
Using Contexts to Prove and Share Situations

Patrick Barlatier and Richard Dapoigny
LISTIC/Polytech’Savoie, University of Savoie, France,

email:richard.dapoigny@univ-savoie.fr

Abstract

The context paradigm emerges from different areas of
Artificial Intelligence. However, while significative for-
malizations have been proposed, contexts are either
mapped on independent micro-theories or considered as
different concurrent viewpoints with mappings between
contexts to export/import knowledge. These logical for-
malisms focus on the semantic level and do not take into
account dynamic low-level information such as those
available from sensors. This information is a key ele-
ment of contexts in pervasive computing environments.
In this paper, we introduce a formal framework where
the knowledge representation of context bridges the gap
between semantic high-level and low-level knowledge.
The logical reasoning based on intuitionistic type the-
ory and the Curry-Howard isomorphism is able to incor-
porate expert knowledge as well as technical resources
such as task properties. Based on our context model, we
also present the foundations of a Context-Aware archi-
tecture (Softweaver) for building of context-aware ser-
vices.

INTRODUCTION
In this paper we examine the notion of context within the
area of Artificial Intelligence (AI). Context is an issue which
arises in many different areas of AI such as in Natural Lan-
guage Processing (Clark and Carlson 1981; Leech 1981),
Categorization (Barwise and Seligman 1992), Knowledge
Representation and Reasoning (McCarthy 1987; Shoham
1991), and more recently in Ubiquitous Computing and
Context-aware Web Engineering (Kaltz04). While there has
been an increasing amount of research focusing on the prob-
lems related to the modelling, representation and use of con-
text (Brezillon 1999), few conceptual models have given
meaningful solutions and implementations. The basic goal
of context-aware systems is to make software aware of the
environment and to adapt to their changing context. How-
ever, there is a lack of appropriate formal models for dy-
namic environments. Context models are often expressed
either through logical formalisms or with ontology-based
approaches, but they show some difficulty to take in account
additional information, to cope with spatio-temporal change,
and to cover non-monotonic features.

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Context is ontologically speaking a moment universal:
it has no meaning by itself, but must be related to some
concept, but which one? How to describe contextual facts
and interrelationships in a precise and traceable manner?
Context sharing capabilities are required but how to pro-
vide a shared understanding? How the representation of
context should cover different abstraction levels (encapsu-
lation). The logic must take in account partial knowledge, it
must be dynamic to cope with change and it must be decid-
able for concrete applications.

This enumeration of problems argues for an unification
of the two approaches, i.e., a logical framework and an on-
tological support. We have suggested a logical framework
based on intuitionism and on type theory to represent con-
texts from an AI perspective (Dapoigny & Barlatier 2007). It
combines the strengths of both approaches while trying not
to carry their specific weaknesses into the resulting formal
framework. For this purpose, it relies both on a knowledge
representation with ontologies and on a logical reasoning
with Dependent Record Types (DRT) based on intuitionistic
type theory and the Curry-Howard isomorphism. This logic
model can be applied to any kind of process-based applica-
tions. In this paper, we recall the basic principles of the log-
ical framework and describe the context-sensitive reasoner.
It makes use of DRT to represent typical problem-solving
situations. The first section summarizes relevant works on
context formalization in AI. In section 2, we present the De-
pendent Record Types based on intuitionistic logic including
context types and context tokens. The third section gives
some account of the implementation including a Graphical
User Interface (GUI), a reasoning engine1 and a local on-
tology. The last section concludes and presents some future
ways of investigation.

Context in AI
The need for a Context Model
The issue of context has been emerged in various areas of
AI, including knowledge representation, natural language
processing, and intelligent information retrieval. In context-
aware systems, a well-known definition is expressed as fol-
lows ”a system is context-aware if it uses context to provide

1The information the GUI obtains from its users is expected to
increase the accuracy of the reasoning engine.

448

relevant information and/or services to the user, where rele-
vancy depends on the user’s task” (Anind K. 2000) But such
a definition requires first to categorize explicitly the concept
of context. The strong link between contexts and situations
is highlighted in (Giunchiglia 1992) where three different
possibilities are detailed - a fourth one is the combination of
the three basic ones -. In the first one, a given situation is
related to multiple contexts, each being a different approx-
imate of the situation. These contexts are different because
they correspond to different goals that we have in mind, ar-
guing for a context-of definition. In his one-to-one corre-
spondence between situation and context, the author gives
an example involving a time evolution of a physical pro-
cess. Considering first that a physical process has a global
goal and second, that this goal can be divided into sub-goals,
each of them being achieved successively, it results that, at
a given time a single context is available - i.e., the context-
of the related sub-goal -. The third possibility, in which a
single context corresponds to many situations, argues for a
hierarchical property of contexts. If we can merge all con-
texts corresponding to a situation, provided that the situation
can be itself divided into sub-parts each of them related to
a context, then we can conclude that context must offer hi-
erarchical properties. As a consequence, these assumptions
give some evidence for an ontological definition.

Related Works
One of the most difficult problems facing context modelling
is defining a theory incorporating linguistic knowledge from
ontologies and logic. Most works on conceptual modelling
of contexts stem from two basic approaches, that are either
ontology-based or logic-based.

Ontology-based approaches are a promising framework
to specify concepts and their interrelations (Mike Uschold
1996). They are particularly suitable to project parts of the
information describing and being used in our daily life onto
a data structure utilizable by computers. The development of
context models based on ontologies take advantage of their
knowledge sharing, logic inferencing and knowledge reuse
capabilities. In (Wang et al. 2004), the authors have cre-
ated an upper ontology which captures general features of
basic contextual entities and a collection of domain specific
ontologies with their features in each subdomain. The Co-
BrA system (Chen, Finin, & Joshi 2003) provides a set of
ontological concepts to characterize entities such as persons,
places or several other kinds of objects within their contexts.
It implements a broker-centric agent architecture to provide
runtime support for context-aware systems. A recent survey
of the most significant context modelling approaches (Strang
& Linnhoff-Popien 2004) argued that ontology-based ap-
proaches seem one of the most promising assets for context
modelling.

In logic-based models, contextual information is intro-
duced, updated and deleted in terms of facts or inferred
from a set of rules. In the early nineties’s, the most signif-
icant general foundations for reasoning about contexts have
explored logics rooted in the Situation Calculus. In (Mc-
Carthy 1993), contexts are first class objects and the formula
ist(c, p) asserts that the formula p is true in the context c.

Lifting rules are able to relate the truth in one context to the
truth in another one. In addition, operations such as enter-
ing and leaving contexts were introduced. This work was
the starting point for a formalization in propositional logic
(Buvac, Buvac, & Mason 1995) extended to first-order lan-
guages (Buvac 1996). In (Giunchiglia 1992), the formaliza-
tion relies on two assumptions, namely the locality principle
where reasoning happens inside a context and the principle
of compatibility where relationships can occur between rea-
soning processes in different contexts. The approach known
as Multi-context Systems considers a context as a subset of
the complete state of an individual. Contexts are seen as
partial theories which can interact with each other through
bridge rules allowing to infer a conclusion in one context
from a premise in another one. The core problem with
these approaches is not the lack of powerful rules engine,
but rather the lack of ways to easily represent real-world
scenarios in terms of rules. More recently, an approach of
contexts exploring type-theoretic ideas has been proposed in
(Thomason 1998)(Thomason 1999). Three primitive syntac-
tic constructions are derived from type theory, namely iden-
tity, functional application and lambda abstraction. Built
on a previous work on intensional logic (Montague 1970),
propositions are defined as sets of possible worlds and a
context is identified with a set of propositions. In Human
Computer Interactions, context is seen as a feature of inter-
action - a property of information, or of objects - and the
proposed a model includes context and activity which are
mutually constituent (Dourish 2004).

The Context Theory
The Context Logic
While the approaches described in section cover a wide
spectrum of AI modelling, they show some difficulty to
manage the intensional aspect. Most of them present modal-
ity as a solution, but modal logics rely on the ”essentialism”
concept highlighting arbitrary axioms (Girard. 1989). In ad-
dition they suffer from the limitations of reasoning capabili-
ties of first-order logic, the lack of dynamic capabilities and
the need of partial validation. One important aspect already
underlined in (Giunchiglia 1992), is the locality principle.
This principle which states that different portions of knowl-
edge are defined, is taken as a basis in the present work.

Then, observing that physical objects are a central el-
ement of process activity and building on recent works
(Boldini 2000; Ranta 2004; Villadsen 2004), we have pro-
posed a context model based on Intuitionistic Type Theory
(ITT) for engineering applications. Intuitionism says that
only those mathematical concepts that can be demonstrated,
or constructed are legitimate. We consider the context-
of the application, that is, the context-of the global goal
since the application is itself characterized by an objective.
The analysis of contextual reasoning requires a sound and
expressive formalism. Widely used in Natural Language
processing (Boldini 2000; Ranta 2004) and in Program-
ming Languages (Bove & Capretta 2001; Paulson 1989;
Coquand & Coquand 1999), ITT (Martin-Löf 1982) has
been proven to be appropriate to support the linguistic na-

449

ture of physical situations. We extend these works with the
description of contexts. However, contexts are not situa-
tions but they are related to them and since contexts describe
knowledge extracted from situations, they have a natural ex-
pressivity with types. Moreover, ITT provides an intensional
type theory for representing most of the features character-
izing contexts in an AI perspective. In the framework of
physical processes, we introduce the Context Record Struc-
ture (CRS) described by a record in which the fields detail
the physical items (i.e., objects and their properties) of that
context. Record types and record tokens (i.e., instances of
types) are also introduced to separate the specification of
potential contexts through types with their implementation
through tokens. A further attraction is that this subdivision
also supports ontological engineering for the specification of
the applications during the design step.

The theory of types has been extended with Dependent
Record Types (DRT) (Betarte 2000; Kopylov 2003) formal-
izing a proof of a basic property of groups. Their ability to
provide a simple structure that can be reused to specify dif-
ferent kinds of structured semantic objects is very attractive.

Definition 1 A dependent record type is a sequence of fields
in which labels li correspond to certain types Ti, that is,
each successive field can depend on the values of the pre-
ceding fields:

< l1 : T1, l2 : T2(l1) . . . , ln : Tn(l1 . . . ln−1) > (1)

where the type Ti may depend on the preceding labels
l1, ..., li−1.

A similar definition holds for record tokens where a se-
quence of values is such that a value vi can depend on the
values of the preceding fields l1, ..., li−1:

< l1 = v1, ..., ln = vn > (2)

The empty sequence <> is a record type and the type Ti

is a family of types over the record type l1 : T1, ..., li−1 :
Ti−1. Assuming that Γ is a valid context2, the record type
formation rules are, provided that l is not already declared
in R :

Γ �<>: record − type

R : record − type

Γ � R �<>

Γ � R : record − type Γ � T : record − type → type

Γ �< R, l : T >: record − type

(3)

We also assume that the general rules of construction for
Set and Prop types are valid and that primitive syntactic
constructions - i.e., equality, functional application and
lambda abstraction - hold (for more details see (Martin-Löf
1982)). An important aspect of DRT is that sub-typing
is allowed, for example a DRT with additional fields not
mentioned in the type is still of that type. We can use the
notion of record-type to offer the most rudimentary notion
of physical context through the CRS, namely that it is a

2A valid context in type theory is a sequence x1 : T1, . . . xn :

Tn such that there is a judgment having it as left side of a sequent.

record which carries information about the semantic aspect
of any physical variable. In such a way, CRS can range
from the context of a single variable involved in a physical
equation to the context of a real life situation. While types
describe potential properties of the real world, tokens are
dedicated to the run-time process. From basic ground
types, e.g., Location, Phys quantity - physical quantity
-, ..., complex context types can be composed with more
than one entity. Propositions are treated as individuals that
can be arguments of predicates. Since the Curry-Howard
isomorphism identifies proofs with programs, it can be
used to prove a specification, that is to say, to select which
definitions are needed for the specification to work properly.

x : V ehicle
y : RegistrationNumber
l1 : GPSLongitude
l2 : GPSLatitude
te : evT ime
tm : maxTime
q1 : has identification(x, y)
q2 : has Location(x, l1, l2)
t : Lt(evT ime, maxTime)

x = truck
y = 2678KX69
l1 = 12.0987
l2 = 67.2365
te = 2/11/06.11 : 33
tm = 2/11/06.12 : 00
q1 = p1

q2 = p2

t = p3

In this example, p1 is a proof of
has identification(truck, 2678KX69), p2 is a proof
of has Longitude(truck, 12.0987) p3 is a proof of
has Latitude(truck, 67.2365) and p2 is a proof that the
evaluation time 2/11/06.11 : 33 is left than the maximum
allowed time 2/11/06.12 : 00. It states finally that the
registration number of all vehicles present at this place
before 2/11/06.12 : 00 will be registered.

To cope with partial knowledge, a subtyping mechanism
in dependent type theories is required as a crucial step to-
ward large-scale applications. Major works either introduce
coercive definition rules (Luo 1999) or record-based sub-
typing (Betarte 2000) Subtyping offers a great deal of flexi-
bility for use in type theories but also raises some questions,
such as coercions with non-intuitive actions. This question
requires the knowledge of all possible coercions used for a
given term and their precise effect, which is untractable in
practice. This problem can be avoided by imposing seman-
tic constraints on coercions: this is the case in record-based
subtyping that we shall adopt here. The extension of a phys-
ical context type needs to define some basic rules of con-
struction.

Γ � c1 : PC − type Γ � c2 : PC − type

Γ � c1 ⊕ c2 : PC − type

Γ � c : PC − type

Γ � c �<>
Γ � c1 ⊕ c2 : PC − type

Γ � c1 ⊕ c2 � c1

Γ � c1 ⊕ c2 : PC − type

Γ � c1 ⊕ c2 � c2

The first rule asserts that a concatenation of context types is
again a context type. The second rule states that any con-
text type is a sub-type of the empty sequence - since a con-
text type with no labels doesn’t impose any constraints on
its objects -. The two remaining rules specify that any con-

450

catenation of context types is a subtype of each one of its
component since the former contains more specific informa-
tion. The extension of a physical context type c to a context
type c′ corresponds to the process of getting more informa-
tion. These rules are extensible to any number of context
types. Since in type theory, the analogue of a proposition is
the judgement we can conclude that the judgement in c is
lifted to the judgement in context c′.

Discussion
The logical framework must provide an adequate coverage
through the following dimensions:

• partial logic. The logic must be partial to account for ex-
pressions which simply lack a value in some contexts.
The partiality is obviously an inherent property of DRT
since truth values are attached to the presence - or absence
- of an element of a set.

• dynamic aspect. The dynamic aspect is revealed at run-
time through the context tokens stating what is true within
a context at this time.

• non-monotonicity. Roughly speaking, monotonicity in-
dicates that learning a new information cannot reduce the
set of known information. During context extension, if the
assumptions that hold in the added PC contradict judg-
ments of the initial PC, non-monotonicity occurs. As a
consequence, a lifted judgment formally derives the ab-
surd type - ⊥ -. We face a belief revision process since
beliefs have to be changed to accommodate the new belief
otherwise inconsistency can occur. An efficient way to
cope with non-monotonic situations as suggested in (Bol-
dini 2000), consists either in declaring the extended PC
as impossible, in other words to discard the extension, or
alternatively, to revise the belief leading to a contradiction
in the initial context. Anyway, one PC has to be declared
as impossible context.

The Context Ontology
Context modelling abstractions are required to support com-
mon understanding and to facilitate communications be-
tween programm in distributed environments. A recent ap-
proach (Costa et al. 2006) has proposed to characterize the
concept of context within an ontological framework. The
authors introduce some concepts such as the ”containment
context” which associates multiple entities within a context,
the quality requirement in which entities are bearers of qual-
ities - intrinsic moment -, the formal relations between indi-
viduals and material relations in which entities share a com-
mon property. Despite its interesting definitions of entities
and contexts, this conceptual model of context is not suffi-
cient to cover all aspects of context reasoning since the un-
derlying logic is not explicit. Moreover, the context concept
described as a moment universal doesn’t formalize the no-
tion of concept-of.

The main idea is to substitute the context concept with the
more atomic concept of property. As a result we obtain the
Core Ontology described in figure. The kind of possessive,
allows to semantically relate the entity noun to a property
noun in a specific ”has <property>” relation. Through the

fundamental categories of Entity and Property, all the ba-
sic components of the physical world are defined. Above
these assumptions, the containment context is nothing else
than a context extension - sub-context-of - shifted in the
logic, the intrinsic properties and the material relations by
”has <property>” while formal relations are directly ex-
pressed by propositions in the logic. Classical subsumption
relations and material relations between entities and their
properties explicitly conceptualize in a simple way a given
application. The resulting upper level ontology does’nt for-
malize the context, but rather its elementary components,
i.e., the properties. However, the ontological part is not suf-
ficient by itself and must be extended with an appropriate
logic. In such a way, a Context Theory can be formulated
with a dual model. The first component - Conceptual part -
built in the design step defines the domain ontology of the
application and follows the construction rules of the upper
level ontology. The second component - logical part - ad-
dresses the logical aspect relating the concepts defined in
the previous layer through the generation of context types
including entities and propositions. It is only in this part -
also built during the design step - that the context appears in
a dynamic way.

From an extended perspective, the context model presents
capabilities either for more applied processes or for a more
conceptual approach. A practical extension of the model
appears through to the Information Flow (IF) paradigm of
(John Barwise 1997). The ontological part together with an
executive module correspond to the classification of the IF
model while the logical part is nothing else than the The-
ory within the IF model. The IF model serves as a basis for
distributed reasoning and has already been applied to ontol-
ogy alignment. As a consequence, it can extend easily the
implementation of the present model in distributed environ-
ment under a categorical framework. Furthermore, a more
higher level relates to the Standard Upper Ontology - SUO
- with the lattice of Theories - LOT - (Kent 2004). It advo-
cates that the present work also offers some facilities for an
integration within this highly conceptual model.

Specification
Context types to share knowledge
Usually, ontologies are seen as content theories on object
sorts, object properties and their relations. Under this as-
sumption, they provide a sound model for the description
of context types. In addition, they give programs the abil-
ity to access a shared knowledge across a network. As a
consequence, programs can modify their knowledge at run-
time. The application ontologies whose restricted validity is
limited to the task execution are a suitable tool for the spec-
ifications of context types with their relations. A dynamic
ontology has been designed including an intentional defini-
tion of concepts and their relations with operators allowing
for the composition of new concepts and their relations. A
main benefit of this approach is to avoid the combinatory ex-
plosion inherent to static approaches. The ontological the-
ory will try to exploit the power of the Cyc project (Lenat
& Guha 1990). The Knowledge Base consists of terms - the

451

vocabulary of Cyc - and assertions which relate these terms.
These assertions include both simple ground assertions and
rules. A bundle of assertions sharing a common set of as-
sumptions are known as micro-theories. Micro-theories are
arranged into hierarchies in which any micro-theory has free
access to its parent assertions. All Cyc concepts are either
individuals or collections, each of them having the ability to
be instances of a collection -is a -. Cyc doesn’t use a pre-
defined inference scheme (e.g., tell(KB, σ), in which σ is
a given axiom, will return the new KB including σ). The
representation of context types in Cyc permits the programs
to share a concept base and allows inference and reasoning
mechanisms requiring this base. The resulting software ar-
chitecture is reported on fig. 1.

Figure 1: Overview of the Software Architecture

Context types to prove situation
The main idea consists in producing a valid specification
through the Cyc tool, and then converting it in a program-
ming language module. For that purpose, a programming
language able to implement in an efficient way the logical
specifications from the context types is required. The dy-
namic knowledge composition or change achieved by pro-
gram is grounded in the context type description incom-
ing from the ontology. The context types defined in a Cyc
micro-theory must be understood as the reflexive represen-
tation of a program. Reflection is the ability of a program to
self-analyze and eventually to modify its internal structure
at run-time. The structural reflection allows to reify the pro-
gram code and all abstract data types reachable through this
program whereas the behavioral reflection allows its self-
organization. The proof-as-program paradigm has been in-
vestigated by the Software Engineering community in order
to offer programs in which a sound implementation of spec-
ifications is assumed. These programs are extracted from
proofs with the Curry-Howard isomorphism as underlying
mechanics.

With an ontological model of context types expressed as
modules, the reification is possible both during the design

Figure 2: The design and run-time steps

and at run-time (see fig. 2). The selected formalism to rep-
resent contexts is used at runtime to check the type of a given
situation. This situation describes a set of objects, more pre-
cisely entities (fluents) whose type, properties, as well as
dependencies are the proof of one or more CRSs (see the
code excerpt below).

...
(defun get-type-token (label)

(get-type-set label))
(defun get-type-set-type (label)

(get-set-type (label)))
(defun get-validity-proposition (proposition-list)

(eval proposition-list))
(defun equal-type (label1 label2)

(equal (get-type label1) (get-type label2)))
(defun get-assertion (indice drt-name)

(gethash indice (get drt-name ’record)))

(defun -> (record-token drt)
(let ((i(get-indice-record record-token))

(ii 1)
(bValue T))

(while (< ii i)
(and bValue (if (get-set (get-element-token-at

ii record-token))
(equal-type (get-element-token-at ii record-token)

(get-element-drt-at ii drt))
(derivation-proposition (get (get-element-drt-at ii drt)

’proposition) record-token)))
(+ ii 1))

(bvalue)
))

Conclusion
Dependent types offer a strong support for the large-scale
engineering of systems. CRS are able to pack up data struc-
tures, operations over them, and also proofs of the properties

452

of those operations. The increasing power of systems within
small-sized components makes this approach attractive for
future applications (for instance, it has been shown that cur-
rent mobile phones have enough power to host a semantic
web engine). Softweaver also allows automatic generation
of the context model at run-time and incorporation of partial
validation in the logic. Moreover, the type-based approach
has an immediate computational impact.

Some limitations occur with the specification of types
which are static. However, in distributed environments, new
types can be acquired from other components. The KB (Re-
searchCyc) is impracticable in the case of hard-constrained
applications such as hard real-time systems. There is (actu-
ally) no distributed version of the system.

Future works will extend the Softweaver tool for dis-
tributed environment with a multi-agent architecture, and
improve the whole model including goals and actions to
cope with web services design. Finally, we plan to provide
a NLP-based interface with the user.

References
Anind K., G. D. A. 2000. Towards a better understanding
of context and context-awareness. In Procs. of the CHI
2000 Workshop on The What, Who, Where, When, and How
of Context-Awareness.

Betarte, G. 2000. Type checking dependent (record) types
and subtyping. Journal of Functional and Logic Program-
ming 10(2):137–166.

Boldini, P. 2000. Formalizing context in intuitionistic type
theory. Fundamenta Informaticae 42(2):1–23.

Bove, A., and Capretta, V. 2001. Nested general recursion
and partiality in type theory. In Boulton, R., and Jackson,
P., eds., Procs. of the 14th Int. Conf. on Theorem Proving
in Higher Order Logics, number 2152 in LNCS, 121–135.
Springer.

Buvac, S.; Buvac, V.; and Mason, I. A. 1995. Metamathe-
matics of contexts. Fundamentae Informaticae 23(3):412–
419.

Buvac, S. 1996. Quantificational logic of context. In Procs.
of the 13th National Conference on Artificial Intelligence,
volume 1, 600–606.

Chen, H.; Finin, T.; and Joshi, A. 2003. Using owl in
a pervasive computing broker. In Procs. of Workshop on
Ontologies in Open Agent Systems (AAMAS’03).

Coquand, C., and Coquand, T. 1999. Structured type
theory. In Workshop on Logical Frameworks and Meta-
languages.

Costa, P. D.; Almeida, J. P. A.; Pires, L. F.; Guizzardi, G.;
and van Sinderen, M. 2006. Towards conceptual foun-
dations for context-aware applications. In Procs. of the
AAAI’06 Workshop on Modeling and Retrieval of Context,
54–58. AAAI Press.

Dapoigny, R., and Barlatier, P. 2007. Towards a context
theory for context-aware systems. In Procs. of the 2nd
IJCAI Workshop on Artificial Intelligence Techniques for
Ambient Intelligence.

Dourish, P. 2004. What we talk about when we talk about
context. Personal and Ubiquitous Computing 8(1):19–30.
Girard., J.-Y. 1989. Proofs and Types. Cambridge Univer-
sity Press.
Giunchiglia, F. 1992. Contextual reasoning. Technical
Report 9211-20, Istituto per la Ricerca Scientifica e Tech-
nologica.
John Barwise, J. S. 1997. Information Flow. The logic
of Distributed Systems. Distributed Systems. Cambridge
Tracts in Theoretical Computer Science 44.
Kent, R. E. 2004. The information flow framework: A
descriptive category metatheory. In Procs. of the Interna-
tional Category Theory Conference (CT04).
Kopylov, A. 2003. Dependent intersection: A new way of
defining records in type theory. In Procs. of the 18th An.
IEEE Symposium on Logic in Computer Science, 86–95.
Lenat, D., and Guha, R. V. 1990. Building Large
Knowledge-Based Systems: Represention and Inference in
the Cyc Project. Addison-Wesley, Readinf, MA.
Luo, Z. 1999. Coercive subtyping. Journal of Logic and
Computation 9(1):105–130.
Martin-Löf, P. 1982. Constructive mathematics and com-
puter programming. Logic, Methodology and Philosophy
of Sciences 6:153–175.
McCarthy, J. 1993. Notes on formalizing context. In Procs.
of the 13th Int. Joint Conf. on Art. Intelligence, 555–560.
Mike Uschold, M. G. 1996. Ontologies: Principles, meth-
ods and applications. The Knowledge Engineering Review
11(2):93–155.
Montague, R. 1970. Pragmatics and intensional logic.
Synthèse 22:68–94.
Paulson, L. C. 1989. The foundation of a generic theorem
prover. Journal of Automated Reasoning 5(3):363–397.
Ranta, A. 2004. Grammatical framework: A type-
theoretical grammar formalism. Journal of Functional Pro-
gramming 14(2):145–189.
Strang, T., and Linnhoff-Popien, C. 2004. A context mod-
eling survey. In Sixth International Conference on Ubiqui-
tous Computing (UbiComp2004), 34–41.
Thomason, R. H. 1998. Representing and reasoning with
context. In Procs. of the International Conference on Artifi-
cial Intelligence and Symbolic Computation, number 1476
in LNCS, 29–41.
Thomason, R. H. 1999. Type theoretic foundations for
context, part 1: Contexts as complex type-theoretic objects.
In CONTEXT, number 1688 in LNCS, 351–360. Springer.
Villadsen, J. 2004. Multi-dimensional type theory: Rules,
categories and combinators for syntax and semantics. In
Int. Workshop on Constraint Solving and Language Pro-
cessing, 160–165.
Wang, X. H.; Gu, T.; Zhang, D. Q.; and Pung, H. K. 2004.
Ontology based context modeling and reasoning using owl.
In Procs. of the 2nd IEEE Conference on Pervasive Com-
puting and Communications (PerCom2004), 18–22.

453

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

