of a
POMDP domain. All possible states for each variable are
represented in the respective variable nodes. This approach
allows one DDN to be designed by an agent designer which
can be used at anytime by the agent. If an agent is plan-
ning at runtime, however, it has specific beliefs about the
current state of the world. After performing several actions,
an agent’s beliefs may start to center around only a small
number of states, with the likelihood of the other states be-
coming zero. A related structural feature that can be ex-
ploited in many domains is fully observable variables in the
state space. In these instances, the beliefs states over such a
variable are always collapsed to a single belief in one state.

Given a description of the variables needed in a DDN, a
description of the states for each variable, and the transition
and observation probabilities, it is possible to specify, for
any current state of the world, all future states of the world
that can be reached and the corresponding observations that
could be seen, given a finite number of time-points are being
modeled.

The process for finding such states is implemented
through dynamic programming, starting with the assump-
tion that one action is taken. Given a current state of the
world, a set of next possible states is defined for each action
in the transition table. The set of all possible next states for
the current decision is the union of the outcome states that
are entered from all possible actions. The corresponding ob-
servations can be found at the same time, as they are tied
to (previous-state, action) pairs or outcome states. For each
timestep after the first, the set of reachable states is the union
of states reachable from the set of reachable states found
for the previous timestep. A pseudo-code description of
this algorithm can be found as Algorithm 1. This algorithm
descends from the knowledge base construction algorithms
used by Nicholson and Brady (Nicholson & Brady 1994) to
perform data-driven construction of dynamic Bayesian net-
works. The work presented here is different than that of
Nicholson and Brady in several ways. Their work primarily
considered techniques for expanding a monitoring DBN at
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each new timeslice and determining what could be pruned
or removed. In the current work, the application domain
deals with DDNs (involving action and utility nodes), a sig-
nificant amount of work (reachability analysis) is done be-
fore hand, and the complete network is reconstructed every
time instead of a new timeslice being added and the network
updated.

Algorithm 1 Computing Needed (Reachable) States and
Observations

for all s ∈ States do
for all a ∈ Actions do

for all sNew ∈ destinationStates(s,a) do
s.nextStates[0] ← s.nextStates[0]+ sNew

end for
for all o ∈ O(s,a) do

s.nextObservations[0] ← s.nextObservations[0]
+ o

end for
end for

end for
for all s ∈ States do

for i ← 1,2,. . . n-1 do {n is the number of decisions}
for all sLast ∈ s.nextStates[i-1] do

for all sNew ∈ sLast.nextStates[0] do
s.nextStates[i] ← s.nextStates[i] + sNew

end for
for all o ∈ sLast.nextObservations[0] do

s.nextObservations[i] ← s.nextObservations[i]
+ o

end for
end for

end for
end for

This algorithm is performed before execution so that an
agent at runtime only needs to consider the set of reachable
states and does not need to compute such states. The struc-
ture of the DDN (which variables and edges are present) is
also known in advance and the structural representation does
not change as the agent is executing. At runtime, the agent
only needs to set the possible states in each variable and fill
in the conditional and prior probability tables. Given a de-
scription for each timeslice of the states necessary from a
given start state, an agent can dynamically build a DDN rep-
resenting the needed state space using Algorithm 2.

Given a current belief state, the agent has beliefs that it
currently is in some subset of the possible states of the world.
This subset could range from the entire set of states (if it has
no knowledge about its state in the world) to a single state (if
it knows exactly the state it is in). The DDN that the agent
is constructing needs to represent all states the agent could
possibly be in now and that it could be in after a finite num-
ber of future timesteps. Thus, the actual set of states and
observations represented in each timeslice of the DDN is
the union of the states and observations that can be reached
in that timeslice from any of the states which the agent cur-
rently believes it could be in (those states for which the agent
has a belief greater than 0). The reachable states from a sin-

gle current state have already been defined from the previous
reachability analysis process shown in Algorithm 1, so the
agent solely needs to determine their union. The agent then
needs to compute all possible sets of table indices (valid par-
ent state to child state relationships) that are needed for each
timeslice and add the appropriate entries to the appropriate
conditional probability tables. Probabilities for transitions
and observations for each of these states can be found in the
transition and probability tables provided by the designer for
the domain.

Algorithm 2 Runtime Construction of a Dynamic Decision
Network

for all n ∈ decisionNetwork.nodes do
if n.type == Chance then

possibleConfigurations ← {allCombinations(p, s) |
p ∈ n.parents ∧ p.type �= Action ∧ s ∈ p.states ∧
P(s) > 0 } {allCombinations(p,s) generates the un-
factored combination of states from a set of factore d
variables; in this case, only those combinations with
probability > 0}
for all pc ∈ possibleConfigurations do

n.neededStates ← n.neededStates + precomputed-
Needed(n, pc)

end for
end if
if n.type == Action then

for all a ∈ Actions do
n.neededStates ← n.neededStates + a

end for
end if

end for
for all n ∈ decisionNetwork.nodes do

if n.type == Chance then
possibleConfigurations ← { allCombinations(p, s) |
p ∈ n.parents ∧ s ∈ p.states ∧ P(s) > 0 }
for all pc ∈ possibleConfigurations do

for all s ∈ n.neededStates do
n.probabilityTable.add(precomputed(P(pc,s)))

end for
end for

end if
if n.type == Utility then

possibleConfigurations ← { allCombinations(p, s) |
p ∈ n.parents ∧ s ∈ p.states ∧ P(s) > 0 }
for all pc ∈ possibleConfigurations do

n.utilityTable.add(precomputed(U(pc)) *
n.discount)

end for
end if

end for

General Architecture
Agents developed with the implemented agent architecture
act under a traditional sense-plan-act cycle control mecha-
nism. In this control mechanism, any observation an agent
makes is used to update the agents belief state. After updat-
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ing its beliefs, the agent reasons about the appropriate action
to take given it’s modified view of the world. The chosen ac-
tion is then executed and effects of the action in the domain,
as well as natural changes occuring in the domain itself, are
sensed in the next sensory cycle. Figure 1 (on the next page)
is a graphical representation of the local agent components
and their interaction during a control cycle.

Bayesian networks are used in the developed architecture
for both belief management and planning. Update networks
allow the agent to update its beliefs given its previous beliefs
and the observation it has just received. This type of network
represents state variables for two timesteps, an observation
variable attached to the second timeslice, and an action vari-
able. The agents current priors, recently taken action, and
recently received observation are mapped onto the appro-
priate variables and this evidence is propagated through the
network to obtain updated beliefs. These networks are not
currently dynamically constructed, but they easily could be.

Dynamic decision networks are used to determine the next
best action to perform. A dynamic decision network for
planning in the developed framework consists of 1) variables
representing the state of the world and observations across
multiple timesteps, 2) action nodes between each timestep
representing the available actions at each timestep, and 3)
utility nodes for representing the cost of performing actions
and the utility of being in specific states. The agents current
beliefs about the true state of the world are dynamically set
in the variables in the first timestep of the dynamic decision
network. A single maximum utility (under the contraints of
the network used) action is then obtained from the DDN and
executed. The current implementation only allows for sim-
ulated performance of actions by an executive mechanism,
but could easily be expanded to perfom actual actions.

Lightweight Implementation Details

The decision networks and algorithms used in planning are
developed on top of the Smile API (Druzdzel 1999). This
API provides the basic decision-network implementations
and algorithms. Microsoft eMbedded Visual C++ was used
as the language to implement all higher level components
of the agent architecture, as this language was necessary for
implementation on the Pocket PC architecture. A domain
simulator, also written in Microsoft eMbedded Visual C++,
also runs on the device. Its role is to maintain the state of
the domain the agent is in, simulate the effect of the agents
actions on the domain, and provide observations as feedback
when appropriate.

The current PDA implementation consists of a 705 kilo-
byte executable which can be loaded and executed from an
SD memory card. For an example domain of 300 states (the
LargeCheeseTaxi domain (Turkett 2004)), auxiliary external
files, such as configuration files and files that describe future
states reachable from a given state, require approximately 5
megabytes of SD memory card space. Execution of planning
runs from start to goal state in the LargeCheeseTaxi domain
requires approximately 7 megabytes of memory.

Results
Previous work (Turkett 2004) has demonstrated the effec-
tiveness of dynamic DDN construction in several domains.
The results reported in that work and summarized here are
from execution an Sun Solaris workstation, using an imple-
mentation of the architecture developed in Java and using the
Hugin Bayesian Network API. For tests in each domain of
interest, the architecture was executed with and without sup-
port for dynamic DDN construction. Results were averaged
over multiple runs, with each run consisting of the agent exe-
cuting from a no-knowledge initial state and continuing until
a goal state had been reached. Dynamic of the domain were
simulated as per the domain model. To provide a summary
of the previous work (full execution details can be found in
(Turkett 2004)), average per action planning time (a measure
of responsiveness) dropped from 4671 milleseconds without
dynamic DDN construction to 135 milleseconds with dy-
namic DDN construction in the 300 state LargeCheeseTaxi
domain. The 135ms used for planning with dynamic con-
struction consisted of an average of 56ms for planning and
79ms for DDN construction. Results from other domains in-
clude a drop from 249.2 milliseconds without dynamic con-
struction to 174.8 milliseconds with construction (150ms for
planning, 25ms for DDN construction) for the 60 state Hall-
way (Littman, Cassandra, & Kaelbling 1995) domain and
from 108.05 seconds to 2.52 seconds (0.6s for planning, 1.9s
for DDN construction) in the 870 state RobotTag (Pineau,
Gordon, & Thrun 2003) domain.

These three domains have characterists which directly af-
fect the applicability of the dynamic DDN construction ap-
proach. The LargeCheeseTaxi domain has informative ob-
servations and accurate navigation movements, so an agent
acting in this type of domain can quickly localize its po-
sition and reduce uncertainty. Accordingly, a planning ap-
proach that exploits exact state knowledge, such as the dy-
namic construction approach shown here, will be able to im-
prove perfomance in such a domain. The Robot Planning
domain is similar, as the agent can exploit knowledge of its
own location and the ability to gain some insight into the lo-
cation of its opponent (the domain model indicates the the
opponent always moves away from the agent). Finally, the
Hallway domain has both noisy observations and significant
action uncertainty. Accordingly, the agent has trouble with
localization and dynamic construction does not provide sig-
nificant speedups.

More recent initial results provide insights into whether or
not dynamic DDN construction is enabling to support exe-
cution in POMDP-type domains on a PDA architecture. The
results provided for the PDA device are from execution on
an HP iPAQ 4150 with 64MB of RAM and a 400MHz In-
tel XScale processor. The source code was compiled by
eMbedded Visual C++ 4.0 in ARMV4 Release Mode with
the /Oxt optimization setting. The SMILE Bayesian Net-
work API (Druzdzel 1999) was used on the PDA device.
Reported planning times were measured by adding GetTick-
Count() MS API function calls before and after the call to
the plan generator. This function returns time in millisec-
onds.

Initial results from execution in the 300-state
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Figure 1: An overview representation of the implemented agent planning and control architecture.

LargeCheeseTaxi domain on the PDA indicate an av-
erage per-action planning time over 5 runs without dynamic
DDN construction of 111.64 seconds (sd=5.13 seconds).
When dynamic construction is turned on, the average per-
action planning time over ten runs is 7.1 seconds (sd=0.65
seconds).

In this domain, there were four broad classes of actions
that contributed differently to the total running time. The ini-
tial state, where the agent’s beliefs are distributed uniformly
across 30 states (unknown start location, known destination
location), has a significant amount of uncertainty and is a
significant contributor to total runtime. Without dynamic
construction, planning for the initial state took on average
121.22 seconds (sd=0.05 seconds) while with dynamic con-
struction, it took approximately 34.63 seconds (sd=0.06 sec-
onds). Another expensive state was just after picking up
a passenger in the domain, wherein the agent knows ex-
actly where it is, but does not know the destination (where
the passenger intends to be dropped off). Without dynamic
construction, planning requires 145.77 seconds on average
(sd=1.55 seconds), while with dynamic construction plan-
ning requires 28.09 seconds (sd=2.18 seconds).

The best speedups occurred during those periods where
the agent had gathered useful information about it’s envi-
ronment and reduced it’s uncertainty. On all navigation
type moves, the planning time dropped from 132.03 seconds
(sd=12.91 seconds) to 3.36 seconds (sd=1.19 seconds). Fi-
nally, the decision to let the passenger out required 27.08
seconds (sd=0.03 seconds) without dynamic construction
and 0.6 seconds (sd = 0.09 seconds) with dynamic construc-
tion.. The decision to let the passenger into the taxi, which
is essentially a fully observable state, took effectively iden-

tical times, with or without dynamic construction, of 0.5
seconds. In all cases except for the post-pickup timepoint,
the construction phase was cheaper than the cost of plan-
ning. This suggests that more work for construction could
be pushed into the system to further reduce planning costs.
Even though this is only a small set of tests, the DDN con-
struction algorithms do appear effective in significantly re-
ducing the runtime required for planning episodes. Potential
areas for improvement include pre-computing or caching ac-
tions for states with high uncertainty (i.e. if the agent always
starts with a uniform distribution over states, that belief state
could be solved once and the best action stored) and remov-
ing very low probability states instead of just zero probabil-
ity states. The removal of low probability states would in-
validate the quality preserving characteristics of the current
algorithms.

Conclusion

This work introduced and provided an initial examination
of the effectiveness of dynamic DDN construction algo-
rithms implemented as part of a lightweight planning ar-
chitecture. Having already shown promise in a more com-
putationally robust environment, the algorithms, in a small
set of tests, demonstrate the ability to reduce average plan-
ning time in a PDA-type architecture. By integrating the
dynamic DDN construction approach with other algorith-
mic improvements, such as action caching, planning times
should reduce further.

As described in the introduction, several interesting ap-
plications of POMDPs to PDAs are emerging. Future re-
search should also consider the issue of the effectiveness
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of plan sharing between agents using an architecture such
as the one described above. This line of research is moti-
vated by the near-term prospects of a significant number of
lightweight devices being constantly in use and within range
of each other.
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