
A Robust Spoken Language Architecture to Control a 2D Game

Andrea Corradini 1, Thomas Hanneforth1, and Adrian Bak2

1. Computational Linguistics Department 2. TV2 | Interaktiv

 University of Potsdam Rugaardsvej 25
 14415 Potsdam, Germany 5100 Odense, Denmark

 {andrea,tom}@ling.uni-potsdam.de adba@tv2.dk

Abstract

Speech has been increasingly used as input and/or output
modality in commercial systems and academic prototypes.
Its capability to complement and enhance applications
makes it possible to consider spoken language as a new
means to support human interaction with computers in
interactive domains: computer games being one of them.
This paper presents an architecture that we developed to
play a 2D graphical version of a board game using spoken
natural language. In our system, the sensed player’s speech
is syntactically parsed with a robust weighted finite state
transducer algorithm that creates a simplified representation
of the input sentence. In a pipelined process, a semantic
parser is then responsible of splitting the input
representation generated during syntactical analysis into a
series of data structures each representing the semantics of
the underlying text chunks within the original sentence.
These data structures are then passed on to the game logic
module which generates game commands, resolves possible
ambiguities or incompleteness within the data structures,
and checks preconditions related to the validity of the
commands. If the preconditions are met, the instructions are
carried out and the game state is updated as direct effect of
the commands issued.
In a series of preliminary tests to assess the robustness of
our approach, we obtained a correct classification of input
sentences for up to 95.8% of the instructions issued by the
user. Interaction with our systems occurs in real-time.

1. Introduction
In many emerging applications, the traditional input
devices such as mouse and keyboard represent a bottleneck
to the interaction. They make it impossible for people to
exploit the full potential of their computers and prevent
people communicating effectively. This occurs particularly
within the context of interactive applications where
designers and developers are faced with a series of
decisions regarding the proper choice of input and output
modalities, the breadth of the envisioned system, the
context of its use and the skills of its final users.
As one of the oldest and most natural modes of
communication among humans, speech recently gathered
much attention from the industry and the academia. By
exploiting transfer among human-machines interfaces from
the human-human domain, speech represents a prime
candidate for a new interaction modality. Even without
resorting to such a powerful analogy, the benefit of using

speech is apparent: it resides in its capability to
complement and enhance interactive domains when
traditional forms of communication reach their limits.
Driven by rapid advances in speech technology, spoken
language interfaces have started to make an impact on
computer use. Voice enabled interfaces have rapidly
expanded and used to support new means of interaction
with computers. Several enterprises already provide
customer support through call centers manned by humans
or through interactive applications in which the integration
of a speech interface adds value to the existing application
[18]. Speech has been integrated into a vast range of small-
scale and embedded computing devices in the attempt to
reduce their size and augment their usability. It has also
been used to enhance traditional GUIs in office, CAD and
drawing applications. Now, it has even become possible to
play computer games by using speech.
In this paper, we report on the spoken language
architecture that we have developed to play a 2D graphical
version of a board game. In our system, the sensed player’s
speech is syntactically parsed with a finite state transducer
algorithm that robustly creates a simplified representation
of the input sentence. In a pipelined process, a semantic
parser is then responsible of splitting the input
representation generated during syntactical analysis into a
series of data structures each representing the semantics
underlying the text chunks of the original sentence as
captured by the speech recognizer. These data structures
are further passed on to the game logic module that
generates game commands, resolves possible ambiguities
or incompleteness within the data structures, and checks
preconditions related to the validity of the commands on
the basis of world knowledge. If the preconditions are met,
the instructions are carried out and the game state is
updated as direct effect of the commands issued.
We organized the rest of the paper as follows. We discuss
related approaches to create interactive games operated by
speech in Section 2. We present a detailed overview of the
modules that make up our current system in Section 3. We
provide a discussion about preliminary system tests and
results in Section 4 and eventually conclude in Section 5.

2. Speech-enabled Games
The video games and entertainment industry have
increasingly concentrated on speech technology for both

199

text to speech synthesis as well as speech recognition.
While text to speech synthesis makes it possible to endow
game’s character and entities with their own voice, the
addition of speech recognition makes real communication
between player and game a reality. Altogether, speech
brings a higher interactive experience into and adds real
value to digital games.
A number of speech enabled games have already hit the
market. Some have been total failures some others enjoyed
a partial success. The first results seem to show that this
new form of human-machine interface suits especially
social or strategy games such as Microsoft’s Age of
Empire [1] and Life Line [3] that were among the first
successful games to provide speech in both input and
output. These products feature voice-activated commands
to guide the game’s main character but effectiveness of
speech input is arguable since it only replaces the menu
selection task provided by the game GUI with a large set of
predefined utterances. Instead of facilitating the
interaction, this increases the cognitive load of the user
who has to memorize a long list of arbitrary commands.
Browsing the Internet, one can find several simple games
for the blind. They mainly allow spoken input in terms of a
single word. [15] is an interesting attempt at creating a
conversational dialogue within an educational game
context and goes beyond a speech-enabled game. In [7] an
avatar within an emulated environment is controlled
through speech. The system uses a grammar to interpret
and generate game responses from spoken command. The
work that displays more similarity to our system is [20]
where a speech interface is used to play the popular
Mahjong game over the network is presented. They
however employ a much more limited grammar than ours
and their commands consist mainly of single words.

3. Overall System Architecture

3.1 The Game
Pentomino is the popular board game of choice for our
application. This puzzle game is named after the well-
known Domino from which it differs only because its
pieces are formed by joining five, instead of just two, equal
sized squares together along complete edges. Excluding
isomorphism (i.e. rotations, flipping and combinations of
them), there are only twelve possible pieces. In Pentomino
the player has to use up the set of pieces and land them into
a predefined grid-shaped game board (see Figure 1). The
user can choose to play in a slightly more challenging way
by using the game timer and by attempting at producing a
complete solution of the puzzle within the shortest time
possible. From a mathematical perspective, Pentomino is a
particular type of Polyominos [9] and as such it is
considered an exact mathematical science.
A sketch of the architecture we developed to play
Pentomino is displayed in Figure 2. It consists of a set of
agents that communicate with each other by means of the
OAA agent architecture [8].

3.2 Speech Recognizer
Players are shown a GUI version of Pentomino (see Figure
1) that they can play using either mouse or keyboard or
speech or a combination of two or more of these
modalities. In order to allow users play with the game GUI
using speech, we use the Sphinx-4 [19] open source speech
recognizer. Sphinx-4 is a flexible state-of-the-art decoder
capable of performing many different types of recognition
tasks. It supports all types of HMM-based acoustic models,
all standard types of language models, and several search
strategies. It can be used along with a JSGF [1] grammar or
with an N-gram language model in which case syntactic
parsing is not performed by Sphinx-4. In Figure 2, the
dashed line inside the speech processing module marks this
distinction. We can use Sphinx-4 in either mode but the
next section describes the syntactic parser employed in
case where either Sphinx is run using an N-gram or the
decoder is bypassed and input is typed-in. It is worth
noticing however, that the result of step is processed in the
very same way as if Sphinx were used with a JSGF
grammar.

3.3 Robust Syntax Parsing
For the syntactic parsing of user’s utterances we decided to
employ an augmented context free style grammar (CFG).
On the one hand, we augment a traditional CFG grammar
with the addition of regular operators like disjunction (|),
optionality (?), Kleene star (*) and plus closure (+) in the
left side of non-terminals grammar rule. One the other
hand, we allow for rules and/or rules’ subconstituents to be
added attributes that pin point locations within the
grammar that have a relevant semantic content. In the
realm of JSFG this is equivalent to having tags in the
grammar. The following is an excerpt from our grammar:

Figure 1: The GUI showing an instance of the Pentomino
puzzle game.

200

PLAY → ACTION (and? ACTION)*
ACTION → SELECT PIECE_DESC
ACTION → ROTATE (PIECE_DESC|REF)
SELECT → (take | get | select)
 {"fhead:action:select"}
ROTATE → rotate {"fhead:action:rotate"}
REF → (it | that | this) {"id:anaphora"}

In the above representation, non terminals are capitalized,
terminals underlined, while the semantic annotation is in italics
within curly brackets. Possible text strings like “I want to
select the blue piece and rotate it” or “please get the blue
cross shaped figure next to the red one and then show the
ruler” are all parseable by our grammar. Partially based on
the analysis of data collected during human-human
interaction with subjects playing Pentomino in a
collaborative way, we noticed that our application domain
is rather limited in terms of commands to the game. This
simplifies the design of our grammar and makes the
definition of center embedded rules along with other
specific context free constructions not necessary within our
framework. Thus, despite being a CFG, our grammar maps
well onto a regular language. This property turns out to be
very important for our approach when it comes to deal with
parsing robustness.
As a first step, we compile offline our grammar into a
weighted finite state acceptor (WFSA). A WFSA [16] is a
7-tuple A = <Σ,Q,q0,F,E,λ,ρ> over a weight structure W
with the following components:

1. Σ the finite input alphabet
2. Q the finite set of states
3. q0 ∈ Q the start state
4. F ⊆ Q the set of final states
5. E ⊆ Q × (Σ ∪ {ε}) × W × Q the set of transitions
6. λ ∈ W the initial weight
7. ρ: F a W the final weight function mapping

final states to elements in W

As the weight set W we choose the set of strings used for
the semantic annotation of the grammar. Weights can
occur at the transitions and the final states of the WFSA.
For the actual grammar compilation we resort to the
method proposed in [17].
For the correct interpretation of the string weights in the
algebra of WFSAs (which is for example extensively used
during grammar compilation) we impose on the weight set
the algebraic structure of a semiring [4]. Formally a
semiring is a 5-tuple < W,⊕,⊗,0,1> such that

1. < W,⊕,0> is a commutative monoid with 0 as the

identity element for ⊕.
2. < W,⊗,1> is a monoid with 1 as the identity for ⊗
3. ⊗ distributes over ⊕ : ∀a,b,c a ⊗ (b ⊕ c) =

(b ⊕ c) ⊗ a = (a ⊗ b) ⊕ (a ⊗ c)
4. 0 is an annihilator for ⊗: ∀w ∈ W, w ⊗ 0 = 0 ⊗ w = 0.

In the case of string weights we use a system
<Σ*, lcp, ⋅, s∞, ε >, a so called string semiring: Σ is our
game vocabulary (including a special tag for unknown
tokens), the abstract addition operation ⊕ is mapped to the
operation of taking the longest common prefix of two
strings (with the infinite string s∞ as the identity element)1,
the abstract multiplication ⊗ is string concatenation, and
the identity element is the empty string ε.
The weight Ω(x) of a string x accepted by starting at the
start state q0 and following some path π to a final state is
defined by the following generic formula2:

For instance, the WFSA compiled from our grammar maps
the input sequence “I want to select the blue piece and
rotate it” to a string that consists of a sequence of semantic
annotations as encountered in the grammar during sentence
parsing. In this particular example this amount to
“fhead:action:select id:1 fhead:action:rotate id:anaphora”
since the string weights carrying semantic annotation are
abstractly multiplied, that is, concatenated along an
accepting path.
After grammar compilation, the WFSA is not yet robust
because it accepts only the patterns defined in the grammar
and fails on other input sequences. We say a WFSA is
robust if there is a path through the automaton, not
necessarily reaching a final state, for every input sequence
w ∈ Σ* for a given alphabet Σ. As a special case, a
deterministic WFSA is robust if it is complete, that is,
every state has an outgoing transition for every input
symbol a ∈ Σ. Our next step is thus to make the original
WFSA A robust by applying a regular replace operator to
it [13]. Basically, this operator adds states and transitions
to A which account for input sequences originally not in A
and is defined in the following way3: let not-A be the
regular language ¬(Σ* A Σ*). A’ is derived from the
grammar automaton A by replacing all (string) weights in
A by ε. The FSA not-A accepts all strings which do not
contain an instance of a sequence originally accepted by A.
We are now ready to define a function robust(A) as:

robust(A) =def (not-A A not-A

If we apply robust(A) to some input sequence we do in
effect compute the weighted intersection of robust(A) with
a linear FSA representing that sentence. As long as it does
not contain a string accepted by our grammar automaton A

1 For example lcp(abc,abd) = ab and lcp(abc, s∞) = abc.
2 If the path π consists of a sequence of transitions t1t2…tk
then w(π) is the abstract multiplication of all the transition
weights: w(π) = w(t1) ⊗ w(t2) ⊗ … ⊗ w(tk).
n(π) is the final state reached after following tk.
3 In the following we use regular expressions (like Σ*) and
FSAs (like A) interchangeably due to the known
equivalences holding between both.

⊕ λ ⊗ � π ⊗ ρ � π Ω �
 π ∈ Π �� � �

201

we simply skip it with not-A. If we then find a substring s
in the sentence to parse that is accepted by A we compute
the output string weight assigned to s by A. The star
closure operation in the definition of robust(A) accounts
for repeated occurrences of substrings accepted by A
interleaved with substrings not in A.
The function robust(A) is regular (so the result is
representable by a WFSA) because we use only operations
which preserve regularity. The key for robust behaviour is
here the negation/complementation operation. Unweighted
FSAs are closed under complementation, that is, we can
construct for every unweighted FSA M a FSA M’ which
accepts all strings which are not in M [10]. This closure
under complementation is only true for unweighted FSA,
so we define A’ by a function that removes all string
weights in A by replacing them by ε.
In accordance to our concept of robustness, whenever the
grammar WFSA A fails to process an input string s there is
a path for s in not-A. Of course, the WFSA constructed
using the robust operator is not deterministic in the general
case because the A submachine does not “know“ in
advance whether it will accept a string. Furthermore,
robust(A) does not in general admit an equivalent
deterministic WFSA since not every WFSA can not be
made deterministic [16].
The ultimate goal of syntactical parsing is of course
constructing the mapping of the natural language input to
sequences of semantic annotations strings. For that
purpose we need to target an additional issue. Given the ill-
formed input “select the green eating”, there is no
accepting path in the sub FSA A in robust(A) and the
sequence is accepted in not-A with weight ε (since not-A is
unweighted). On the other hand, that ill-formed input has
some meaningful parts, such as “select the green” which
can contribute to the extraction of its semantics. To get
some possibly incomplete semantic information even in the
case of ill-formed inputs we changed our grammar in two
ways: a) we marked all terminal symbols not contributing
to the semantics as optional and b) we take all composite
rules and add to the grammar the rules that allow for the
parsing of their component. For instance, given the rule
ACTION → SELECT PIECE_DESC we add two more
rules, notably, ACTION → SELECT and ACTION →
PIECE_DESC. Due to these changes, the grammar WFSA
is also able to accept incomplete utterances and thus
successfully parse also chunks of the input sentence.

3.4 Semantic Parsing
To mentally represent in a simple way our process of
syntactic parsing, one can think of it as the task of building
parsing trees and collecting the traversed attributes present
in the original grammar. These attributes are further
connected together in the order they were encountered and
sent out to the semantic parser. Each attribute consists of
either a name:value pair or a head:action:value triple.
While the fields name and head are always instantiated, the
values in the other fields may be not.

Given a sequence of attributes, the role of the semantic
parsing is twofold. First, it has to break down the sequence
into chunks in an attempt to reflect the number of
commands in the original input sentence. For instance, let
us consider the following sequence of semantic tokens:

“mood:polite fhead:action:select color:blu shape:cross
to: next color:red id:anaphora fhead:meta:and
fhead:action:set what:ruler”

The sequence could have been generated by the input
sentence “please get the blue cross shaped figure next to
the red one and then show the ruler” or any rephrasing of
it. In terms of game semantic, such a compound sentence is
made up of two valid elementary instructions i.e. “get the
blue cross shaped figure next to the red one” and “show
the ruler”, respectively. The goal of the semantic parser is
therefore to split the sequence of attributes into two
substrings that capture the semantic underlying the two
original elementary instructions. Splitting occurs by
employing a set of hierarchical rules that correlate
syntactic parser outcomes and corresponding input
sentences. The rules are based on heuristics and look,
among others, for the occurrence or the lack of certain
attributes, for the value of specific fields, at the spatial
positions of the single pairs, for the occurrence of un-
instantiated values within pairs, and for the spatial
relationships among pairs. Occurrences of triples among
the token are exploited to mark the start of a new
command. Basically, we apply rewriting rules to reduce the
number of pairs and triples in the input sequence without
lost of any semantic information. This is also accomplished
by the introduction of new semantic pairs and triples that
replace sequences of tokens generated by the syntactic
parser.
Once the sequence of semantic attributes cannot be further
reduced, we employ a unification algorithm which attempts
at matching that new semantic representation with one of a
set of predefined template frames that we designed during
development. We currently have about 25 frames, each
representing a different class of elementary game
instructions. Unification of a sequence of tokens with a
frame occurs by unifying each slot in the frame with a
token in the attribute sequence that has the same name field
in case of pairs and head field in case of triple. Since it is
possible for a sequence to unify with more than one frame,
we give precedence to unifications that involves frames
with the largest number of slots. The idea is here
equivalent to give preference to longer input chunks in
partial parsing [5]. Our frame structures can be extended to
become typed feature structures [11] to integrate additional
information from other input modalities such as mouse
clicks or keyboard key activity.
Elementary game instructions can be divided into three
classes: those to operate directly on the Pentomino pieces,
those to change the setting of the game GUI, and those to
indicate a dialogue with the uses. At this stage of
development, the latter class is the smallest one as we hard

202

coded into the system a mechanism to simulate short
dialogue in few domains such as game authors, version etc.

3.5 The Game and World Logic
The Game and World logic agent is responsible for turning
the rich semantic information stored in the frames into
valid game instructions.
To reach this goal, this module starts off by mapping un-
instantiated and underspecified frame fields onto entities
(such as Pentomino pieces, board, or board locations)
within the world. Referential expressions are resolved as
well. Their treatment is simplified by our fairly restricted
game setting coupled with knowledge about the game
history and the current game state. When multiple
commands are issued at once and joint together by an “or”
conjunction, they are also heuristically resolved. For
instance, the command “drop the cross-shape pentomino in
the upper left corner or rotate it” is decomposed into its
two single component commands “drop the cross-shape
pentomino in the upper left corner” and “rotate it”. The
anaphora in the latter one is then resolved. Further, the
“or” operation is taken care of by checking if the single
commands can be carried out singularly or if they are
conflicting. A small set of rules based on game pragmatics
and semantics determines if and what of the commands is
eventually carried out. Reasoning about temporal vicinity
is additionally employed to rule out ambiguities in
anaphoric expressions.
Even the player’s knowledge about the game can be used
to restrict the set of input interpretations and guide the
resolution process. For instance, it is very unlikely for the
user to issue a command that rotates the cross shaped piece
since this produces no changes.
Once ambiguities are resolved, a sequence of instructions
(each corresponding to one frame) that describe the actions
the player wants to take, is generated based on the frames’
content. At this point, the module checks whether these
instructions meet a set of preconditions given the current
game world and, if so, accordingly updates the game GUI.
Feedback messages are simultaneously played back by the
TTS either to describe the action performed or to inform
about problems in carrying out the detected commands.

4. Discussion and Preliminary Results
We run several preliminary tests to assess the accuracy of
our system on PC platforms with Pentium 4 CPU,
2.40GHz, and 1GB of RAM under the Windows XP
operating system. Since game-player interaction revolves
about performing actions on pieces in the game world and
displaying the effects that these manipulations give rise to,
we were interested in the percentage of input that maps
onto equivalent correct game actions.
Our preliminary study involved 9 subjects, all computer
science literate, including 2 English native speakers. When
we restrict our analysis to input utterances that are properly
recognized by the speech decoder, our system displays a
correct language interpretation in up to 95.8% of the cases.
This figure however, quickly degrades to 63.7%, on
average, when all input utterances, i.e. including those
misrecognized by the speech recognizer, are considered
over 10 to 15 minute interactive sessions. The response
time to user inputs is variable. It ranges from a minimum
of 250msecs to a maximum value of around 1300msecs.
These values largely depends on the speech recognizer
settings and particularly on the settings concerning the type
of purging algorithm and the total number of grammar
states (the grammar we used compiles into a search space
made up of something less than 5000 nodes). Barge in is
not supported. If the user utters a sentence while the speech
recognizer is still processing an audio stream, the system is
likely to react with an unexpected long delay before
presenting the current recognition results.
We collected also data about the usability and ease of use
of our architecture. Based on subjective answers from the
participants to a post interaction questionnaire, it seems
that our speech interface enhances game play interaction.
At the same time, there is a clear indication that when time
plays a relevant role for the interaction, speech is not the
preferable modality anymore. This occurred when subjects
were asked to complete the puzzle game with the goal to
minimize the time to complete it.
We hypothesize that this is due to the fact that speech
processing takes longer than a mouse click to process and
is also more error prone. Under time pressure the users
seem not to be willing to have to wait because of longer
processing time. They seem less tolerant to system
interpretation errors for they cost additional precious time
to repair or make up for. In case of recognition errors,
users usually utter more commands into the mic regardless
of whether the speech recognizer is ready to process a new
audio stream. This turns out to be a serious additional
source of problems. Speech makes a valid, useful and
pleasant input modality in support of existing ones but is
not the preferred one when the system latency, response
time, and network communication is of paramount
importance. Network communication issues should also be
considered in the case the game is played in multiplayer
mode over a network. In this case, local players can
connect to a central server where a single instance of the
game is running. This requires less work on the part of the
players’ computers that have to process speech and

Figure 2: Sketch of the Complete Systems

203

language on the local machines. Only game logic is done at
server’s end which is an advantage because more server
resources can be used to keep everyone in synch.

5. Conclusion
By its nature, voice user interfaces have a number of
advantages over other user interfaces. Speech technology is
a challenge for digital signal processing and computer
systems. It requires minimal intrusive equipment to be
embedded in interactive applications but still needs to be
integrated with other modes for effective communication.
In the context of an interactive spoken system, the need of
a robust parsing is essential for the success of the
application. Poor understanding results in a disrupted
interaction and drastically degrades the user’s entertaining
experience. By its nature, speech displays a high rate of
extra grammatical phenomena that easily make most
syntactic parser fail. Most spoken dialogue systems have
tried to deal with that issue by limiting the linguistic
analysis to keywords spotting [6]. In our approach, the
natural language understanding problem focuses on the
pragmatic effects of language i.e. what changes an
utterance causes changes in the game world rather than on
a syntactic and/or semantic analysis of language only. A
similar approach, yet with more weight on pragmatic
information, was followed in [14]. We adopted a pipelined
parsing formalism based on an extended domain of locality
that is capable of achieving a fairly high degree of
integration of syntactic and semantic information.
In our system, language processing is facilitated by the
Pentomino game domain which naturally restricts the set of
utterances that the player produces. Nevertheless, we can
easily extend our methodology to comply with a deeper
syntactic formalism that gives more importance e.g. to sub
categorizations that accounts for stronger syntactic
dependencies within an input sentence (such as e.g. [12]).
We are currently investigating such research area and are
attempting to extend the current implementation into a
prototype architecture capable of supporting dialogue.

Acknowledgement
This work has been carried out within the framework of the
DEAWU project supported by the Marie Curie Transfer of
Knowledge Programme, grant EU #FP6-2002-Mobility.
Out thanks go to Bojan Popadic for programming support
as well as to Sigfried Wrobel for troubleshooting networks
and software problems on UNIX platforms.

References
[1] http://java.sun.com/products/java-media/speech/
forDevelopers/JSGF/
[2] http://www.microsoft.com/games/empires/
multimedia.htm
[3] http://www.konami.com/lifeline/

[4] Aho, A.V., Hopcroft, J.E., and Ullman, J.D., The
Design and Analysis of Computer Algorithms. Addison-
Wesley, 1974
[5] Abney, S., Partial Parsing via Finite-State Cascades In
Proceedings of the ESSLLI Robust Parsing Workshop, pp.
8-15, 1996
[6] Bratt, H., Dowding, D., and Hunicke-Smith, K., The
SRI Telephone-based ATIS System, In Proceedings of the
Spoken Language Systems Technology Workshop, 1995
[7] Cavazza, M., Bandi, S., and Palmer, I., Situated AI in
Video Games: Integrating NLP, Path Planning and 3D
Animation, In Proceedings of the AAAI Spring Symposium
on Artificial Intelligence and Computer Games, 1999
[8] Cheyer, A., and Martin, D., The Open Agent
Architecture. In Autonomous Agents and Multi-Agent
Systems, 4(1-2), pp. 143-148, March/June 2001
[9] Golomb, S. W., Polyominoes. Scribner's, 1965
[10] Hopcroft, J. E., and Ullman, J.D., Introduction to
Automata Theory, Languages and Computation, Addison-
Wesley, 1979
[11] Johnston, M., Cohen, P.R., McGee, D., Oviatt, S.L.,
Pittman, J.A., and Smith, I., Unification-based Multimodal
Integration In Proceedings of the Annual Meeting of the
Association for Computational Linguistics, pp. 281-288,
1997
[12] Joshi, A.K., and Schabes, Y., Tree-Adjoining
Grammars, , In Rozenberg, G., and Salomaa, A. (Ed.),
Handbook of Formal Languages, Vol. 3, Springer Verlag,
pp. 69-124, 1997
[13] Karttunen, L., The Replace Operator. In Roche, E.,
and Schabes, Y. (Ed.), Finite-State Language Processing,
MIT Press, 1997
[14] Mateas, M., and Stern, A., Natural Language
Undertanding in Façade: Surface-text Processing, Lecture
notes in computer science, Vol. 3105, Springer Verlag, pp.
3-13, 2004
[15] Mehta, M., and Corradini, A., Understanding Spoken
Language of Children Interacting with an Embodied
Conversational Character. In Proceedings of the Combined
Workshop on Language-Enabled Educational Technology
and Development and Evaluation of Robust Spoken
Dialogue Systems at the ECAI’06, pp. 51-58, 2006
[16] Mohri, M., Finite-State Transducers in Language and
Speech Processing. In Computational Linguistics, 23(2),
pp. 269-311, 1997
[17] Mohri, M., and Pereira, F.C.N., Dynamic Compilation
of Weighted Context-free Grammars. In COLING-ACL,
pp. 891-897, 1998
[18] Rosenfeld, R., Olsen, D., and Rudnicky, A., Universal
Speech Interfaces, In Interactions, 8(6), pp. 34 – 44, 2001
[19] Walker, W., Lamere, P., Kwok, P., Raj, B., Singh, R.,
Gouvea, E., Wolf, P., and Woelfel, J., Sphinx-4: A Flexible
Open Source Framework for Speech Recognition, Sun
Microsystems, TR-2004-139, 2004
[20] Zhang, J., Zhao, J,, Bai, S., and Huang, Z., Applying
Speech Interface to Mahjong Game. In Proceedings of the
10th International Multimedia Modeling Conference, pp.
86-92, 2004

204

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

