
Accessing XML Documents using Semantic Meta Data in a P2P Environment

Dominic Battré and Felix Heine and André Höing
University of Paderborn

Paderborn Center for Parallel Computing
Fürstenallee 11, 33102 Paderborn, Germany

{battre, fh, andrehoe}@upb.de

Giovanni Cortese
Interplay Software

C.so III Novembre 166 Trento Italy
g.cortese@ipsoft.it

Abstract

XGR (XML Data Grid) and BabelPeers are both data man-
agement systems based on distributed hash tables (DHT) that
use the Pastry DHT to store data and meta data. XGR is
based on the XML data model; BabelPeers uses the Resource
Description Framework (RDF) for its data. XGR and Ba-
belPeers have different but complementary functionality. On
the one hand, XGR focuses on document-based storage of
XML data and publish/subscribe mechanisms, on the other
hand, BabelPeers focuses on query strategies that combine
pieces of information originating from various sources and
provides reasoning about the information. Thus it is valuable
to research how the two concepts can be merged to get the
best of both worlds.1

Introduction

In the time of the Semantic Web and Web 2.0, the meaning
of semantically rich meta data grows every day. The Re-
source Description Framework, defined by the W3C, estab-
lished itself to the de facto standard to represent information
in the semantic web. But it is not limited to represent meta
data for web content. It can also help sharing information
between all kind of organizations, from private persons to
global players.

XML is a flexible data format, which is still very impor-
tant for data exchange and storage, e.g. Open Office docu-
ments or SOAP1.2 (Gudgin et al. 2003) data are represented
by XML. This paper combines two technologies: XGR,
a distributed XML database, and BabelPeers, a distributed
RDF database and inference system. We create a scalable
distributed P2P-based XML data storage system, which sup-
ports arbitrary meta data information about the content. This
meta data helps users to find the desired XML documents,
and additionally they do not need to care about the underly-
ing XML structures.

We use XML as data model for the pure data and RDF
as data model for the meta data. Thus RDF can be used
to encode schema information on a higher level than e.g.
XML Schema. XGR itself uses its own set of meta data

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1Partially supported by the EU within the 6th Framework Pro-
gramme under contract 001907 “Dynamically Evolving, Large
Scale Information Systems” (DELIS).

where types and indices are described. This information can
be augmented when RDF is used in conjunction with the
reasoning capabilities of BabelPeers.

XGR can save a lot of information like large XML docu-
ments. These documents are saved locally on a node and can
be accessed by an index structure, so the network traffic is
not very high. Furthermore, the client can formulate precise
queries as XPath expressions to receive just a small fragment
of the complete XML document which also reduces network
traffic. The big disadvantage is that a client has to know the
XML structure of the document to formulate these precise
queries.

BabelPeers stores all information as RDF triples and has
to distribute the complete knowledge over the network. This
produces a lot of network traffic and is probably inefficient
if we need information which are naturally connected with
other knowledge, e.g. an address always consists of a name,
street etc. But BabelPeers can manage semantically rich
data. Thereby concepts can be set in relation to other con-
cepts and this provides new possibilities for the XGR appli-
cation.

As an example, consider the piece of RDF2 encoded meta
data about addresses given in Figure 1. It encodes via XPath
expressions how an address can be found for various XML
schemas. The addresses themselves are classified via RDF-
Schema (RDFS), as private addresses or company addresses.
Through the reasoning, both of the addresses are classified
as general addresses, visualized via the dotted arrows.

URI 1 Company Address
type

”/firm/fadr”
xpath

Private Address

Address

subTypeOftype

URI 2

”/adress/private”
xpath

type

type

Figure 1: RDF Meta Data for XML.

A query over this meta data is given in Figure 2. The
query asks for XPath expressions for an address in any avail-

2For an easier understanding, we use a simplified RDF notation
with shortened URIs

272

able XML document. Through the RDFS reasoning ex-
plained in the section “BabelPeers”, the query will yield
both ”/firm/fadr” and ”/address/private”.

Address
type

?locationXPath
xpath

Figure 2: Query for RDF Meta Data.

By managing meta data in RDF triples we gain the possi-
bility to generalize queries and to hide the possibly complex
XPath structure behind clearly defined terms.

This paper is structured as follows. The next section gives
an overview about the related work. The following sec-
tions, “DHT Networks”, “BabelPeers”, and “XGR”, intro-
duce our researches, which this paper combines. The de-
scription about the integration and how the different appli-
cations are connected is given in section “Integrating XGR
and BabelPeers”. That section also shows the advantages re-
sulting from the integration. The last section “Conclusion”
summarizes the results and gives ideas for further use cases.

Related Work
The two main themes of this paper are P2P-based data man-
agement and the possibilities, which we gain by using a se-
mantic description language as RDF. So the related work
limits to these.

We survey existing approaches related to the field of P2P
based data management which have schema management
components. The survey does not aim to be exhaustive, we
rather want to introduce the projects Hyperion (Arenas et
al. 2003) and Piazza (Halevy et al. 2003), which represent
different approaches to the problem.

The origins of both are stand-alone data integration sys-
tems for relational or XML-based data. Hyperion and Pi-
azza can be seen as a natural evolution step of these systems,
moving from a single, centralized mediated schema towards
an arbitrary number of peers where each peer runs a local
data integration system which integrates both its own data
and data from the other peers. Their basic assumption is
quite similar: each peer holds a collection of physical rela-
tions and associated schema information. It has furthermore
a mediated schema, which represents a homogenous view
including the peer’s own relations and the mediated schema
of the neighbors of this peer. Both systems assume the ex-
istence of mapping information. They differ in the types of
supported mappings.

Both systems use an unstructured P2P network. Thus
each peer has a limited set of connections to neighboring
peers, and might store some peer mappings relating its data
to the neighbors data.

RDFPeers (Cai et al. 2004) and Atlas (Koubarakis et al.
2006) are based on structured P2P networks, in particular
distributed hash tables, the same kind of network BabelPeers
uses. They also work with RDF and distribute triples in the
same way. The big disadvantage is that they do not support
RDF Schema reasoning.

DHT Networks

To understand the employed technologies, BabelPeers and
XGR, we give a short introduction to DHT-networks.

A distributed hash table (DHT) is comparable to a regular
hash table with efficient insert and lookup operations, except
that the ID space of a DHT is distributed between the nodes
of a peer-to-peer network. This network is able to route in-
sert and lookup requests to those nodes which are responsi-
ble for the respective fractions of the ID space in O(log N)
routing steps with high probability, where N is the number
of nodes in the network.

Each node of the peer-to-peer network is assigned a
unique position in the ID space. In case of Pastry (Rowstron
& Druschel 2001), the DHT used by BabelPeers and XGR,
the ID space is a ring 0 . . . 2128 − 1. The concrete distribu-
tion of IDs to nodes depends on the DHT implementation.
In Pastry, the IDs of the ring that are closest to a node’s posi-
tion are mapped to this node. In Chord (Stoica et al. 2003),
those IDs that follow a node’s position on the ring up to the
following node are mapped to this node. Additionally, Pas-
try provides some other services, e.g. replication.

Like in a regular hash table, we insert attribute value pairs.
The network derives the hash value of the attribute and sends
both, attribute and value, to the node which is responsible for
the hash value. The lookup operation works similarly. We
hash the attribute and send the lookup to the node which is
responsible for the hash value. Figure 3 presents an example,
how we insert an RDF triple in BabelPeers. This figure is
described below in detail.

BabelPeers

Generally, BabelPeers can not only manage meta data, but
also other information, given as RDF triples. An RDF triple
can be regarded as a sentence, which consists of subject,
predicate, and object. The knowledge can be seen as a di-
rected graph. The subjects and objects are the vertices of the
graph and for every triple, there is one edge, labeled with the
predicate, directed from the subject to the object.

BabelPeers is peer-to-peer based and every peer shares
his knowledge with all other nodes. The network fits all
these parts together into one big knowledge base which is
available for every peer. The following paragraphs describe
how this knowledge sharing works.

After the distribution of the RDF triples, each triple is
saved on three different peers, identified by the hash values
of the triple’s elements: hash(Subject), hash(Predicate)
and hash(Object). Figure 3 shows a five node Pastry net-
work and how we insert an RDF-Triple.

By distributing the RDF triples that way, it is guaranteed
that all triples, that share a common URI at arbitrary po-
sitions merge on a single node in the network. This is a
precondition for the RDFS inference rule system, described
below. Furthermore every triple is accessible already, if we
only know one of the three elements.

Figure 4 presents the view, which each node has to the
network. The peers do not know where triples are stored,
even the triples, which they have inserted. They only calcu-
late the hash value and send a lookup request to the network.

273

Node 2

Node 1

Node 5

Node 4

Node 3

232

0 / 2128

264

296

Object 1: hash(Company Address)

Object 2: hash(subClassOf)

Object 3: hash(Address)

(Company Address, subClassOf, Address)

(Company Address, subClassOf, Address)

(Company Address, subClassOf, Address)

Figure 3: Inserting RDF-Triples in a Pastry Network

So each node has the same way to query knowledge and so
the network seems to provide one big knowledge base that
incorporates the complete knowledge of each peer. So it
is possible to infer new triples (information) which was not
possible without sharing information. In Figure 4, this is
shown by the dotted edges.

Node B

Network

Node A

Node C

Node D

Figure 4: Sharing knowledge with BabelPeers

The RDFS specification gives us a set of inference rules
to extend the explicit RDF knowledge. Each node executes a
forward chaining algorithm to generate all derivable knowl-
edge by using this RDFS rule set. Most of the RDFS rules
map a single triple to a new one, but some rules contain two
triples in the precondition. This is no problem, because of
the dissemination described above. There is always a single
node which handles all triples of a specific URI. A closer
look to the rules shows that this dissemination suffices to
fulfill all rule preconditions.

Figure 1 shows an RDF reasoning example. We derive a
new triple, which states that the “URI 1” which is a “Com-
pany Address” is also an “Address”. This new triple will
be distributed over the network and so the derived informa-
tion is available for all other nodes. So the inference system
works without generating a lot of network traffic. Our paper
(Battré et al. 2006) describes this in detail.

Clients can connect to any peer and pose questions formu-
lated in SPARQL. They connect via a TCP connection. Until

now, just a subset of SPARQL is available, but it fulfills our
needs. A query consists of a set of triples including vari-
ables. The peer tries to find a binding for these variables by
collecting all possible candidates for every query triple and
processing a pattern matching as the second step. Finally
the node sends all valid bindings back to the client. Figure 5
shows the query, seen in Figure 2, as SPARQL code. More
detailed information about the query evaluation can be found
in the paper (Heine 2006).

SELECT ?indexPath WHERE {
?var type Address .
?var xpath ?indexPath .

}

Figure 5: Example – SPARQL query

We have shown that BabelPeers combines the semantic
knowledge of every single peer to one knowledge base, ac-
cessible for all nodes. Additionally, it generates the com-
plete derivable knowledge and makes it available network-
wide. Altogether it is the right choice to manage a huge
number of RDF triples and to use this information in a se-
mantic context.

XGR

XGR is peer-to-peer based, too, but aims for different goals
than BabelPeers. It realizes a distributed database for XML
documents, relying on storage resources provided by a net-
work of collaborating peers. Depending on the application
scenario, XML data can be stored in a local storage at the
peer which performed the insert operation, and only indices
are stored in the DHT-based storage, but it is also possible to
store both, data and indices, in the network, e.g., for replica-
tion purposes.

An XGR datatype defines one kind of document with a
specific root element (set by the xgr:id-tag). It further-
more specifies a primary key (set by the xgr:pkey-tag)
that can be used to address one specific XML document.
Further indices can be defined by the xgr:index-tag. In-
dices allow efficient lookups of XML nodes (addressed by
XPaths) that store certain values. Figure 6 shows an exam-
ple datatype definition of an address.

<xgr:datatype xmlns:xgr="XGRSchema">
<xgr:id>ns:address</xgr:id>
<xgr:pkey>ns:id</xgr:pkey>
<xgr:desc>Address</xgr:desc>
<xgr:index>
<xgr:name>name</xgr:name>
<xgr:path>
/ns:address/ns:name

</xgr:path>
</xgr:index>

</xgr:datatype>

Figure 6: Example – datatype definition of an address

274

In this example, every address data item has to start with
an ns:address-tag. The xgr:pkey-tag specifies the
primary key, ns:id, used to build the primary index. Fur-
thermore we can define further indices by using XPath ex-
pressions inside the xgr:index-tag. In this example, the
name is a second index.

After registering the datatype above, the system is ready
for inserting addresses. Figure 7 shows an example address
XML document, which represents the address of our insti-
tute.

<ns:address xmlns:ns="AddressSchema">
<ns:id>1</ns:id>
<ns:name>PC2</ns:name>
<ns:street>

Fuerstenallee 11
</ns:street>
<ns:city>Paderborn</ns:city>
<ns:zip>33102</ns:zip>

</ns:address>

Figure 7: Example – address insertion

XGR provides means to formulate queries (e.g. for ad-
dresses of named entities) as simple XPath expression and
returns the appropriate XML fragments. We defined two in-
dices above, the primary key ns:id and a second index
ns:name. For fast querying, we can use these two in-
dices, which are hold distributed. A DHT-lookup gives us
the nodes where we find relevant XML fragments. XGR
provides also the possibility to look for XPath expressions,
which are not indexed. However, the network has to ask
every node for adequate information and so this is very ex-
pensive and slow.

XGR offers different possibilities for data retrieval.
The user can simply use XPath expressions for de-
scribing the desired information (see paragraph above).
For our running example, the query XPath expression
/ns:address[ns:name="PC2"] returns the PC2 ad-
dress we added above, and alternatively /ns:address re-
turns all known addresses. Furthermore, XGR implements
a publishing/subscriber system (Emiliano Casalicchio, Fed-
erico Morabito, Giovanni Cortese, Fabrizio Davide 2005).
The user will receive an update, if a certain event happens
on the observed elements, also defined by a XPath expres-
sion. So the user is always informed about the current status
of an entry or about new interesting information added to
the database. This is not very interesting in our example, but
when using XGR, e.g., for observing the progress in a work-
flow or following a product through its fabrication process,
it becomes more relevant.

Integrating XGR and BabelPeers

The aim of this paper is to create a distributed XML database
which uses semantic meta data. The combination of XGR
and BabelPeers offers a solution to this problem. The first
subsection describes how we combined the two applications
on the DHT network and presents the advantages, we gain

by this integration. The second subsection then shows how
a new client uses the potential of the XGR-BabelPeers ap-
plication.

Combining XGR and BabelPeers

Both applications are based on the Pastry DHT network. So
it is pretty easy to combine them without causing great over-
head. Every peer has to start a single Pastry (see section
“DHT Networks”) node and connect to the network over
an already integrated bootstrap node. Then BabelPeers and
XGR simply register themselves at this node. From then on,
they can exchange messages with other XGR-BabelPeers
applications. The message routing is handled by Pastry. The
new client application can connect to both applications and
can send queries in SPARQL for BabelPeers and XPath for
XGR. Figure 8 shows the new combined network. In this
example, there are three companies, that want to share their
address books and perhaps several other XML documents
for better collaboration. Each company has its own XML
format for its address books and none wants to change its
XML-Schema. XGR-BabelPeers combines all information
with the help of a smart meta data structure without any
changes in the XML documents.

Client

XGR

BabelPeers

SPARQL Result
XML XPath

SPARQL

company A

company B

company C

Figure 8: XGR and BabelPeers integration

First every company has to insert its meta data as RDF
into the network. Therefore all companies have to agree on
a generally accepted namespace for different concepts. In
our introductory example (see Figure 1) the concepts “Com-
pany Address”, “Private Address” and “Address” are given.
With these concepts, the structure of the inserted address
XML documents can be described by every company itself.
Assume that company A saves all information about a firm
inside one big XML document with root tag firm. Fig-
ure 9 shows an extract of the meta data company A adds
to XGR-BabelPeers. It defines the semantics for company
addresses, which can be found in the database at the path
/firm/fadr. In addition, addresses naturally contain the
city, zip, street, etc. and it should be possible to use the in-
formation for finding a particular firm. Again, no company
needs to change its own XML format, it only has to define
where it saves information about the concepts. Therefore

275

the inserted meta data describes where to find this additional
concepts relative to the “Company Address” XPath.

”/firm/fadr”
xpath

type

contains

company addresses
(company A)CompanyAddress xml db index

contains

Zip ”zip”

type xpath

City ”city”

type xpath

Figure 9: Extract of the address meta data (company A)

Now assume, Company B has a completely different
XML structure for saving addresses. E.g. it has a lot of XML
documents and every document contains just one address.
By inserting their own XPaths to the semantic concepts, the
information can be queried very easily for all participants
without knowing the XML structure.

After designing the meta data and adding it into the Ba-
belPeers part, the second step is to insert the XML docu-
ments into the XGR part. Therefore, every company has
to map metadata and the datatypes with each other. The
datatypes include, as described above, the information about
the indexing structure, which will be distributed, and only
indexed paths can be found efficiently. It would be an ad-
vantage if all companies defined the same indexing struc-
ture, and accordingly use indices which match with the usu-
ally performed queries. E.g. if we often look for addresses
in a given city, it makes sense, if we have an index on the
addresses or even a second index directly to the cities inside
the addresses. If we describe these indices by defining RDF
triples, which mark the desired concepts as an index, instead
of XPath expressions, we can use the meta data to generate
the datatype definitions even automatically (see dotted bor-
dered concept in Figure 9). After this, we just insert all XML
documents into the database and are ready to query all data
in the same way.

Querying XGR-BabelPeers

In the next few paragraphs, we show how we design the new
queries for hiding the two systems from the user.

We assume that normally the queries consist of a part
which is looking for a XML fragment identified by an in-
dex and additionally one or several filters which select the
desired data records. Figure 10 presents an example query
which asks for all company addresses located in “Pader-
born”.

First we have to compose a SPARQL query to find the rel-
evant concepts and appropriate XPath expressions. In detail,
we search for a company address which contains informa-
tion about the city. As result, we get a list of valid bindings
for the variables index and filter.

For the example shown in Figure 9, the bindings would be
as follows:
?indexPath = "/firm/faddr"

SELECT ?indexPath ?filter WHERE {
?addr type CompanyAddress .
?addr xpath ?indexPath .
?addr contains ?city .
?city type City .
?city xpath ?filter .

}

XPathPattern: ?indexPath[?filter="Paderborn"]

Figure 10: Example – query

?filter = "city"

The second part of the query is an XPath expression,
which describes how to use the variable bindings. We simply
substitute the variables and get the following XPath expres-
sion:

/firm/faddr[city="Paderborn"]

Now the client uses this to query XGR and gets the desired
information. For another company, the path can look com-
pletly different. Perhaps they have sorted their addresses
by cities (the city tag is a parent of the address tag). The
SPARQL query returns another result for the company XML
structure and the new path expression probably looks like the
following (the address tag is defined as an index):

/addresses/city/address/
[../@name="Paderborn"]

The client poses this query to the XGR system, too, and
merges the two results before returning one complete answer
to the user.

Additionally, the combination of these two technologies
also offers the possibility to query more general concepts,
which can not be found directly in the XML structure. Fig-
ure 1 and Figure 2 introduced this. Imagine a database in-
cluding different kinds of addresses with different datatypes:
employee addresses, customer addresses, distributor ad-
dresses and so on. Now you want to inform everyone per
eMail that something very important will happen. Without
using meta data, you had to look at each datatype defini-
tion and create special queries for every kind of addresses.
Now you can do this by defining a single query, because the
meta data states that every kind of an address is a subclass
of the concept “Address”. BabelPeers uses this information
to derive that every “Company Address” is an “Address”,
too. The query is shown in Figure 11. This query filters all
addresses, which contain information about email addresses
and returns this information.

Certainly, other query options like the publish and sub-
scriber system can also be used after fetching meta data.

A different use case of XGR-BabelPeers is, if several
companies share parts of their data, sometimes it could be
hard to know what kinds of information are accessible. If the
meta data information are up to date, a query for all concepts
or even a graphical interface which presents the class hier-
archy in a clear way, can help to solve this problem. Later,
such a GUI can be extended, so that queries can be formu-
lated by drag and drop or other simple interfaces.

276

SELECT ?indexPath ?rpath WHERE {
?addr type Address .
?addr xpath ?indexPath .
?addr contains ?email .
?email type EMail .
?email xpath ?rpath .

}

XPathPattern: ?indexPath/?rpath

Figure 11: Example – general query

Conclusion

The goal of creating a system for managing XML documents
with the help of semantic meta data is realized by the combi-
nation of BabelPeers and XGR. Both are working on a scal-
able P2P network and so the system is ready to save a high
number of documents and the corresponding meta data.

We presented how we can use the advantages of XML and
RDF to combine our local documents with the distributed
knowledge base, available in the network. Every user is able
to access the data without reading big XML DTDs or similar
documents. Instead, he formulates the queries by using the
meta data and gets direct access to all available documents
containing relevant information.

The usage of the concepts presented in this paper creates
several advantages:

• Easy joining of completely differently structured XML
documents containing the similar information or parts of
them.

• Querying the information of the combined database by
posting simple semantically rich queries and not by writ-
ing difficult XPath expressions.

• Getting an overview over the saved information by
analysing the meta data.

This is just a beginning to use the advantages of both ap-
plications, so there are some unsolved problems. It is pos-
sible to define which semantic concept should be used as an
index for the datatype by using the meta data, but it is not
clearly defined whether the XPath is given as an absolute
path or a relative one. We can declare that all indices must
be given as absolute and all other concepts as relative paths.
Then we can build the query XPath expression by search-
ing the matching index concept for a non index query in the
RDF graph, but we think that there can be better solutions.

The XGR-BabelPeers system is not only usable for com-
panies sharing addresses. We can imagine many scenarios,
where it can help managing data. We only list a few of our
ideas:

• In the introduction, we mentioned that Open Office doc-
uments are written in XML. Thus, sharing Open Office
documents in a working community and tagging the doc-
uments with semantic meta data is possible.

• Combined with adequate access control mechanism it is
possible to build a great semantic network between users,
workgroups, or companies and sharing their knowledge.

• In connection with the Semantic Desktop idea the system
provides the possibility to save arbitrary information and
the related semantic meta data. With the help of an ade-
quate API, this data can be accessed from different desk-
top applications.
At the moment, we implemented a prototype which com-

bines both applications on the same pastry node. A very
simple client has been created to test the integration but no
evaluation has been done yet. This will be future work.

References

Arenas, M.; Kantere, V.; Kementsietsidis, A.; Kiringa, I.;
Miller, R. J.; and Mylopoulos, J. 2003. The Hyperion
Project: From Data Integration to Data Coordination. SIG-
MOD Record 32(3):53–58.
Battré, D.; Heine, F.; Höing, A.; and Kao, O. 2006. On
Triple Dissemination, Forward-Chaining, and Load Bal-
ancing in DHT based RDF stores. In Databases, Infor-
mation Systems and Peer-to-Peer Computing (DBISP2P
2006).
Cai, M.; Frank, M.; Pan, B.; and MacGregor, R. 2004.
A Subscribable Peer-to-Peer RDF Repository for Dis-
tributed Metadata Management. Journal of Web Seman-
tics: Science, Services and Agents on the World Wide Web
2(2):109–130.
Emiliano Casalicchio, Federico Morabito, Giovanni
Cortese, Fabrizio Davide. 2005. A novel adaptive content-
based subscription management system. Technical report,
DELIS – Dynamically Evolving, Large-Scale Information
Systems.
Gudgin, M.; Hadley, M.; Mendelsohn, N.; Moreau, J.-J.;
and Nielsen, H. F. 2003. Soap version 1.2. http://
www.w3.org/TR/soap12.
Halevy, A. Y.; Ives, Z. G.; Suciu, D.; and Tatarinov, I.
2003. Schema Mediation in Peer Data Management Sys-
tems. In 19th International Conference on Data Engineer-
ing (ICDE).
Heine, F. 2006. Scalable P2P based RDF Querying. In
InfoScale ’06: Proceedings of the 1st international confer-
ence on Scalable information systems, 17. New York, NY,
USA: ACM Press.
Koubarakis, M.; Miliaraki, I.; Kaoudi, Z.; Magiridou, M.;
and Papadakis-Pesaresi, A. 2006. Semantic Grid Resource
Discovery using DHTs in Atlas. In 3rd GGF Semantic Grid
Workshop.
Rowstron, A., and Druschel, P. 2001. Pastry: Scalable, De-
centralized Object Location, and Routing for Large-Scale
Peer-to-Peer Systems. Lecture Notes in Computer Science
2218:329+.
Stoica, I.; Morris, R.; Liben-Nowell, D.; Karger, D.;
Kaashoek, M. F.; Dabek, F.; and Balakrishnan, H. 2003.
Chord: A Scalable Peer-to-peer Lookup Service for Inter-
net Applications. IEEE Transactions on Networking 11.

277

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

