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Abstract 
This paper describes a hybrid model that combines machine 
learning with linguistic heuristics for integrating unknown 
word identification with Chinese word segmentation. The 
model consists of two components: a position-of-character 
(POC) tagging component that annotates each character in a 
sentence with a POC tag that indicates its position in a 
word, and a merging component that transforms a POC-
tagged character sequence into a word-segmented sentence. 
The tagging component uses a support vector machine 
based tagger to produce an initial tagging of the text and a 
transformation-based tagger to improve the initial tagging. 
In addition to the POC tags assigned to the characters, the 
merging component incorporates a number of linguistic and 
statistical heuristics to detect words with regular internal 
structures, recognize long words, and filter non-words. 
Experiments show that, without resorting to a separate 
unknown word identification mechanism, the model 
achieves an F-score of 95.0% for word segmentation and a 
competitive recall of 74.8% for unknown word recognition.   

Introduction   

Word segmentation is the initial step of almost any text 
analysis task. In languages where word boundaries are 
marked by whitespace and punctuation marks, word 
segmentation is relatively straightforward. However, there 
are no unambiguous word boundary markers in Chinese, 
and Chinese word segmentation is a nontrivial task. The 
task is further complicated by the lack of a commonly 
accepted definition of word in Chinese among theoretical 
linguistics. The Chinese language processing community 
generally adopts a rather pragmatic approach to this issue, 
where the definition of word varies depending on the 
purpose of the natural language processing system and the 
segmentation standard it adopts (Sproat et al. 1996).    

Chinese word segmentation involves two issues: 
segmentation ambiguity resolution and unknown word 
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identification. Most previous studies treat these as two 
separate problems, using a mechanism to identify unknown 
words in a post-processing step after word segmentation is 
done. However, determining where word boundaries are 
necessarily involves understanding how characters relate to 
and interact with each other in context, and it is desirable 
to capture this dynamic interaction by integrating unknown 
word identification with word segmentation. Several recent 
studies have taken a unified approach to unknown word 
identification and word segmentation (e.g., Sproat et al. 
1996; Xue 2003; Gao et al. 2005).  

We describe a hybrid model that combines machine 
learning with linguistic heuristics for integrating unknown 
word identification with Chinese word segmentation. We 
adopt the notion of character-based tagging (Xue 2003) to 
directly model the combinatory power of Chinese 
characters, i.e., the tendency for characters to combine with 
adjacent characters to form words, either known or 
unknown, in different contexts. The model consists of two 
components. First, a position-of-character (POC) tagging 
component tags each character in a sentence with a POC 
tag that indicates its position in a word. This component 
uses a support vector machine based tagger to produce an 
initial tagging of the text and a transformation-based tagger 
to improve the initial tagging. Second, a merging 
component transforms a POC-tagged character sequence 
into a word-segmented sentence, using a number of 
linguistic and statistical heuristics to detect words with 
regular internal structures, recognize long words, and filter 
non-words. Without resorting to a sophisticated 
mechanism for unknown word identification or additional 
resources other than a word-segmented training corpus, the 
model achieves an F-score of 95.0% for word 
segmentation and a competitive recall of 74.8% for 
unknown word identification.   

The rest of the paper is organized as follows. Section 2 
reviews previous approaches to Chinese word 
segmentation. Section 3 details the two components of the 
proposed model. Section 4 discusses the experiment results 
of the model. Section 5 concludes the paper and points to 
avenues for future research.  
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Previous Studies

Previous approaches for word segmentation fall into four 
categories: dictionary-based, statistical, statistical and 
dictionary-based, and machine learning approaches. In 
dictionary-based approaches, only words listed in the 
dictionary are identified. Most studies from these 
approaches use some variation of the maximum matching 
algorithm along with heuristics to handle segmentation 
ambiguities (e.g., Nie et al. 1995). These approaches 
require a separate mechanism for unknown word 
identification and their performance depends heavily on 
the quality of the dictionary. Statistical approaches use 
information-theoretical or probabilistic measures to 
determine whether adjacent characters form words or 
which segmentation is most likely for a sentence (e.g., Ge 
et al. 1999). These approaches incorporate little linguistic 
knowledge and generally perform worse than other 
approaches. Statistical and dictionary-based approaches 
attempt to benefit from both worlds, using both the 
information about words in the dictionary and statistical 
information derived from the corpus to compute the most 
likely segmentation of a sentence. However, it is generally 
agreed that the quality of the base lexicon is more 
important than the model and that unknown words 
constitute the greatest challenge (e.g., Sproat et al. 1996). 
With the availability of word-segmented training corpora, a 
number of supervised machine learning algorithms have 
been applied to Chinese word segmentation, including, e.g., 
maximum entropy (Xue 2003), conditional random fields 
(e.g., Tseng et al. 2005), and linear mixture models (Gao et 
al. 2005). These approaches are able to integrate unknown 
word identification with word segmentation and have 
achieved fairly competitive results.  

Proposed Approach 

This section describes a model that combines machine 
learning with linguistic heuristics to integrate unknown 
word identification with word segmentation. The main 
hypothesis tested here is that the notion of character-based 
tagging (Xue 2003) can be used to directly model the 
combinatory power of Chinese characters to combine with 
adjacent characters to form words in different contexts and 
to integrate unknown word identification with word 
segmentation. The model consists of two components. First, 
a position-of-character (POC) tagging component tags each 
character in a sentence with a POC tag that indicates its 
position in a word. This component is based on the 
transformation-based learning (TBL) algorithm (Brill 
1995), using a tagger based on support vector machines 
(SVMs) (Vapnik 1995) as an initial tagger for the 
algorithm. Second, a merging component transforms a 
POC-tagged character sequence into a word-segmented 
sentence, using a number of linguistic and statistical 
heuristics to handle several special types of words.  

The Tagging Component 
The tagset defined for the tagging component consists of 
four tags: L, M, R, and W, each of which indicates that the 
character is in a word-initial, word-middle, or word-final 
position or is a monosyllabic word.  

A Transformation-Based Learning Tagger. The TBL 
algorithm is adopted for the tagging component because, 
compared with other statistical machine learning 
algorithms, it captures linguistic knowledge in a more 
direct fashion without compromising performance (Brill 
1995). The implementation of the algorithm used in this 
study is fnTBL (Ngai and Florian 2001), which is more 
efficient than Brill’s original implementation.  

The TBL algorithm requires a tagged training corpus 
(the truth) and its corresponding raw version. A tagged 
corpus can be converted from a word-segmented corpus by 
assigning each character a tag based on its position in the 
word containing it. The conversion process is illustrated 
by the following example, where the word-segmented 
sentence in (1a) is converted into a tagged character 
sequence in (1b). 

(1) a.   . 
    Today is  Monday . 
    ‘Today is Monday.’ 

b. /L /R /W /L /W /R ./W 

In addition to the tagged training corpus and the 
corresponding raw corpus, the algorithm requires three 
components. The first is an initial tagging of the raw 
corpus. Although the algorithm places no requirement on 
the initial tagger, previous studies have shown that a better 
initial tagger leads to better final results and shorter 
learning time (e.g., Hockenmaier and Brew 1998). For this 
reason, we use a sophisticated SVM-based initial tagger. A 
second initial tagger based on the hidden Markov model 
(HMM) is used for comparison. 

The second component is the space of transformations 
allowed. Each transformation consists of a rewrite rule and 
a triggering environment. The set of transformations used 
in this study is similar to the set Ngai and Florian (2001) 
defined for the task of base NP chunking. In this case, 
however, the triggering context is defined over characters 
and POC tags. The triggering context considered include 
the character and tag in the current position and those in 
the three positions immediately preceding or following the 
current position. Three transformations are given in (2) as 
an illustration.  

(2)  Change the current tag ti to tj, if the current tag is x, the 
current character is a, and one of the following is true: 
a. the preceding (following) character is b
b. the tag two positions to the left (right) is z
c. the previous (following) character is b, and the  

previous (following) tag is y
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The third component is a scoring function, which is used 
to compare the corpus to the truth and determine which 
transformation should be learned. The function we use is 
the number of tagging error reductions achieved after 
applying a transformation.  

Once all the components are in place, the iterative 
training process takes place as follows. At each iteration, 
the learner applies each possible instantiation of the 
transformation templates to the text (starting with the text 
tagged by the initial tagger), counts the number of tagging 
error reductions each transformation achieves, and chooses 
the transformation that achieves the greatest number of 
tagging error reductions. That transformation is applied to 
the text, and the learning process repeats until no more 
transformations reduce errors beyond a pre-determined 
threshold. The output of the algorithm is a ranked list of 
transformations that can be applied to new text. 

An SVM-Based Initial Tagger. SVMs are binary 
classifiers on a feature vector space RL. Given a set of 
training data, {(xi, yi)| xi RL, yi  {±1}, 1 i l}, where 
xi is the ith sample in the training data and yi is the label of 
xi, a hyperplane, given in (3), separates the set into two 
classes in such a way that the constraints in (4) are satisfied: 

(3) RbRwbxw L ,,0

(4) 1)( bxwy ii

In (3) and (4), w is a weight vector with one weight for 
each feature, and b is a bias, which is the distance of the 
hyperplane to the origin. Among all hyperplanes that 
separate the training data into two sets, SVMs find the 
optimal hyperplane with maximal margin, i.e., maximal 
distance between the hyperplane and the nearest positive 
and negative samples, because it is expected to minimize 
expected test error. Giving a test example x, its label y is
determined by the sign of a discrimination function f(x)
given by the SVMs classifier as follows:  

(5) 
SVz

iii
i

bzxKyxf )),(sgn()(

where b R, zi is a support vector, which receives a non-
zero weight i, K(x, zi) is a polynomial kernel function of 
degree d given by K(x, zi) = (x· zi + 1)d, which maps vectors 
into a higher dimensional space where all combinations of 
up to d features are considered, and SV denotes the set of 
support vectors, i.e., the vectors that receive a non-zero 
weight. The support vectors and the parameters are 
determined by quadratic programming. If f(x) = +1, then x
is a positive member, otherwise it is a negative member. 

The implementation of the SVM classifier used is 
SVMTool (Giménez and Màrquez 2004). As SVMs are 
binary classifiers, some adaptation is necessary to make 
them suitable for multi-class classification tasks. Giménez 
and Màrquez used a one-per-class binarization, where they 
trained an SVM for each class to determine whether an 

example is of this class or not. At classification time, the 
most confident tag given by all SVMs is selected.  

The features used for tagging include character and tag 
n-grams. The two characters and tags preceding and 
following the current character and tag are considered. At 
running time, however, the tags of the characters to the 
right of the current character are not known. In SVMTool, 
a general ambiguity-class tag, i.e., a label that concatenates 
all the possible tags for a character, is used for the right 
context characters. Table 1 summarizes the feature set used 
for tagging. Only the POC features are used for unknown 
characters.   

Character features c-2, c-1, c0, c1, c2
POC features t-2, t-1
Ambiguity class a0, a1, a2
Character bigrams (c-2,c-1), (c-1,c1), (c-1,c0), (c0,c1),   

(c1,c2)
POC bigrams (t-2,t-1), (t-1,a1), (a1,a2)
Character trigrams (c-2,c-1,c0), (c-2,c-1,c1), (c-1,c0,c1),

(c0,c1,c2), (c-1,c1,c2)
POC trigrams (t-2,t-1,a0), (t-2,t-1,a1), (t-1,a0,a1),  

(t-1,a1,a2)
Table 1: Feature set for the SVM-based tagger 

An HMM-Based Initial Tagger. To compare the impact 
of the initial tagger on the performance of the TBL 
algorithm, a first-order HMM tagger (Charniak et al. 1993) 
is implemented. This model computes the most likely tag 
sequence t1...tn for a character sequence c1...cn, as follows: 

(6) 
n

i
iiii

tt
ctpttp

ni 1
1

...
)|()|(maxarg

where ti and ci denote the ith tag in the tag sequence and 
the ith character in the character sequence respectively, 
p(ti|ti-1) denotes the transition probability, i.e., the 
probability of a tag given its previous tag, and p(ti|ci)
denotes the lexical probability, i.e., the probability of a tag 
given a character. The transition and lexical probabilities 
are estimated from the training corpus. For unknown 
characters, the lexical probabilities are uniformly 
distributed among the four tags defined in the tagset. The 
transition probabilities are not smoothed, as all unseen tag 
bigrams, such as (R,R) and (W,R), are impossible 
combinations. Once the model is trained, the Viterbi 
algorithm (Rabiner 1989) is used to tag new text. 

The Merging Component 
The merging component transforms a tagged character 
sequence into a word-segmented sentence. By default, it 
inserts a word boundary marker after each character tagged 
R (word-final) or W (monosyllabic word). It incorporates 
several linguistic and statistical heuristics for 1) detecting 
three types of unknown words with regular internal 
structures, i.e., numeric type compounds, reduplicated and 
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derived words, and transliterated foreign names; 2) 
recognizing long words that have occurred in the training 
corpus; and 3) filtering non-words.  

Numeric Type Compounds. The component uses regular 
expressions to detect numeric type compounds such as 
dates, times, fractions, numbers, etc. The patterns for 
different types of numeric type compounds are generalized 
from the training corpus, and a character string that fits one 
of these patterns is grouped into one segmentation unit. 
Gao et al. (2005) showed that the performance of detecting 
such words using their internal properties is comparable 
with that of using contextual information. 

Reduplicated and Derived Words. The component also 
uses heuristics to detect reduplicated words that are three 
or more characters long and some derived words with 
predictable internal structures. If a character string fits a 
reduplication pattern in Chinese, it is grouped as one word. 
For derived words, many morphemes are ambiguous 
between an affix and a word, e.g.,  can be either an affix 
‘-ist’ or a noun ‘family’. Detection of the correct use of 
such morphemes in bisyllabic words is hard. To avoid 
overgeneration, the heuristics only detect derived words 
formed with a multisyllabic root word and an unambiguous 
affix, such as  study-expert ‘-ist’. If an unambiguous 
prefix or suffix is detected, it is attached to the following or 
previous word, if that word is at least two characters long. 

Transliterated Foreign Names. Foreign names are 
usually transliterated using a subset of Chinese characters. 
Most transliterated names consist of three or more 
characters, and these words pose a challenge to the tagger. 
We acquire a list of characters used for transliterations 
from the wordlist generated from the training corpus. 
There is a dot used exclusively within transliterated foreign 
names to indicate different parts of a name. For example, 
George Bush is transliterated as · , where the dot 
within the name indicates that  ‘George’ and 
‘Bush’ are different parts of the same name. Based on this 
simple observation, the algorithm proceeds as follows: 

1) Extract names with the dot from the wordlist and store 
all characters in these names in a seed list. 

2) Extract all candidate names that are four or more 
characters long with all but one character from the 
seed list. For each candidate, add the one character not 
on the seed list to the seed list. Repeat until no more 
characters can be acquired. 

3) Filter out characters acquired in step 2 that have 
appeared only in one candidate. 

In processing new text, the algorithm first uses the final 
character list to identify candidate names and then filters 
candidates using contextual information, as follows: 

1) Add characters immediately before or after the dot in 
the text to the final list of characters, if they are not 
already included. 

2) Identify character n-grams (n 3) whose component 
characters are all from the list. 

3) Extract five characters to its left and right. 
4) Strip the leftmost character of the n-gram if it forms a 

word with the one, two, three, four, or five left context 
characters and add it to the left context. Iterate until 
the leftmost character of the n-gram no longer forms a 
word with its left context characters. 

5) Strip the leftmost two characters of the n-gram if they 
form a word with the one, two, three, four, or five left 
context characters and add them to the left context. 
Iterate until the leftmost two characters of the n-gram 
no longer form a word with its left context characters. 

6) Do steps 4 and 5 with the rightmost characters of the 
n-gram and the right context characters. 

7) If the final n-gram has three or more characters, it is 
considered a transliterated foreign name. 

Long Words. Another hypothesis tested in this research is 
that longer words behave more consistently than shorter 
words. In particular, we hypothesize that if a string of four 
or more characters appeared in the training corpus as a 
word, it is likely to be a word in the test corpus. Whereas 
there are foreseeable counterexamples for this hypothesis, 
its usefulness will be empirically tested. Given the fuzzy 
line between compounds and phrases in Chinese, a 
character string may be considered as a compound in one 
segmentation standard but a phrase in another. For 
example, the string ‘personal income tax’ may 
be considered one word or three words,  ‘personal’, 

‘income’, and  ‘tax’, depending on the standard. 
Within the same standard, however, such strings should be 
treated consistently. To adapt to the standard following 
which the corpus is segmented, we use the wordlist 
generated from the training corpus instead of an existing 
lexicon. If a string of four or more characters is found in 
the wordlist, the merging component considers it a word. 

Non-Word Filtering. The last type of heuristics is for non-
word filtering. The first of these is used to detect bisyllabic 
non-words. If the tagger tags two adjacent characters as L
(word-initial) and R (word-final), the string is a candidate 
new word, if it has not occurred in the training data. The 
candidate is filtered in two steps. First, it is checked against 
two lists of characters that contain frequent, unproductive 
morphemes that do not occur in 1) word-initial position of 
new bisyllabic words, e.g.,  ‘but’, or 2) word-final 
position of new bisyllabic words, e.g.,  ‘this’, 
respectively. If the first or second character of the 
candidate is on the first or second list, respectively, the 
candidate is split into two words. Second, the probability 
for a character to appear in word-initial or word-final 
position is estimated from the training data as in (7): 
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where C denotes a character, Pos denotes a position in a 
word, P(C,Pos) is the probability that C occurs in Pos,
F(C,Pos) is the number of times C occurs in Pos, and F(C)
is the number of times C appears in any position of a word. 
Given a candidate new word, the probability for it to be a 
word is computed as the joint probability of P(C,Pos) for 
both of its component characters. If the joint probability is 
below a pre-determined threshold, then the candidate is 
considered a non-word and is split into two words.  

Finally, the following two rules are used to merge or 
split character strings of certain patterns, based on the error 
analysis in the development stage. First, if two adjacent 
characters are both tagged W (monosyllabic word), but 
they have always occurred in the training data as a word, 
they are merged into a word. Second, if three adjacent 
characters are tagged W (monosyllabic word), L (word-
initial), and R (word-final) respectively, but the first two 
characters form a known word and the last two characters 
do not, then the first two characters are grouped into a 
word and the last one is left as a monosyllabic word. 

Results

The model is developed and tested using the Peking 
University Corpus (Yu et al. 2002). It contains all the news 
articles published in January, 1999 in People’s Daily, a 
major newspaper in China. The corpus has 1.12 million 
tokens and is word-segmented. It is randomly partitioned 
into three parts, with 80% used for training, 10% for 
development, and 10% for testing. The final model is 
trained on the union of the training and development sets 
and results are reported on the test data. 
 As discussed earlier, two initial taggers are used in the 
experiment to compare the impact of the initial tagger on 
the TBL algorithm. In both cases, the threshold for the 
scoring function is set to 1, i.e., all rules that achieve two 
or more tagging error reductions are learned. In addition, 
fnTBL makes it possible to learn rules that, at the end of 
the training process, result in no negative application but a 
number of positive applications greater than a pre-
determined threshold. This threshold is set to 1 as well. 
The results of the two initial taggers as well as the 
improved results achieved by the TBL algorithm are 
summarized in Table 2.  

Tagger Accuracy 
HMM tagger 0.814 
HMM + TBL 0.936 
SVM tagger 0.931 
SVM + TBL 0.946 

Table 2: POC tagging results 

The HMM tagger achieves an accuracy of 81.4%, which 
is improved to 93.6% by the TBL algorithm. This amounts 
to an absolute accuracy improvement of 12.2%, or a 
tagging error reduction rate of 65.6%. The SVM-based 
tagger achieves a better initial tagging than the HMM 
tagger, with an accuracy of 93.1%. The TBL algorithm 
achieves an absolute accuracy improvement of 1.5%, or a 
tagging error reduction rate of 21.7%. The better initial 
tagging achieved by the SVM-based tagger results in less 
improvement for the TBL algorithm, but better overall 
tagging accuracy. 
 The output of the merging component is evaluated with 
the scoring algorithm from the second SIGHAN Chinese 
Segmentation Bakeoff (Emerson 2005). This algorithm 
evaluates word segmenters in terms of recall (R), precision 
(P), F-score (F), recall for out-of-vocabulary words (ROOV), 
i.e., unknown words, and recall for in-vocabulary words 
(RIV).

The results of the model are summarized in Table 3. As 
the second row of the table shows, the default merger, 
which uses the tags assigned to the character string only, 
achieves an F-score of 93.5% for word segmentation with a 
recall rate of 73.8% for unknown word identification. 
Rows three through five indicate the improvement 
achieved by incorporating one of the three individual types 
of heuristics. Row three shows that the heuristics for 
unknown word identification (UWI) improve the recall rate 
for unknown words (ROOV) by 2.2%; row four shows that 
the heuristics for long word identification (LWI) slightly 
improve performance on in-vocabulary words; and row 
five shows that the heuristics for non-word filtering (NWF) 
greatly improve performance on in-vocabulary words. 
When all the heuristics are used, the F-score for word 
segmentation is improved by 1.5% to 95.0%, and the recall 
rate for unknown word identification is improved by 1% to 
74.8%.

Resources R P F ROOV RIV
POC Tags 0.932 0.938 0.935 0.738 0.944 

+UWI 0.933 0.939 0.936 0.760 0.944 
+LWI 0.933 0.940 0.937 0.737 0.945 
+NWF 0.942 0.944 0.943 0.726 0.955 
+ALL 0.947 0.952 0.950 0.748 0.959 

Table 3: Word segmentation results 

Since the model uses no additional resources other than 
the training data, the results are comparable with the results 
of the systems that participated in the closed track of the 
Peking University Corpus in the second SIGHAN Chinese 
Segmentation Bakeoff. Table 4 summarizes the results of 
our model and the top three systems in the bakeoff. As 
these results indicate, without a complicated unknown 
word recognition mechanism, the final model performs at 
the state of the art for word segmentation along with a 
competitive recall rate for unknown word identification. 

245



System R P F ROOV RIV
Our model 0.947 0.952 0.950 0.748 0.959 

Chen et al. (2005) 0.953 0.946 0.950 0.636 0.972 
Tseng et al. (2005) 0.946 0.954 0.950 0.787 0.956 
Zhang et al. (2005) 0.952 0.945 0.949 0.673 0.969 

Table 4: Word segmentation results 

Discussion and Conclusions

The results confirm our hypothesis that the notion of 
character-based tagging is useful for modeling the 
tendency of Chinese characters to combine with adjacent 
characters to form words in different contexts and has good 
potential for integrating unknown word identification with 
Chinese word segmentation. One advantage for adopting 
this notion is that since we have a classification problem, 
the model can directly benefit from improvements in 
classifiers. Another advantage of the two-component setup 
is that it allows easy integration of additional linguistic and 
statistical heuristics in the merging stage. The heuristics for 
detecting unknown words with regular internal structures 
prove useful for enhancing performance on unknown 
words. Results of the heuristics for long word recognition 
confirm the hypothesis that long words behave more 
consistently than shorter words. The heuristics for non-
word filtering filter a large proportion of false unknown 
words detected by the tagger.  

The current model does not make use of any additional 
resources other than the training data. Various lexical 
resources have been used in different word segmentation 
systems. For example, some of the resources used in Gao 
et al. (2005), which is by far the most sophisticated 
segmentation system, include a 98,668-entry lexicon, a 
morpho-lexicon that contains 59,960 morphologically 
derived words with information about morphological 
patterns and stems for each entry, as well as lists of family 
name characters, location names, organization names, 
transliterated name characters, single-character person 
names, and single-character location names. Such 
resources can be used both to improve the tagging 
component by enriching the feature set for tagging and to 
improve the heuristics in the merging component. 
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