
Case-Based Recommendation of Node Ordering in Planning

Tomás de la Rosa and Angel Garcı́a Olaya and Daniel Borrajo
Departamento de Informática, Universidad Carlos III de Madrid

Avda. de la Universidad, 30. Leganés (Madrid). Spain
trosa@inf.uc3m.es, agolaya@inf.uc3m.es, dborrajo@ia.uc3m.es

Abstract

Currently, among the fastest approaches to AI task plan-
ning we find many forward-chaining heuristic planners, as
FF. Most of their good performance comes from the use of
domain-independent heuristic functions, together with effi-
cient search techniques. When analysing their performance,
most of the time is spent precisely on computing the heuris-
tic value of nodes. The goal of this paper is to present a
way of reducing the number of calls to the heuristic function,
and, therefore, the time spent on finding a solution. We use
a case-based reasoning approach that automatically acquires
domain-dependent typed sequences (cases) from some train-
ing problems. Then, the learned cases are used to recommend
to each search node which of its successors to evaluate first.
Experimental results in several competition domains show the
advantages of the approach.

Introduction

Forward heuristic planning is nowadays one of the fastest
approaches for AI task planning. Using this approach we
find planners such as FF (Hoffmann & Nebel 2001) or SG-
PLAN (Chen, Hsu, & Wah 2004). The key idea of these
planners is the domain-independent heuristic function that
guides their search algorithm towards the solution. To com-
pute the heuristic function a relaxed version of the original
problem is solved, ignoring the delete lists of actions in the
domain. Regardless the way in which the relaxed solution
to a problem is computed, the time spent to compute the
heuristic value for all nodes takes most of the total planning
time. Since the time computing heuristics is an open issue
in heuristic planning, we propose a Case-based Reasoning
(CBR) approach, as a learning technique that recommends
node ordering for evaluation in order to reduce heuristic
computation during the search. We assume that less node
evaluations for computing heuristics will produce a total
planning time improvement. This work is an extension of
a previous work (DelaRosa, Borrajo, & Garcı́a-Olaya 2006)
in which we replayed typed sequences in a hill-climbing al-
gorithm.

In the past, CBR seemed an interesting approach for not
planning from scratch. ANALOGY (Veloso & Carbonell
1993) fully integrated CBR with generative planning based

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

on a derivational analogy process, in which lines of rea-
soning are transfered and adapted to a new problem. This
idea was attractive to planning because it reasons over the
planning trace rather than other CBR techniques that just
search the solution using transformational adaptation such
as PRIAR (Kambhampati & Hendler 1989). In forward
heuristic search it is not possible to directly obtain a causal
justification as it was stored in ANALOGY’s cases. However,
features of the planning trace can be still recorded. We sug-
gest that sequences of visited states, stored as sequences of
domain types, can be learned and later transfered as control
knowledge to guide the search.

The heuristic of the relaxed plan introduced by the FF
planner (Hoffmann & Nebel 2001) has proven to be ac-
curate enough to guide an Enforced Hill-Climbing algo-
rithm (EHC). Thus, our approach uses CBR for ordering the
way in which nodes are evaluated. Since CBR will choose
promising successors of nodes, EHC will find a node to fol-
low the search with fewer heuristic computations than usual.

In the following sections we present the basic idea of
EHC, and why node ordering for evaluation can improve its
performance. Then we introduce the CBR cycle of our ap-
proach, explaining the typed sequences extraction and how
they are stored as cases. Then, we describe the retrieval and
the adaptation of the sequences that will guide the search
in a replay process. We also present results in three of the
International Planning Competition (IPC) domains. Finally,
we discuss related work and present some conclusions.

Heuristic Search with EHC

The key ideas of FF-like planners is the heuristic function
obtained from the relaxed plan graph and a systematic and
efficient search algorithm such as EHC. After the relaxed
plan graph expansion, a solution to the relaxed problem (a
relaxed plan) is extracted, performing a backward chaining
of actions through the graph. Then, the number of actions of
the relaxed plan is taken as an estimate of how far the goal
is from the current state. EHC performs local search in the
search space of all reachable states. At each current state S,
a breadth first search is performed until a state S′ with a bet-
ter heuristic value is found. Then, the search continues from
S′ until a node that achieves the problem goals is reached.
One advantage of this algorithm is that not all state succes-
sors should be evaluated like in standard hill-climbing, since

393

when a state with a better heuristic value is found, the evalu-
ation of the rest of successors is skipped. Then, the order in
which nodes are evaluated directly influences the number of
evaluations done, and therefore the total time of the search.
Usually, node successors are evaluated randomly or in the
fixed order in which they are generated, that is determined
by the domain description and the node expansion imple-
mentation. As we will show in the following sections, this
order can be guided with domain-dependent control knowl-
edge learned through a CBR cycle.

Learning Typed Sequences

The idea of learning typed sequences comes from the ob-
servation of typical state transitions that each type of object
has in a plan. PDDL, the standard language for describ-
ing planning tasks, permits the definition of domain types to
group objects appearing in a problem. In a domain, objects
of the same type frequently share features when transiting
from one state to another. Since we can obtain these tran-
sitions from the solution path of a problem, a sequence of
these transitions can be considered as a case for the object
type. Viewing the whole process as a CBR cycle, typed se-
quences are extracted from previously solved problems and
are stored in the case base. With a new problem to solve,
a retrieve process selects the most similar sequences to the
new problem. These sequences are adapted and used in the
replay in order to guide the search. In the explanation of
these CBR processes, we are going to use the Depots domain
(part of the IPC collection), in which trucks transport crates
around depots and distributors, and crates must be stacked
onto pallets or on top of other crates at their destination.

Storing

A typed sequence (case) is formed by an ordered list of
structures that we call sub-state relations. A sub-state re-
lation of an object is a pair (typed sub-state, action to reach
the state) in which the relevant information of the state for
an object (object sub-state) and the applied action are ab-
stracted in terms of the object type. Typed sequences are
extracted from the solution to problems (plans, or sequences
of instantiated actions that transforms the initial object sub-
state into a sub-state in which a goal is met). To per-
form this abstraction, we extract first the object sub-state,
which is the set of all facts in a state in which the ob-
ject is present. Then, this object sub-state is translated to
a typed sub-state of the type of the object. Thus, a subset
of an initial state like [(on crate0 pallet0) (at
crate0 depot0) (clear crate0)], can be trans-
lated to a typed sub-state of ”crate” as [(on <x>)(at
<x>)(clear <x>)] where <x> represents any in-
stance of a crate and the underscore sign represents another
object in the literal not relevant to the typed sub-state. For-
mally, we define for an object o of type t, an object sub-state
Uo(o, S) = {f ∈ S | o is an argument of f} and a typed
sub-state Ut(o, S) = {lt = T (l, o) | l ∈ Uo(o, S)} where
T (l, o) is a function that transforms the fact l replacing the
object o with the variable <x> and the other arguments with

. Thus, a sub-state relation R(o, S) = [Ut(o, S), As]

where As is the applied action to reach S. Since many ac-
tions in the sequence are not relevant to the object (the ob-
ject is not a parameter of the action), and assuming that the
object sub-state does not change either, a no-op is stored
with the same sub-state. Then, from the solution path to a
problem we can compute the typed sequence of each object,
storing all sub-state relations in the order they appear.

Function Store-Case (O, S0, P): new-cases

O: the set of objects of the current problem
S0: the initial state
P : the plan to solve the problem

For each o of type t in O
case = ∅
S = S0

For each a in P = {a1, . . . , an}
case = case ∪ substate-relation(o, S, a)
S = Apply(S, a)

new-casest = new-casest ∪ case
return new-cases

Figure 1: Extraction algorithm.

Figure 1 shows the algorithm for extracting cases. For
each object of the problem a typed sequence is generated.
Figure 2 shows a typed sequence for crate0 and the plan
from which it was generated. The first step has no applied
action and corresponds to the crate initial sub-state. Dots
in the applied actions represent the action parameters not
relevant to the sub-state relation. The two no-op in the se-
quence represent the two actions in which crate0 is not
relevant. The number stored with the no-op is the num-
ber of steps in which the current object sub-state has not
changed. Then, cases are grouped by type of objects and a
merge process determines if the new case to store is part of
the case base or it is just a different case. Being n the number
of steps of the new case and k the number of stored cases,
the computational complexity of the storing phase is deter-
mined by the merge process which has O(n2k) complexity.
In practice, this time is irrelevant compared to the time spent
on solving the planning problems.

Retrieving

When the planner tries to solve a new problem, cases for
each object appearing in the goals are retrieved. We compare
the goal sub-state of an object with the last sub-state of all
sequences in the case base of the corresponding type. Then,
the initial sub-state of an object is compared with the first
sub-state of the sequences that met the first criteria. If more
than one sequence meet both criteria, the shortest sequence
is retrieved. All retrieved sequences are kept in a replay ta-
ble that will be used in the search process. The size of the
replay table depends on how many sequences are retrieved,
but there is at most one sequence for each different object
appearing in the goals. Future work will use more sophisti-

394

Figure 2: An example of a typed sequence relevant to a crate.

cated retrieval methods, but this retrieval scheme works rea-
sonably well for now. Figure 3 shows the retrieval algorithm
in which the replay-table is built with the retrieved cases.

Function Retrieval (S0, G,CB): replay-table

S0: the initial state of the current problem
G: the conjunction of goals to be achieved
CB: the Case Base

replay-table = ∅
For each o, o is an argument of g ∈ G

candidates = ∅
For each φt = {R0, . . . , Rn} in CB, o is of type t

If Ut(o,G) ⊆ Rn then
candidates = candidates ∪ φt

sort by length (candidates)
For each C in candidates

If R0 ⊆ Ut(o, S0) and o not in replay-table then
insert (o, C) in replay-table

return replay-table

Figure 3: Retrieval algorithm.

As an example of the retrieval, suppose a set
of goals G=[(on crate1 pallet1)(on crate2
crate1)]. We search in the case base for a sequence of
type pallet for pallet1, and sequences of type crate for
crate1 and crate2. To retrieve a sequence for crate1,
the selected case must have a sequence ending with the sub-
state (on <x>)(on <x>) and must start with the cor-
responding initial sub-state. If no sequence matches, the ob-
ject is not considered in the construction of the replay table.

Adapting

Typed sequences could represent many instantiated se-
quences in the new problem, since sub-state relations only
take care of a particular referenced object and the other ob-

jects in the literals could receive as many bindings as ob-
jects of the ignored type. To address this issue, we per-
form an early extraction of a relaxed plan, and obtain the
goal membership layers of the relaxed plan graph from the
initial state. This goal membership is built during the re-
laxed plan extraction, and is represented with the sequence
G1,. . . , Gt, where Gi is the set of facts achieved by the ap-
plied actions of the relaxed plan at time step i − 1. With
this goal membership we can transform typed sequences to
real objects sequences, searching the right bindings through
the goal layers. Suppose that the sequence in Figure 2 is re-
trieved for crate1 appearing in the goal (on crate1
pallet1). In the seventh step, the literal (lifting
crate1) could match with any hoist of the prob-
lem, but the Gt−1 layer has the right binding (lifting
crate1 hoist1) since it is a precondition to achieve the
goal (on crate1 pallet1) that is present in the Gt

layer. Since the relaxed plan graph does not always repre-
sent the real order of achieving goals and subgoals, not all
sequences are fully instantiated. When this happens, typed
sub-state rather than instantiated object sub-states are com-
pared during the replay. Figure 4 shows the instantiating
algorithm for the adaptation phase. The algorithm searches
for each step in the retrieved sequences if the typed sub-state
corresponds to any object sub-state taken from each layer of
the goal membership. If it does, the object sub-state is kept
as the instantiation of the sequence step.

Function Instantiate-Seq(RT,M): instantiated-seq

RT : The replay-table from the retrieval phase
M : The goal membership of the initial relaxed plan graph

For each Gi, G is the i layer of M
For each Q(o) = {R0, . . . , Rn},
Q is the sequence for the object o in RT

For k = n, . . . , 1
If Ut(o,Gi) ⊆ Rk then

insert Uo(o,Gi) in instantiated-seq
return instantiated-seq

Figure 4: Adapting algorithm.

Replaying

The replay process of sequences is integrated in EHC, so
it can reduce heuristic computation of nodes. The search
goes as follows: at any state S (with a heuristic value h(S)
computed previously), the node successors are generated.
Then, the process looks if the successor to evaluate is rec-
ommended by CBR. If it does, the successor is evaluated for
computing its heuristic value h(S′). If h(S′) is strictly less
than h(S), this successor is selected, and the search con-
tinues from it, until a state achieving the problem goals is
reached. If h(S′) is equal or greater than h(S), a second
attempt with the next successor is done, and so on, until a
node with a better heuristic is found. If the CBR module

395

could not find a recommended node, all skipped successors
are evaluated and the standard EHC is followed.

To analyse if a successor is a recommended node, the re-
play table holds the current pointer to all of the retrieved se-
quences, and if a state successor matches the next sub-state
relation in the sequences, it is recommended for evaluation.
This match is performed by converting the state successor
to a sub-state relation of the same type of the compared se-
quence. If a recommended node is not a good choice, it will
be discarded after its heuristic computation, and the next op-
tion will be suggested. Moreover, since retrieved sequences
may share facts of their sub-states, if a sequence is advanced
to the next sub-state relation, all sequences that share this
sub-state are also advanced. Otherwise, if a node in the
search is selected by the heuristic, the replay table is tra-
versed to see if any sequence should be also advanced. If
a sequence points to a no-op, it is not used again until it
is advanced as many times as the number with the no-op.
This guarantees that at least a number of actions, not rele-
vant to the object, are applied before the sequence suggests
a new sub-state. Figure 5 shows the algorithm used to know
if a node is recommended for heuristic evaluation.

Function Recommended(RT,N): recommended

RT : The replay-table from the retrieval phase
N : A successor of the current node

recommended = false
For each o, parameter of the action a applied in N

φ = object-sequence(o,RT)
R the sub-state relation pointed in φ
if R is instantiated then

If (Uo(o,N), a) = R then
recommended = true

else
If (Ut(o,N), a) = R then

recommended = true
If recommended = true

advance-sequences in RT
return recommended

Figure 5: Advise algorithm.

To illustrate the replay process with an example, we will
use a simple problem that uses the sequence in Figure 2. We
use only one sequence for clarity. In this problem there are
one depot and two distributors. Each place has a hoist and a
pallet. Initially crate1 is on crate0 at depot0 Figure
6 shows the initial state, the problem goals, and first steps of
the search tree. Static literals have been removed for clar-
ity. In each node the heuristic value h is displayed, (“h:?”
if not computed) as well as the applied action to reach the
state. The sequence is used in reference to crate0. As
we can see in the search tree, state S3 is the right decision
recommended by CBR and states S1 and S2 (with gray back-
ground), were not evaluated. They were skipped since stan-

dard EHC would evaluate them first. In the next two steps
(S4 and S9), no nodes were recommended, but S12 was rec-
ommended whereas S10 and S11 were skipped.

PROBLEM

:init

(clear pallet1) (clear pallet2)

(at truck dist0)

(at crate0 depot0) (on crate0 pallet0)

(at crate1 depot0) (on crate1 crate0)

:goal

(on crate0 pallet1)

(on crate1 pallet2)

Figure 6: An example of the replay process.

Experiments
We have implemented this approach in SAYPHI, a learning
architecture in which several techniques for control knowl-
edge acquisition can be integrated with a common heuris-
tic planner. The SAYPHI planner is an FF-like heuristic
planner developed in LISP. It performs an EHC algorithm
using the relaxed planning graph heuristic. For the experi-
ments we have given the planner 10 random training prob-
lems from the Depots domain for extracting the typed se-
quences. These problems had up to 14 objects instances and
up to 3 goals. In the case base 11 cases of type crate and 3
cases of type pallet were stored.

Then, we generated the test set with 100 random prob-
lems up to 30 objects instances and up to 10 goals. All these
problems were generated with the random problem genera-
tor supplied by the IPC. Then, we solved each problem with
EHC, and then supported by the CBR recommendation de-
scribed in the previous sections, both with a time bound of
300 seconds.

396

The EHC algorithm solved 86% of the problems and with
the CBR support 92%. Figure 7 shows the accumulated time
used in problems solved by both techniques.

Figure 7: Accumulated time solving Depots problems.

We also tested our approach with the Logistics domain,
in which packages need to be transported to given destina-
tions. Destinations can be either post offices or airports. Air-
planes fly between airports, and, trucks transport packages
within the same city. For comparison, we used the IPC 2000
problem set. We populated the case base with the first three
problems and obtained 4 cases of type package, 12 cases
of type airport and 3 cases of type post-office. We trained
the case base with the simplest problems of the competition
(first ones in the competition set), because the training prob-
lems must be solvable by the planner in order to generate
cases. We used the other 37 problems to test the EHC algo-
rithm and the CBR supported search.

In this case both techniques solved all problems. Figure
8 shows the accumulated time solving the problems. We
can observe a much better performance of CBR supported
search. As problems increase their difficulty the branching
factor of applicable actions also grows. Therefore, in these
harder problems the number of evaluations avoided is more
significant.

Figure 8: Accumulated time for the Logistics problems

Another domain we have used is the Satellite domain. It

involves planning a set of observation tasks between multi-
ple satellites, which can point to different directions, supply
power to one selected instrument, calibrate it to one target
and take images of that target. For the experiment we used
the IPC 2002 set. We populated the case base with 3 prob-
lems obtaining 6 cases for type direction and 5 cases for type
mode. Then, we used the other 17 problems to test the EHC
algorithm and the CBR supported search.

EHC solved 14 problems and the CBR supported search
solved 16. All problems solved by EHC were also solved
with CBR. Figure 9 shows the accumulated time for prob-
lems solved by both techniques. Again, there is a much
better performance with the CBR supported search, mainly
when problem difficulty increases.

Figure 9: Accumulated time for the Satellite problems

Since the time spent to solve a problem depends also on
the implementation and the development language, it is not
obvious to compare planning time between a learning tech-
nique implemented within a planner, and a different planner.
In this case FF outperforms our system in planning time (FF
is implemented in C and incorporates more domain inde-
pendent heuristics than SAYPHI). Instead, we decided to
measure the number of evaluated nodes, assuming this is the
key issue of our approach, since we could implement CBR
in any other FF-like planner. We have run the test sets with
FF. It has solved 99 problems of the Depots domain, and all
problems of the Logistics and the Satellite domain. Table 1
shows the average of evaluated nodes in the tested domains
for both FF and CBR-Sayphi.

Table 1: Average of evaluated nodes.
Heuristic FF Planner CBR-Sayphi
Depots 5671.7 1729.8

Logistics 200.4 84.1
Satellite 240.4 294.1

We can see that in the Depots domain and the Logistics
domain the CBR supported search leads to a clear reduction
of node evaluations. In the Logistics domain CBR-Sayphi
evaluated fewer nodes than FF in all problems. Although

397

CBR outperforms the SAYPHI planner in the Satellite do-
main, it is not quite enough to win FF with respect to number
of node evaluations. This might be because FF incorporates
additional heuristics than our planner and because our cur-
rent representation ignores some plan steps that should be
in the sequences. These missing steps are part of the se-
quences of other types not present in the goal objects, which
is one criteria for the retrieval phase. Another issue we have
to address relevant to performance is adding some quality
measure to used cases in the case base, since the stored se-
quences are extracted from non-optimal plans, and therefore
we are re-using sub-optimal sequences. Thus, we could later
remove from the base the low quality cases.

Related Work

The idea of extracting information from the domain types
description is not new to the planning community. Our work
is related to state invariants extracted from a domain anal-
ysis as in TIM (Fox & Long 1998). With a pre-processing
tool, they obtain Finite State Machines that represent states
in which a type of object can be and can move to. In our
case this knowledge is obtained dynamically while the case
base is being populated in the form of sequences.

Other approaches integrate CBR with planning. ANAL-
OGY (Veloso & Carbonell 1993) and PRIAR (Kamb-
hampati & Hendler 1989) that we have mentioned ear-
lier, PARIS (Bergmann & Wilke 1996) which stores
cases in different abstraction levels of a solved problem,
CAPLAN-CBC (Muñoz-Avila, Paulokat, & Wess 1994)
which performs plan-space search and replay and STEP-
PINGSTONE (Ruby & Kibler 1989) which learns sub-goals
sequences for a means-ends planner. The novel contribu-
tion of our approach is that the knowledge of the case base
is abstracted in domain types and these cases represent se-
quences of state transitions. Moreover, cases do not rep-
resent directly plans of solved problems because a single
plan can generate multiple typed sequences. Our approach
also provides an additional way to address heuristic plan-
ning through heuristic ordering of evaluations. We can find
also a similar approach in MACRO-FF (Botea et al. 2005) if
macro-operators are seen as fixed cases that keep a sequence
of applicable actions. The difference is that these macro-
operators can not interleave actions, nor deal with node or-
dering for computing heuristic function, as we can do with
typed sequences.

Conclusions and Future Work

In this work we have shown a new approach to forward
heuristic planning, introducing a CBR component that helps
an Enforced Hill-Climbing algorithm to decide the order in
which nodes should be evaluated to compute the heuris-
tic function. The CBR component uses typed sequences
learned from previous solved problems to suggest promis-
ing next states in the search process. We have seen that
the planner performance time is improved with this tech-
nique, since the planner does less heuristic computations. In
many steps the suggested node is the only one evaluated and
other nodes are ignored for evaluation. The key idea of this

work opens a variety of possibilities for helping heuristic
planning. Any kind of learning technique that could pre-
dict somehow a next state in the search, would be applicable
within the EHC algorithm.

Our future work will enrich the way sub-states relations
are stored, in order to address the issue of domain represen-
tation mentioned before. We also want to include a quality
measure of cases in the case base for a better retrieval pro-
cess. A sequence that frequently predicts the right node to
evaluate, can be marked as a good case, so it could be pre-
ferred when there is more than one possibility for retrieving.

Acknowledgments

This work has been partially supported by the Spanish MEC
project TIN2005-08945-C06-05 and regional CAM-UC3M
project UC3M-INF-05-016.

References

Bergmann, R., and Wilke, W. 1996. Paris: Flexible plan
adaptation by abstraction and refinement. In Voss, A., ed.,
ECAI (1996) Workshop on Adaptation in Case-Based Rea-
soning. John Wiley & Sons.
Botea, A.; Enzenberger, M.; Müller, M.; and Schaeffer, J.
2005. Macro-ff: Improving ai planning with automatically
learned macro-operators. Journal of Artificial Intelligence
Research (JAIR) 24:581–621.
Chen, Y.; Hsu, C.-W.; and Wah, B. 2004. Sgplan: Sub-
goal partitioning and resolution in planning. In Proceed-
ings of the 4th International Planning Competition (IPC4),
in Conference ICAPS’04, 30–33.
DelaRosa, T.; Borrajo, D.; and Garcı́a-Olaya, A. 2006.
Replaying type sequences in forward heuristic planning.
In Ruml, W., and Hutter, F., eds., Technical Report of the
AAAI’06 Workshop on Learning for Search. Boston, MA
(USA): AAAI Press.
Fox, M., and Long, D. 1998. The automatic inference of
state invariants in TIM. Journal of Artificial Intelligence
Research 9:317–371.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research 14:253–302.
Kambhampati, S., and Hendler, J. 1989. Flexible reuse
of plans via annotation and verification. In Proceedings of
5th International Conference on Artificial Intelligence for
Applications, 37–43.
Muñoz-Avila, H.; Paulokat, J.; and Wess, S. 1994. Con-
trolling nonlinear hierarchical planning by case replay. In
in working papers of the Second European Workshop on
Case-based Reasoning, 195–203.
Ruby, D., and Kibler, D. 1989. Learning subgoal sequences
in planning. In Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence, 609–614. San
Mateo, CA: Morgan Kaufmann.
Veloso, M. M., and Carbonell, J. G. 1993. Derivational
analogy in PRODIGY: Automating case acquisition, stor-
age, and utilization. Machine Learning 10(3):249–278.

398

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

