BlockTree — Pedagogical Information Visualization for Heuristic Search

David Furcy, Andrew Jungwirth, and Thomas Naps
University of Wisconsin Oshkosh
Department of Computer Science
Oshkosh, Wisconsin 54901
{furcyd,jungwa45,naps } @uwosh.edu

Abstract

BlockTree is an information visualization tool that helps stu-
dents explore nuances of heuristic search algorithms, such as
A* and WA*. The goal of such exploration is to achieve a
level of understanding that is deeper than merely being able
to trace the algorithm on an artificially small domain. Instead,
BlockTree presents a single execution snapshot of a heuris-
tic search tree encompassing up to hundreds of thousands of
nodes and offers a robust GUI that encourages viewing such a
tree from a variety of perspectives. By experimenting with the
visualizations generated by the problem domains already in-
corporated into BlockTree, students are exposed to the same
large-scale issues that Al practitioners face on a regular basis.
Beyond these built-in problem domains, BlockTree offers an
extensible object-oriented framework that can be used as the
basis for programming assignments. As students implement
additional domains in BlockTree, their solutions are automat-
ically visualized in the same fashion as the built-in domains.

Motivation and learning objectives

The motivation for the development of the BlockTree
tool' described in this paper can best be grounded in the
well-known Bloom’s taxonomy of levels of understanding
(Bloom & Krathwohl 1956). This taxonomy structures a
learner’s depth of understanding along a linear progression
of six increasingly sophisticated levels:

Level 1: The knowledge level. Characterized by mere fac-
tual recall with no real understanding of the deeper mean-
ing behind these facts.

Level 2: The comprehension level. The learner is able to
discern the meaning behind the facts.

Level 3: The application level. The learner can apply the
learned material in specifically described new situations.

Level 4: The analysis level. The learner can identify the
components of a complex problem and break the problem
down into smaller parts.

Level 5: The synthesis level. The learner is able to gener-
alize and draw new conclusions from the facts learned at
lower levels.

Copyright (© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

'The BlockTree tool is available for download at http://www.
uwosh.edu/departments/computer_science/BlockTree/index.php

303

Level 6: The evaluation level. The learner is able to com-
pare and discriminate among different ideas and methods.
By assessing the value of these ideas and methods, the
learner is able to make choices based on reasoned argu-
ments.

Mapping Bloom’s taxonomy to heuristic search

In the particular context of the tool presented here, we want
to distinguish student levels of understanding with respect
to heuristic search algorithms. Our perspective on a map-
ping between Bloom’s taxonomy and what we expect of our
students in their comprehension of heuristic search is the fol-
lowing:

Knowledge Level: A student should know (memorize) that
A* uses a priority queue data structure in which the prior-
ity f(n) of a node n is given by the formula g(n) + h(n).

Comprehension Level: A student should understand the
operations of the priority queue ADT, as well as the mean-
ings of the g- and A-values in a search problem.

Application Level: A student should be able to apply
(trace) the A* algorithm to a new domain already de-
scribed as a graph of nodes and associated g- and h-
values.

Analysis Level: A student should be able to re-frame a
given Al problem described in everyday terms into a
graph search problem. This level involves being able not
only to reformulate the problem, but also to identify both
the states (that is, nodes) and the actions (edges) of the
problem.

Synthesis Level: A student should be able to use the
knowledge acquired at the lower levels to generate a new
heuristic function. For example, having reformulated a
task as a graph-search problem, a student should be able
to apply their knowledge of the A* algorithm and its use
of h-values to design a heuristic function such as the Man-
hattan Distance heuristic.

Evaluation Level: A student should be able to compare
the strengths and weaknesses of different solutions. In
the context of A* search, this means evaluating different
heuristic functions in terms of their accuracy, admissibil-
ity, and computational cost. Similarly, a student should be
able to compare the strengths and weaknesses of different

2 E
=

Jeeee
e il
TOOO0

)

Figure 1: Algorithm visualization on a small search tree

®
& o &) 6 0 e 00 ®
® 0000 o000 V00N B OO & QO
(EZTECCTCCCCECETTEICCECETTCECCEITATCCECCATCCTTTBCVETAIED!

Figure 2: Standard tree visualization of a larger tree

search algorithms, for example, blind search techniques
such as breadth-first search (BFS) versus heuristic search
techniques such as A* or Weighted A* (WA¥*).

Visualization for deeper understanding

The benefits of algorithm visualization, in which the succes-
sive steps of an algorithm are graphically portrayed to help
students learn an algorithm as a “recipe”, have been well
documented (Naps 2005). For instance, the JHAVE visual-
ization environment, available on the Web at http.//jhave.org
provides an infinite reservoir of small example graphs on
which students can practice tracing the A* search algorithm
(see Figure 1).

However, by our mapping of Bloom’s taxonomy to
heuristic search, such small-scale visualizations emphasize
only the lower levels of the taxonomy. Simply being able
to trace the steps of an algorithm is a pre-requisite for the
deeper levels of understanding in the taxonomy. As educa-
tors, we are always concerned with developing our students’
understanding at these deeper levels. BlockTree helps us
accomplish this by using large-scale information visualiza-
tion rather than algorithm visualization. Instead of showing
execution steps from a small search space at a micro-level,
BlockTree captures in one picture the entire execution of
a heuristic search conducted over a relatively large search
space (several hundred thousand nodes for the 8-Puzzle).
Students can explore that picture from a variety of perspec-
tives to discover answers to questions such as:

e What are the differences among breadth-first, A*, and
WA * searches? when looking for a low-cost solution?

2WA* is a version of A* in which the priority of each node n
is given by f(n) = g(n) + wh(n). The weight multiplier w is

304

e What are the differences among these three algorithms in
terms of efficiency? That is, how many nodes did each
algorithm have to expand before it found the solution?

e How do we change the behavior of the A* algorithm by
using different heuristics?

e In the WA* algorithm, how do the number of nodes ex-
panded and the length of the solution path vary as we in-
crease or decrease the weight multiplier?

Students’ abilities to cope with the conceptual nuances
implicit in questions like these establish a much higher met-
ric for their understanding on the Bloom scale. Indeed, the
comparisons we have them address on substantial search
spaces — differences in algorithms, heuristics, and tuning of
weights — require many aspects of Bloom’s synthesis and
evaluation levels.

Visualization for programming assignments

BlockTree’s collection of built-in problems, algorithms, and
heuristics help us design exploratory exercises in which the
synthesis and evaluation levels of understanding can be pur-
sued. However, the analysis level requires that, given a new
problem, the student can break it down into components
amenable to solution by heuristic search. Toward that end,
we provide an object-oriented framework that allows stu-
dents to extend BlockTree by writing Java classes. Extend-
ing BlockTree can be done in three ways:

e Develop a new heuristic for a provided puzzle and algo-
rithm.

e Develop a new algorithm for a provided puzzle, e.g., Di-
jkstra’s algorithm or beam search.

e Develop an implementation of a new puzzle, e.g., Rush
Hour. Here the student must demonstrate a complete un-
derstanding at Bloom’s analysis level. The student must
decide how to represent a state of the puzzle, how to gen-
erate successors from that state, and how to portray a
graphic rendition of that state.

Because BlockTree is based on sound software engineer-
ing principles, such extension of the framework can be done
in a fashion that minimizes the amount of coding students
have to do before they actually begin exploring the effec-
tiveness of their solution. This is important because, as stu-
dents quickly learn, just getting code to work correctly is
only half of the battle in Al programming. Once it works,
considerable experimentation must be done to “tune it” for
better performance.

Moreover, because the student’s code hooks directly into
the information visualization capabilities of BlockTree, the
exploration they do with their implementations is done in
the context of the same GUI and visual feedback that we
have had them use in exploring the puzzles already built
into BlockTree. Today’s students are multi-media oriented.
Hence, as noted in (Guzdial & Soloway 2002), giving them a
programming assignment in which their output is expressed

greater than or equal to 1 in order to make the search more greedy.
A* is the special case of WA* when w = 1.

u

[T

Figure 3: Treemap (left) and Sunburst (right) views of tree
from Figure 1

in hard-to-decipher textual form is a sure way to foster disin-
terest. By leveraging off of the graphics provided by Block-
Tree, we provide a very natural motivation for them.

BlockTree visualization in context

Figure 1 shows that the standard hierarchical graph picture
of a search tree, with circular nodes connected by edges,
is adequate for artificially small trees. However, Figure 2
shows that, even for a moderately-sized tree with a branch-
ing factor of three and depth five, the amount of space used
to show the hierarchical structure of the tree renders the con-
tents of nodes totally illegible. Moreover, this illegibility is
pervasive over the entire tree. Even at the upper levels of the
tree, where very few nodes appear, the content of the nodes
cannot be determined.

The inadequacy of standard tree diagrams in portraying
large trees has been addressed by the information visual-
ization community through the development of treemaps
(Shneiderman 1992). In a treemap, the root of a (sub)tree
is portrayed as a partitioned rectangle that encloses all of its
subtrees. The greater the size of a subtree, the greater the
space allocated to it in its partitioned area. A treemap view
of the tree from Figure 1 appears on the left in Figure 3.

Unlike standard tree diagrams, treemaps are space-filling
visualizations that have been used to great advantage in vi-
sualizing disk storage in hierarchical file systems. How-
ever, concurring with observations in (Coulom 2002), we
found that treemaps fail to capture important structural infor-
mation when visualizing heuristic search algorithms. First,
treemaps tend to obscure the hierarchical structure of large
trees with many levels, making it hard, for example, to
identify all the nodes at a given level in the tree. Second,
treemaps are designed to fill up the whole space of the en-
closing rectangle (the root node of the tree), thus preventing
the natural use of empty space to visualize the effect of prun-
ing in heuristic search.

The Sunburst visualization tool (Stasko 2000) addresses
both issues with a circular space-filling technique that places
the root in the center and groups all other nodes by levels in
concentric circles around the root. The sunburst view of the
tree in Figure 1 appears on the right in Figure 3. Unfortu-
nately, by their circular nature, sunburst trees lose the tradi-
tional top-down view of heuristic search trees in which the
children of a node always appear below it in the tree. Fur-
thermore, the computation of hundreds of thousands of cir-
cular slices using trigonometric functions on floating point
numbers may significantly hamper the continuous interac-

305

Building BFS tree.
Drawing Algorithm

® Rectangle O Triangle

Borders
@ on

O orr

Node Distribution Display
® Graphics O Text

Search Algorithm
@B Oar
O WA"

evel & Heuristic Function

03 nodes 4 6 >

1.2 4294.0 3 7 1

otal hodes 1022

Figure 4: Graphical and Textual views of node distribution
information (left) and configuration panel (right)

tions we expect our students to engage in when using a ped-
agogical tool.

Our BlockTree technique combines the advantages of
both standard and sunburst trees in naturally reflecting the
top-down, hierarchical structure of a tree with some of the
space-filling advantages of treemaps. BlockTree uses a rect-
angular view like treemaps but retains the hierarchical per-
spective of a standard tree diagram. The basic layout rule
is that the horizontal space allocated to all of a node’s chil-
dren is the same as what is allocated to the parent. Figure 6
(left) shows a BlockTree view of the search tree created by
a breadth-first search of the 8-puzzle whose initial state is
depicted in the configuration panel of Figure 4.

User interaction with BlockTree

The window for our BlockTree visualization tool is divided
into three separate panes, as shown by the numeric labels in
Figure 6 (left). These panes are the statistics pane (1), the
BlockTree pane (2), and the configuration pane (3).

The statistics pane shows how the nodes are distributed
among levels of the tree. Using the Node Distribution Dis-
play selection box on the configuration pane, the user can
toggle between the graphical display and the textual display.
Figure 4 shows both displays. The graphical display shows
the node density at each level using horizontal bars. At the
level with the greatest number of nodes, the bar is com-
pletely filled (Ievel 10 in Figure 4). The bars for each of the
other levels in the tree are filled corresponding to the num-
ber of nodes in that level divided by this maximum number
of nodes. Thus, the bars reflect the number of nodes per
level as a percentage of the level with the greatest number of
nodes. In the textual display, several pieces of information
are provided for each level in the tree, including the depth of
the level and the number of nodes in that level.

The BlockTree pane provides various mechanisms for
interacting with the tree. Clicking (either mouse button)
and dragging within this pane moves the tree’s graphics
within the pane. This is useful if the tree is deep enough
that the lower nodes are clipped at the bottom of the win-
dow. The statistics pane also moves vertically along with the

631742805

631742085

631042785

021642785
301642785

4

631742805

631742085

631042765

031642785
301642785

Figure 5: Left clicking to expand node

tree so that each section of the statistics pane remains prop-
erly aligned with the corresponding level in the tree. Left-
clicking on a node in the BlockTree pane causes the node to
expand as shown in Figure 5 3. The clicked node expands
outward to fill the entire width of the tree and is displayed
similarly to the root node. Notice that the children of all
other nodes in the same level as the node that was clicked
are no longer shown after the node has been expanded. The
statistics pane also changes to reflect only the nodes that are
currently visible. After a node is clicked, left-clicking on
any other node below it causes that node to be expanded as
well. In this way, multiple expansions can be made at the
same time to display the lower levels of a deep tree — hence
filling the space below a node in a way that the viewer de-
cides is most advantageous for their exploration.

Right-clicking on a node in the tree shows a detailed view
of that node. This view, added under the buttons on the con-
figuration pane, displays a graphical representation of the
corresponding state (see Figure 4). The node that was right-
clicked is also highlighted in another color to indicate that
the detailed view is currently showing its state. Holding the
shift key while right-clicking on a node rebuilds the tree us-
ing that node as the new root: The current settings from the
configuration pane are used to construct a new tree rooted at
the indicated node, and this new tree is drawn in the Block-
Tree pane. It is also possible to zoom in or out on the whole
tree using the mouse wheel.

The configuration pane, shown in detail in Figure 4, al-
lows the user to set the options for both the BlockTree and
statistics panes. At the top is a text field that relays mes-

*In Figures 5-7, each tree node contains its state’s tile numbers
in a canonical order. Orange nodes are on the solution path.

306

sages to the user when the program is processing user com-
mands. Below it is the Drawing Algorithm selection box
which allows the user to switch between the BlockTree view
described in this paper, and a Triangle view, which we do not
discuss in this paper for lack of space. The Borders selec-
tion box is used to toggle on and off the black borders around
the nodes in the tree. In some cases, turning the borders off
makes it possible to see the colors of the nodes deeper in
the tree than when the borders are on. The Node Distribu-
tion Display selection box switches between the textual and
graphical views in the statistics pane, as described above.
Clicking one of the radio buttons within the Search Algo-
rithm selection pane changes the search algorithm used to
construct the tree. Some search algorithms may require user
input. In this case, an input box pops up for the user to enter
the required algorithm parameter(s). Similarly, the Heuristic
Functionbox allows the user to change the heuristic function
that is used to evaluate nodes when searching the tree. When
a new search algorithm or heuristic function is selected, the
tree is rebuilt from the current root using the selected algo-
rithm and heuristic function, and the new tree is drawn in
the BlockTree pane. The available search algorithms and
heuristic functions are dependent on and dynamically up-
dated according to the domain that is being visualized.

Every time the user rebuilds the tree from a new root using
the shift+right click command, the old root is stored in a
stack. Clicking the Previous button redraws the tree from
the most recent previous root using the currently selected
algorithm, heuristic function, and rendering settings. This
feature may be useful for thoroughly exploring a domain,
algorithm, or heuristic function.

When the Help button is clicked, the system opens a sepa-
rate window (not shown) to describe the available user com-
mands. Finally, underneath these buttons is the detail panel
that displays a graphical representation of a node when it is
right-clicked in the BlockTree pane.

Visualizing heuristic search with BlockTrees

Our BlockTree visualization package is a general and ex-
tensible pedagogical tool for heuristic search. While stu-
dents and instructors can easily plug in their own prob-
lem domains, our package also readily includes several im-
plemented domains, namely the flashlight, sliding-tile, and
Rush Hour domains, to be used for in-class demonstrations,
individual practice exercises, or programming assignments.
In the interest of space, this paper only refers to the sliding-
tile domain with 8 tiles. In addition, our BlockTree package
facilitates the comparison of several heuristic (or h) func-
tions for each domain. Here, we focus on a single 8-Puzzle
problem instance characterized by the initial state shown at
the bottom of Figure 4 (right). Figures 6 and 7 contain the
BlockTree visualizations of (i.e., all the expanded nodes in)
the search trees rooted at this state and built with BFS, A*
search with the misplaced tiles heuristic, A* search with
the Manhattan Distance heuristic, and WA* search with the
Manhattan Distance heuristic and w = 2.

As discussed above, our BlockTree package targets sev-
eral, often higher levels in Bloom’s taxonomy. In one of

as2ariens,

Drawing Algorithm

® Rectangle O Triangle

Borders

®on © off

Node Distribution Display
O Text

® Graphics

Search Algorithm
®BFs oA
O wAr

Heuristic Function

© Bad Tiles

is || mem

1 2 =

as2arie0s,

Drawing Algorithm

® Rectangle O Triangle

Borders

®on O off

Node Distribution Display

® Graphics| O Text

Search Algorithm
O BFS @A
O wAs

Heuristic Function

® Bad Tiles () Manhattan

is || me

Figure 6: 8-Puzzle search trees generated by BES (left) and A* with the misplaced tiles heuristic (right)

as2arie0s,
Drawing Algorithm

® Rectangle O Triangle

Borders

52701365, ®on © off

Node Distribution Display

® Graphics O Text

Search Algorithm
O BFS @A
O wAs

Heuristic Function

© Bad Tiles

evious || Hemn

as2arie0s,
Drawing Algorithm

® Rectangle O Triangle

Borders
as2701365) ®on ©off
Node Distribution Display

® Graphics| O Text

Search Algorithm
O BFS oA
®war

Figure 7: 8-Puzzle search trees generated by A* (left) and WA* (right), both with the Manhattan Distance heuristic

their Al programming assignments, our students must de-
sign and implement the most informed heuristic function
they can devise for a given domain and search algorithm.
This task, which draws on several levels of understanding
with special relevance to Bloom’s synthesis and evaluation
levels, is facilitated by BlockTree in a number of ways.

First, we encourage students to go through an iterative
process whereby they implement and evaluate their design
using BlockTrees to visualize the pruning enabled by their
heuristic. BES (see Figure 6 (left)) performs no pruning and
constitutes the baseline performance: Its BlockTree view is
essentially free of empty spaces since BFS expands all nodes
up to the level of the goal node.* In contrast, the A* search
shown in Figure 6 (right) contains a much larger propor-
tion of empty space, a direct visual indication of the reduced
search effort (time) and memory consumption (space), since
all the algorithms we discuss share the property that they
store in memory all the nodes they expand.

Second, BlockTrees help students evaluate the accuracy
of their new heuristic. For example, a comparison of Fig-
ures 6 (right) and 7 (left) reveals that Manhattan Distance is
a more accurate heuristic in this case since it enables more
pruning by A*. Students are encouraged to interleave de-

“The few empty spaces in the BlockTree pane of Figure 6 (left)
are not due to pruning, but to either 1) tie-breaking at the last level,
or 2) the fact that some states may be reached via several paths (or
transpositions), which BFS eliminates.

307

sign and visualization episodes to iteratively improve their
heuristic. Students may also use the interactive features of
the BlockTree package to navigate the tree, identify sub-
trees in which their heuristic performs poorly, understand
its weaknesses, and further improve it.

Third, students can compare the efficiency of different
heuristic search algorithms. For example, Figure 7 (right)
shows that WA* reduces the search effort (and memory re-
quirements) significantly over A* with the same heuristic
function. Beyond visual feedback, the BlockTree package
helps students quantify the performance improvements: The
textual statistics pane contains the exact number of expanded
nodes, namely 41,371 nodes for BFS, 2,534 nodes for A*
with the misplaced tiles heuristic, 399 for A* with the Man-
hattan Distance heuristic, and 279 nodes for WA* with the
same heuristic.

Fourth, the graphical statistics pane helps students gain a
qualitative appreciation for the effect of heuristic pruning.
The left pane in Figure 6 (left) portrays the combinatorial
explosion of the search tree with the largest level at the bot-
tom, since no pruning occurs in BFS. In contrast, Figure 7
(left) shows how the A* search tree bulges in the middle and
narrows again toward the bottom, closer to the goal, where
the heuristic function is typically more accurate and the ef-
fects of pruning are more pronounced.

Finally, BlockTrees facilitate the comparative study of the
quality of the solutions found by various algorithms. The

perceptive student will note that the paths found by BFS and
A* with both heuristics contain 18 moves or levels in the
tree. However, WA*’s solution path is 20 moves long. A
natural question to ask the student is why this happens even
when A* and WA* use the same heuristic. If students re-
member (knowledge level) that both BFS and A* with an
under-estimating heuristic are guaranteed to find a shortest
solution, they should infer (application and synthesis levels)
that the shortest path in this problem has to be 18 moves
long. Thoughtful students will figure out that the only way
to explain the longer solution path found by WA* (see Fig-
ure 7 (right)) is the added weight on the h values: A weight
strictly larger than 1 may cause the resulting values to over-
estimate the true distance to the goal. Students will come
out of this exercise understanding (at the highest level of
Bloom’s taxonomy) the trade-off exhibited by WA* between
search effort and memory consumption on the one hand, and
solution quality on the other. Figures not included in the pa-
per for lack of space also show how this trade-off evolves
for larger and larger values of the weight multiplier.

Writing new “plug-ins” for BlockTree

Students may extend BlockTree in three ways: adding a
heuristic, adding a search algorithm, and solving a new puz-
zle. Each of these corresponds to extending an abstract base
class or interface. To create a puzzle portrayed by Block-
Tree, the student must extend the BTNode class.
public abstract class BTNode {

protected static Heuristic heuristic;

public static void setHeuristic(Heuristic h);

public void updateH() ;

public abstract BTNode[] expand();

public abstract boolean isLeaf();
public abstract JPanel getDetail(); }

A BTNode has a heuristic evaluator that is established us-
ing the setHeuristic method. updateH is the method used
to update the heuristic value of the node using the current
heuristic. The abstract methods expand and isLeaf are used
to obtain the successors of a node or to indicate that there
are none. By writing the expand method, the student must
determine the appropriate data structures to use in represent-
ing the state of the puzzle — thereby illustrating understand-
ing at the analysis level of Bloom’s taxonomy. The getDetail
method provides the small graphic rendition of a puzzle state
that is shown in the configuration panel (Figure 4).

To add a new heuristic, the student must write a class that
implements the Heuristic interface.

public interface Heuristic {
public int calculateH(BTNode node) ; }

The calculateH method of the heuristic is called by the
updateH method in the BTNode class each time the heuristic
is evaluated.

Finally, to implement a new search algorithm, the student
must extend the Algorithm abstract base class.

public abstract class Algorithm {
public abstract BTNode run(BTNode start); }

The abstract method run(BTNode start) performs the al-
gorithm from the given start state and must be implemented
for any classes that extend the Algorithm class.

308

Anecdotal student reactions and future plans

In our first experience using BlockTree for our junior-senior
level Al course, we crafted an assignment in which students
first had to answer a series of conceptual questions using the
built-in flashlight and sliding-tile puzzle domains. Then, for
the programming portion of the assignment, students com-
pleted the implementation of a heuristic for the Rush Hour
puzzle. After the assignment was completed, we asked them
to fill out a survey regarding their reactions to BlockTree.
Overall their comments were very favorable, but we also
observed that some students expressed a certain amount of
impatience at having to cope with the sheer amount of in-
formation incorporated into the different views presented by
BlockTree’s display. In retrospect, this was not surprising.
Information visualization has been described as “a way to
answer questions you didn’t know you had.” (Plaisant 2004)
Undergraduate students are not used to this mode of learn-
ing, but those who are patient enough to persist are often
rewarded. At least one student came to this realization, com-
menting “Once I understood exactly what everything repre-
sented, it was very helpful.” Based on such encouraging
feedback, we will continue to refine and use BlockTree for
our coverage of heuristic search in the Al course. We also
plan to complete an extension that will provide similar capa-
bilities for exploration of adversarial search in game trees.

Acknowledgments

We gratefully acknowledge financial support from the Na-
tional Science Foundation DUE Award #0341148. Insight
and inspiration came from John Stasko of Georgia Tech,
whose remarks in a conversation held at a visualization
workshop in the summer of 2006 helped provide the con-
ceptual design behind BlockTree.

References

Bloom, B. S., and Krathwohl, D. R. 1956. Taxonomy of
Educational Objectives; the Classification of Educational
Goals, Handbook I: Cognitive Domain. Addison-Wesley.

Coulom, R. 2002. Treemaps for Search-tree Visualiza-
tion. In Uiterwijk, J. W. H. M, ed., The Seventh Computer
Olympiad Computer-Games Workshop Proceedings.

Guzdial, M., and Soloway, E. 2002. Teaching the Nintendo
Generation to Program. Commun. ACM 45(4):17-21.

Naps, T. L. 2005. JHAVE — Supporting Algorithm Visual-
ization Engagement. [EEE Computer Graphics and Appli-
cations 25(5).

Plaisant, C. 2004. The Challenge of Information Visual-
ization Evaluation. In AVI '04: Proceedings of the working

conference on Advanced visual interfaces, 109-116. New
York, NY, USA: ACM Press.

Shneiderman, B. 1992. Tree Visualization with Treemaps:
A 2-D Space-filling Approach. ACM Transactions on
Graphics 11(1):92-99.

Stasko, J. 2000. An Evaluation of Space-filling Informa-
tion Visualizations for Depicting Hierarchical Structures.
Int. J. Hum.-Comput. Stud. 53(5):663-694.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

