
Combining Machine Learning with Linguistic Heuristics for

Chinese Word Segmentation

Xiaofei Lu

Department of Linguistics and Applied Language Studies
The Pennsylvania State University
University Park, PA 16802, USA

xxl13@psu.edu

Abstract
This paper describes a hybrid model that combines machine
learning with linguistic heuristics for integrating unknown
word identification with Chinese word segmentation. The
model consists of two components: a position-of-character
(POC) tagging component that annotates each character in a
sentence with a POC tag that indicates its position in a
word, and a merging component that transforms a POC-
tagged character sequence into a word-segmented sentence.
The tagging component uses a support vector machine
based tagger to produce an initial tagging of the text and a
transformation-based tagger to improve the initial tagging.
In addition to the POC tags assigned to the characters, the
merging component incorporates a number of linguistic and
statistical heuristics to detect words with regular internal
structures, recognize long words, and filter non-words.
Experiments show that, without resorting to a separate
unknown word identification mechanism, the model
achieves an F-score of 95.0% for word segmentation and a
competitive recall of 74.8% for unknown word recognition.

Introduction

Word segmentation is the initial step of almost any text
analysis task. In languages where word boundaries are
marked by whitespace and punctuation marks, word
segmentation is relatively straightforward. However, there
are no unambiguous word boundary markers in Chinese,
and Chinese word segmentation is a nontrivial task. The
task is further complicated by the lack of a commonly
accepted definition of word in Chinese among theoretical
linguistics. The Chinese language processing community
generally adopts a rather pragmatic approach to this issue,
where the definition of word varies depending on the
purpose of the natural language processing system and the
segmentation standard it adopts (Sproat et al. 1996).

Chinese word segmentation involves two issues:
segmentation ambiguity resolution and unknown word

Copyright © 2007, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

identification. Most previous studies treat these as two
separate problems, using a mechanism to identify unknown
words in a post-processing step after word segmentation is
done. However, determining where word boundaries are
necessarily involves understanding how characters relate to
and interact with each other in context, and it is desirable
to capture this dynamic interaction by integrating unknown
word identification with word segmentation. Several recent
studies have taken a unified approach to unknown word
identification and word segmentation (e.g., Sproat et al.
1996; Xue 2003; Gao et al. 2005).

We describe a hybrid model that combines machine
learning with linguistic heuristics for integrating unknown
word identification with Chinese word segmentation. We
adopt the notion of character-based tagging (Xue 2003) to
directly model the combinatory power of Chinese
characters, i.e., the tendency for characters to combine with
adjacent characters to form words, either known or
unknown, in different contexts. The model consists of two
components. First, a position-of-character (POC) tagging
component tags each character in a sentence with a POC
tag that indicates its position in a word. This component
uses a support vector machine based tagger to produce an
initial tagging of the text and a transformation-based tagger
to improve the initial tagging. Second, a merging
component transforms a POC-tagged character sequence
into a word-segmented sentence, using a number of
linguistic and statistical heuristics to detect words with
regular internal structures, recognize long words, and filter
non-words. Without resorting to a sophisticated
mechanism for unknown word identification or additional
resources other than a word-segmented training corpus, the
model achieves an F-score of 95.0% for word
segmentation and a competitive recall of 74.8% for
unknown word identification.

The rest of the paper is organized as follows. Section 2
reviews previous approaches to Chinese word
segmentation. Section 3 details the two components of the
proposed model. Section 4 discusses the experiment results
of the model. Section 5 concludes the paper and points to
avenues for future research.

241

Previous Studies

Previous approaches for word segmentation fall into four
categories: dictionary-based, statistical, statistical and
dictionary-based, and machine learning approaches. In
dictionary-based approaches, only words listed in the
dictionary are identified. Most studies from these
approaches use some variation of the maximum matching
algorithm along with heuristics to handle segmentation
ambiguities (e.g., Nie et al. 1995). These approaches
require a separate mechanism for unknown word
identification and their performance depends heavily on
the quality of the dictionary. Statistical approaches use
information-theoretical or probabilistic measures to
determine whether adjacent characters form words or
which segmentation is most likely for a sentence (e.g., Ge
et al. 1999). These approaches incorporate little linguistic
knowledge and generally perform worse than other
approaches. Statistical and dictionary-based approaches
attempt to benefit from both worlds, using both the
information about words in the dictionary and statistical
information derived from the corpus to compute the most
likely segmentation of a sentence. However, it is generally
agreed that the quality of the base lexicon is more
important than the model and that unknown words
constitute the greatest challenge (e.g., Sproat et al. 1996).
With the availability of word-segmented training corpora, a
number of supervised machine learning algorithms have
been applied to Chinese word segmentation, including, e.g.,
maximum entropy (Xue 2003), conditional random fields
(e.g., Tseng et al. 2005), and linear mixture models (Gao et
al. 2005). These approaches are able to integrate unknown
word identification with word segmentation and have
achieved fairly competitive results.

Proposed Approach

This section describes a model that combines machine
learning with linguistic heuristics to integrate unknown
word identification with word segmentation. The main
hypothesis tested here is that the notion of character-based
tagging (Xue 2003) can be used to directly model the
combinatory power of Chinese characters to combine with
adjacent characters to form words in different contexts and
to integrate unknown word identification with word
segmentation. The model consists of two components. First,
a position-of-character (POC) tagging component tags each
character in a sentence with a POC tag that indicates its
position in a word. This component is based on the
transformation-based learning (TBL) algorithm (Brill
1995), using a tagger based on support vector machines
(SVMs) (Vapnik 1995) as an initial tagger for the
algorithm. Second, a merging component transforms a
POC-tagged character sequence into a word-segmented
sentence, using a number of linguistic and statistical
heuristics to handle several special types of words.

The Tagging Component
The tagset defined for the tagging component consists of
four tags: L, M, R, and W, each of which indicates that the
character is in a word-initial, word-middle, or word-final
position or is a monosyllabic word.

A Transformation-Based Learning Tagger. The TBL
algorithm is adopted for the tagging component because,
compared with other statistical machine learning
algorithms, it captures linguistic knowledge in a more
direct fashion without compromising performance (Brill
1995). The implementation of the algorithm used in this
study is fnTBL (Ngai and Florian 2001), which is more
efficient than Brill’s original implementation.

The TBL algorithm requires a tagged training corpus
(the truth) and its corresponding raw version. A tagged
corpus can be converted from a word-segmented corpus by
assigning each character a tag based on its position in the
word containing it. The conversion process is illustrated
by the following example, where the word-segmented
sentence in (1a) is converted into a tagged character
sequence in (1b).

(1) a. .
 Today is Monday .
 ‘Today is Monday.’

b. /L /R /W /L /W /R ./W

In addition to the tagged training corpus and the
corresponding raw corpus, the algorithm requires three
components. The first is an initial tagging of the raw
corpus. Although the algorithm places no requirement on
the initial tagger, previous studies have shown that a better
initial tagger leads to better final results and shorter
learning time (e.g., Hockenmaier and Brew 1998). For this
reason, we use a sophisticated SVM-based initial tagger. A
second initial tagger based on the hidden Markov model
(HMM) is used for comparison.

The second component is the space of transformations
allowed. Each transformation consists of a rewrite rule and
a triggering environment. The set of transformations used
in this study is similar to the set Ngai and Florian (2001)
defined for the task of base NP chunking. In this case,
however, the triggering context is defined over characters
and POC tags. The triggering context considered include
the character and tag in the current position and those in
the three positions immediately preceding or following the
current position. Three transformations are given in (2) as
an illustration.

(2) Change the current tag ti to tj, if the current tag is x, the
current character is a, and one of the following is true:
a. the preceding (following) character is b
b. the tag two positions to the left (right) is z
c. the previous (following) character is b, and the

previous (following) tag is y

242

The third component is a scoring function, which is used
to compare the corpus to the truth and determine which
transformation should be learned. The function we use is
the number of tagging error reductions achieved after
applying a transformation.

Once all the components are in place, the iterative
training process takes place as follows. At each iteration,
the learner applies each possible instantiation of the
transformation templates to the text (starting with the text
tagged by the initial tagger), counts the number of tagging
error reductions each transformation achieves, and chooses
the transformation that achieves the greatest number of
tagging error reductions. That transformation is applied to
the text, and the learning process repeats until no more
transformations reduce errors beyond a pre-determined
threshold. The output of the algorithm is a ranked list of
transformations that can be applied to new text.

An SVM-Based Initial Tagger. SVMs are binary
classifiers on a feature vector space RL. Given a set of
training data, {(xi, yi)| xi RL, yi {±1}, 1 i l}, where
xi is the ith sample in the training data and yi is the label of
xi, a hyperplane, given in (3), separates the set into two
classes in such a way that the constraints in (4) are satisfied:

(3) RbRwbxw L ,,0

(4) 1)(bxwy ii

In (3) and (4), w is a weight vector with one weight for
each feature, and b is a bias, which is the distance of the
hyperplane to the origin. Among all hyperplanes that
separate the training data into two sets, SVMs find the
optimal hyperplane with maximal margin, i.e., maximal
distance between the hyperplane and the nearest positive
and negative samples, because it is expected to minimize
expected test error. Giving a test example x, its label y is
determined by the sign of a discrimination function f(x)
given by the SVMs classifier as follows:

(5)
SVz

iii
i

bzxKyxf)),(sgn()(

where b R, zi is a support vector, which receives a non-
zero weight i, K(x, zi) is a polynomial kernel function of
degree d given by K(x, zi) = (x· zi + 1)d, which maps vectors
into a higher dimensional space where all combinations of
up to d features are considered, and SV denotes the set of
support vectors, i.e., the vectors that receive a non-zero
weight. The support vectors and the parameters are
determined by quadratic programming. If f(x) = +1, then x
is a positive member, otherwise it is a negative member.

The implementation of the SVM classifier used is
SVMTool (Giménez and Màrquez 2004). As SVMs are
binary classifiers, some adaptation is necessary to make
them suitable for multi-class classification tasks. Giménez
and Màrquez used a one-per-class binarization, where they
trained an SVM for each class to determine whether an

example is of this class or not. At classification time, the
most confident tag given by all SVMs is selected.

The features used for tagging include character and tag
n-grams. The two characters and tags preceding and
following the current character and tag are considered. At
running time, however, the tags of the characters to the
right of the current character are not known. In SVMTool,
a general ambiguity-class tag, i.e., a label that concatenates
all the possible tags for a character, is used for the right
context characters. Table 1 summarizes the feature set used
for tagging. Only the POC features are used for unknown
characters.

Character features c-2, c-1, c0, c1, c2
POC features t-2, t-1
Ambiguity class a0, a1, a2
Character bigrams (c-2,c-1), (c-1,c1), (c-1,c0), (c0,c1),

(c1,c2)
POC bigrams (t-2,t-1), (t-1,a1), (a1,a2)
Character trigrams (c-2,c-1,c0), (c-2,c-1,c1), (c-1,c0,c1),

(c0,c1,c2), (c-1,c1,c2)
POC trigrams (t-2,t-1,a0), (t-2,t-1,a1), (t-1,a0,a1),

(t-1,a1,a2)
Table 1: Feature set for the SVM-based tagger

An HMM-Based Initial Tagger. To compare the impact
of the initial tagger on the performance of the TBL
algorithm, a first-order HMM tagger (Charniak et al. 1993)
is implemented. This model computes the most likely tag
sequence t1...tn for a character sequence c1...cn, as follows:

(6)
n

i
iiii

tt
ctpttp

ni 1
1

...
)|()|(maxarg

where ti and ci denote the ith tag in the tag sequence and
the ith character in the character sequence respectively,
p(ti|ti-1) denotes the transition probability, i.e., the
probability of a tag given its previous tag, and p(ti|ci)
denotes the lexical probability, i.e., the probability of a tag
given a character. The transition and lexical probabilities
are estimated from the training corpus. For unknown
characters, the lexical probabilities are uniformly
distributed among the four tags defined in the tagset. The
transition probabilities are not smoothed, as all unseen tag
bigrams, such as (R,R) and (W,R), are impossible
combinations. Once the model is trained, the Viterbi
algorithm (Rabiner 1989) is used to tag new text.

The Merging Component
The merging component transforms a tagged character
sequence into a word-segmented sentence. By default, it
inserts a word boundary marker after each character tagged
R (word-final) or W (monosyllabic word). It incorporates
several linguistic and statistical heuristics for 1) detecting
three types of unknown words with regular internal
structures, i.e., numeric type compounds, reduplicated and

243

derived words, and transliterated foreign names; 2)
recognizing long words that have occurred in the training
corpus; and 3) filtering non-words.

Numeric Type Compounds. The component uses regular
expressions to detect numeric type compounds such as
dates, times, fractions, numbers, etc. The patterns for
different types of numeric type compounds are generalized
from the training corpus, and a character string that fits one
of these patterns is grouped into one segmentation unit.
Gao et al. (2005) showed that the performance of detecting
such words using their internal properties is comparable
with that of using contextual information.

Reduplicated and Derived Words. The component also
uses heuristics to detect reduplicated words that are three
or more characters long and some derived words with
predictable internal structures. If a character string fits a
reduplication pattern in Chinese, it is grouped as one word.
For derived words, many morphemes are ambiguous
between an affix and a word, e.g., can be either an affix
‘-ist’ or a noun ‘family’. Detection of the correct use of
such morphemes in bisyllabic words is hard. To avoid
overgeneration, the heuristics only detect derived words
formed with a multisyllabic root word and an unambiguous
affix, such as study-expert ‘-ist’. If an unambiguous
prefix or suffix is detected, it is attached to the following or
previous word, if that word is at least two characters long.

Transliterated Foreign Names. Foreign names are
usually transliterated using a subset of Chinese characters.
Most transliterated names consist of three or more
characters, and these words pose a challenge to the tagger.
We acquire a list of characters used for transliterations
from the wordlist generated from the training corpus.
There is a dot used exclusively within transliterated foreign
names to indicate different parts of a name. For example,
George Bush is transliterated as · , where the dot
within the name indicates that ‘George’ and
‘Bush’ are different parts of the same name. Based on this
simple observation, the algorithm proceeds as follows:

1) Extract names with the dot from the wordlist and store
all characters in these names in a seed list.

2) Extract all candidate names that are four or more
characters long with all but one character from the
seed list. For each candidate, add the one character not
on the seed list to the seed list. Repeat until no more
characters can be acquired.

3) Filter out characters acquired in step 2 that have
appeared only in one candidate.

In processing new text, the algorithm first uses the final
character list to identify candidate names and then filters
candidates using contextual information, as follows:

1) Add characters immediately before or after the dot in
the text to the final list of characters, if they are not
already included.

2) Identify character n-grams (n 3) whose component
characters are all from the list.

3) Extract five characters to its left and right.
4) Strip the leftmost character of the n-gram if it forms a

word with the one, two, three, four, or five left context
characters and add it to the left context. Iterate until
the leftmost character of the n-gram no longer forms a
word with its left context characters.

5) Strip the leftmost two characters of the n-gram if they
form a word with the one, two, three, four, or five left
context characters and add them to the left context.
Iterate until the leftmost two characters of the n-gram
no longer form a word with its left context characters.

6) Do steps 4 and 5 with the rightmost characters of the
n-gram and the right context characters.

7) If the final n-gram has three or more characters, it is
considered a transliterated foreign name.

Long Words. Another hypothesis tested in this research is
that longer words behave more consistently than shorter
words. In particular, we hypothesize that if a string of four
or more characters appeared in the training corpus as a
word, it is likely to be a word in the test corpus. Whereas
there are foreseeable counterexamples for this hypothesis,
its usefulness will be empirically tested. Given the fuzzy
line between compounds and phrases in Chinese, a
character string may be considered as a compound in one
segmentation standard but a phrase in another. For
example, the string ‘personal income tax’ may
be considered one word or three words, ‘personal’,

‘income’, and ‘tax’, depending on the standard.
Within the same standard, however, such strings should be
treated consistently. To adapt to the standard following
which the corpus is segmented, we use the wordlist
generated from the training corpus instead of an existing
lexicon. If a string of four or more characters is found in
the wordlist, the merging component considers it a word.

Non-Word Filtering. The last type of heuristics is for non-
word filtering. The first of these is used to detect bisyllabic
non-words. If the tagger tags two adjacent characters as L
(word-initial) and R (word-final), the string is a candidate
new word, if it has not occurred in the training data. The
candidate is filtered in two steps. First, it is checked against
two lists of characters that contain frequent, unproductive
morphemes that do not occur in 1) word-initial position of
new bisyllabic words, e.g., ‘but’, or 2) word-final
position of new bisyllabic words, e.g., ‘this’,
respectively. If the first or second character of the
candidate is on the first or second list, respectively, the
candidate is split into two words. Second, the probability
for a character to appear in word-initial or word-final
position is estimated from the training data as in (7):

244

(7)
)(

),(),(
CF
PosCFPosCP

where C denotes a character, Pos denotes a position in a
word, P(C,Pos) is the probability that C occurs in Pos,
F(C,Pos) is the number of times C occurs in Pos, and F(C)
is the number of times C appears in any position of a word.
Given a candidate new word, the probability for it to be a
word is computed as the joint probability of P(C,Pos) for
both of its component characters. If the joint probability is
below a pre-determined threshold, then the candidate is
considered a non-word and is split into two words.

Finally, the following two rules are used to merge or
split character strings of certain patterns, based on the error
analysis in the development stage. First, if two adjacent
characters are both tagged W (monosyllabic word), but
they have always occurred in the training data as a word,
they are merged into a word. Second, if three adjacent
characters are tagged W (monosyllabic word), L (word-
initial), and R (word-final) respectively, but the first two
characters form a known word and the last two characters
do not, then the first two characters are grouped into a
word and the last one is left as a monosyllabic word.

Results

The model is developed and tested using the Peking
University Corpus (Yu et al. 2002). It contains all the news
articles published in January, 1999 in People’s Daily, a
major newspaper in China. The corpus has 1.12 million
tokens and is word-segmented. It is randomly partitioned
into three parts, with 80% used for training, 10% for
development, and 10% for testing. The final model is
trained on the union of the training and development sets
and results are reported on the test data.
 As discussed earlier, two initial taggers are used in the
experiment to compare the impact of the initial tagger on
the TBL algorithm. In both cases, the threshold for the
scoring function is set to 1, i.e., all rules that achieve two
or more tagging error reductions are learned. In addition,
fnTBL makes it possible to learn rules that, at the end of
the training process, result in no negative application but a
number of positive applications greater than a pre-
determined threshold. This threshold is set to 1 as well.
The results of the two initial taggers as well as the
improved results achieved by the TBL algorithm are
summarized in Table 2.

Tagger Accuracy
HMM tagger 0.814
HMM + TBL 0.936
SVM tagger 0.931
SVM + TBL 0.946

Table 2: POC tagging results

The HMM tagger achieves an accuracy of 81.4%, which
is improved to 93.6% by the TBL algorithm. This amounts
to an absolute accuracy improvement of 12.2%, or a
tagging error reduction rate of 65.6%. The SVM-based
tagger achieves a better initial tagging than the HMM
tagger, with an accuracy of 93.1%. The TBL algorithm
achieves an absolute accuracy improvement of 1.5%, or a
tagging error reduction rate of 21.7%. The better initial
tagging achieved by the SVM-based tagger results in less
improvement for the TBL algorithm, but better overall
tagging accuracy.
 The output of the merging component is evaluated with
the scoring algorithm from the second SIGHAN Chinese
Segmentation Bakeoff (Emerson 2005). This algorithm
evaluates word segmenters in terms of recall (R), precision
(P), F-score (F), recall for out-of-vocabulary words (ROOV),
i.e., unknown words, and recall for in-vocabulary words
(RIV).

The results of the model are summarized in Table 3. As
the second row of the table shows, the default merger,
which uses the tags assigned to the character string only,
achieves an F-score of 93.5% for word segmentation with a
recall rate of 73.8% for unknown word identification.
Rows three through five indicate the improvement
achieved by incorporating one of the three individual types
of heuristics. Row three shows that the heuristics for
unknown word identification (UWI) improve the recall rate
for unknown words (ROOV) by 2.2%; row four shows that
the heuristics for long word identification (LWI) slightly
improve performance on in-vocabulary words; and row
five shows that the heuristics for non-word filtering (NWF)
greatly improve performance on in-vocabulary words.
When all the heuristics are used, the F-score for word
segmentation is improved by 1.5% to 95.0%, and the recall
rate for unknown word identification is improved by 1% to
74.8%.

Resources R P F ROOV RIV
POC Tags 0.932 0.938 0.935 0.738 0.944

+UWI 0.933 0.939 0.936 0.760 0.944
+LWI 0.933 0.940 0.937 0.737 0.945
+NWF 0.942 0.944 0.943 0.726 0.955
+ALL 0.947 0.952 0.950 0.748 0.959

Table 3: Word segmentation results

Since the model uses no additional resources other than
the training data, the results are comparable with the results
of the systems that participated in the closed track of the
Peking University Corpus in the second SIGHAN Chinese
Segmentation Bakeoff. Table 4 summarizes the results of
our model and the top three systems in the bakeoff. As
these results indicate, without a complicated unknown
word recognition mechanism, the final model performs at
the state of the art for word segmentation along with a
competitive recall rate for unknown word identification.

245

System R P F ROOV RIV
Our model 0.947 0.952 0.950 0.748 0.959

Chen et al. (2005) 0.953 0.946 0.950 0.636 0.972
Tseng et al. (2005) 0.946 0.954 0.950 0.787 0.956
Zhang et al. (2005) 0.952 0.945 0.949 0.673 0.969

Table 4: Word segmentation results

Discussion and Conclusions

The results confirm our hypothesis that the notion of
character-based tagging is useful for modeling the
tendency of Chinese characters to combine with adjacent
characters to form words in different contexts and has good
potential for integrating unknown word identification with
Chinese word segmentation. One advantage for adopting
this notion is that since we have a classification problem,
the model can directly benefit from improvements in
classifiers. Another advantage of the two-component setup
is that it allows easy integration of additional linguistic and
statistical heuristics in the merging stage. The heuristics for
detecting unknown words with regular internal structures
prove useful for enhancing performance on unknown
words. Results of the heuristics for long word recognition
confirm the hypothesis that long words behave more
consistently than shorter words. The heuristics for non-
word filtering filter a large proportion of false unknown
words detected by the tagger.

The current model does not make use of any additional
resources other than the training data. Various lexical
resources have been used in different word segmentation
systems. For example, some of the resources used in Gao
et al. (2005), which is by far the most sophisticated
segmentation system, include a 98,668-entry lexicon, a
morpho-lexicon that contains 59,960 morphologically
derived words with information about morphological
patterns and stems for each entry, as well as lists of family
name characters, location names, organization names,
transliterated name characters, single-character person
names, and single-character location names. Such
resources can be used both to improve the tagging
component by enriching the feature set for tagging and to
improve the heuristics in the merging component.

References

Brill, E. 1995. Transformation-based error-driven learning
and natural language processing: A case study in part-of-
speech tagging. Computational Linguistics 21(4):543–565.

Charniak, E., Hendrickson, C., Jacobson, N., and
Perkowitz, M. 1993. Equations for part-of-speech tagging.
In Proceedings of AAAI 1993, 784-789.

Chen, A., Zhou, Y., Zhang, A., and Sun, G. 2005. Unigram
language model for Chinese word segmentation. In

Proceedings of the 4th SIGHAN Workshop on Chinese
Language Processing, 138-141.

Emerson, T. 2005. The Second Chinese Word
Segmentation Bakeoff. In Proceedings of the 4th SIGHAN
Workshop on Chinese Language Processing, 123-133.

Gao, J., Li, M., Wu, A., and Huang C.-N. 2005. Chinese
word segmentation and named entity recognition: a
pragmatic approach. Computational Linguistics 31(4):531–
574.
Ge, X., Pratt, W., and Smyth, P. 1999. Discovering
Chinese words from unsegmented text. In Proceedings of
ACM SIGIR 1999, 271-272.
Giménez, J., and Màrquez, L. 2004. SVMTool: A general
POS tagger generator based on support vector machines. In
Proceedings of LREC 2004.
Hockenmaier, J., and Brew, C. 1998. Error-driven
segmentation of Chinese. In Proceedings of PACLIC 1998,
218-229.
Ngai, G., and Florian, R. 2001. Transformation-based
learning in the fast lane. In Proceedings of NAACL 2001,
40-47.

Nie, J.-Y., Hannan, M.-L., and Jin, W. 1995. Unknown
word detection and segmentation of Chinese using
statistical and heuristic knowledge, Communications of
COLIPS 5(1/2), 47–57.
Rabiner, L. R. 1989. A tutorial of hidden Markov models
and selected applications in speech recognition. In
Proceedings of IEEE 1989, 257–286.
Sproat, R., Shih, C., Gale, W., and Chang, N. 1996. A
stochastic finite-state word segmentation algorithm for
Chinese. Computational Linguistics 22(3), 377–404.

Tseng, H., Chang, P., Andrew, G., Jurafsky, D., and
Manning C. 2005. A conditional random fields word
segmenter for SIGHAN Bakeoff 2005. In Proceedings of
the 4th SIGHAN Workshop on Chinese Language
Processing, 168-171.

Vapnik, V. N. 1995. The Nature of Statistical Learning
Theory. Berlin: Springer-Verlag.

Xue, N. 2003. Chinese word segmentation as character
tagging. International Journal of Computational
Linguistics and Chinese Language Processing 8(1):29–48.

Yu, S., Duan, H., Zhu, X., and Sun, B. 2002. The basic
processing of Contemporary Chinese Corpus at Peking
University. Journal of Chinese Information Processing
16(5):49–64.

Zhang, H., Liu, T., Ma, J., and Liao, X. 2005. Chinese
word segmentation with multiple postprocessors in HIT-IR
Lab. In Proceedings of the 4th SIGHAN Workshop on
Chinese Language Processing, 172-175.

246

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

