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Abstract

We describe an architecture for representing and managing
context shifts that supports dynamic data interpretation. This
architecture utilizes two layers of learning and three layers of
control for adapting and evolving new stochastic models to
accurately represent changing and evolving situations. At the
core of this architecture is a form of probabilistic logic used
to encode sets of recursive relationships defining Dynamic
Bayesian Models. This logic is extended with a syntax for
defining contextual restrictions on stochastic Horn clauses.
EM parameter learning is used to calibrate models as well
as to assess the quality of fit between the model and the
data. Model failure, detected as a poor fit between model and
data, triggers a model repair mechanism based on causally in-
formed context splitting and context merging. An implemen-
tation of this architecture for distributed weather monitoring
is currently under development.

Introduction
Understanding and characterizing context is critical for real-
time diagnostic and prognostic reasoning. Context can me-
diate the interpretation of highly complex data by activating
a specific set of inferential strategies and focal points, such
as the temporary focus on the causal role of a particular com-
ponent or subsystem state. The use of inferential strategies
and selective focus can serve to reduce the computational
size of an estimation task in a probabilistic model by miti-
gating the need to continuously link local estimation tasks to
probability updating over the entire world model.

Modeling context also demands the ability to forget less
relevant and/or older information and to shift attention to
significant aspects of the current data. Moreover, while
modeling a dramatically changing world, transforming con-
text across time can reflect deep changes in the complex in-
ternal structure of the world model. Our probabilistic model-
ing environment supports these and other aspects of context
revision.

Many current probabilistic modeling systems, especially
those that rest on a knowledge-based model construction ap-
proach (Wellman, Breese, & Goldman 1992), map an entire
knowledge base into an often complex graphical model. As
the size of the resulting network grows large, it becomes
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time consuming and cumbersome to manipulate, and the
inference algorithm can take an exponentially longer time
to finish probability updating. Thus, a primary reason for
representing contexts dynamically is to reduce the complex-
ity of the constructed model and, consequently, to stream-
line the inference process. Representing an evolving con-
text requires omitting information that is no longer relevant
to the current task from a knowledge base, and at the same
time constructing and maintaining the graphical model of
the context.

A final reason for creating dynamic contexts in proba-
bilistic modeling systems is the ability to combine multi-
ple snapshot models – those models that represent station-
ary or smoothly evolving stochastic processes. We can think
of a single context as a snapshot model; when the con-
text evolves, the modeling system integrates aspects of other
snapshot views of the domain. This can be very useful for
representing non-stationary processes with abrupt changes.
Moreover, our reasoning engine includes failure detection
and recovery mechanisms based on causal representations
(Pearl 2000). By employing these meta-structures, we can
support the explicit characterization and manipulation of
context to perform diagnostic and prognostic analysis of
complex distributed environments.

In the next section we describe with further detail our dy-
namic system in which the notion of context plays a ma-
jor role. Then, after briefly summarizing research related
to our approach, we focus on the role of context for reor-
ganizing a current model. We show how context can be
used to achieve non-stationary probabilistic modeling with
the introduction of contextual mechanisms, such as context
splitting and context merging. We then present the details of
our failure-driven dynamic context system through pseudo-
code, describe the current developmental state of the system,
and conclude.

Dynamical Systems Driven by Failure and
Recovery Mechanisms

Probabilistic modeling systems that dynamically represent
frequently changing data are very important for carrying out
complex tasks. Complex modeling systems that can employ
available domain knowledge to increase computational effi-
ciency are of the greatest interest. With the increasing use
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of remote sensing technology continuously and in parallel
collecting large sets of data, it becomes more and more nec-
essary to develop the methodology for processing noisy data
in a timely manner and for incorporating recovered infor-
mation into global knowledge about a domain. Since mod-
ern sensing systems often employ very large networks, the
standard approach of collecting and processing all data at a
central location is often not efficient. It sometimes becomes
necessary to shift aspects of the computation to the sensors
where the data are collected. This introduces additional con-
straints on the running time and memory of the modeling
system.

The most suitable systems in these cases, we believe,
are those that are able to evolve to handle rapidly chang-
ing pieces of information. The idea of a system’s evolution
is also supported by recent psychological research (Granott,
Fischer, & Parziale 2002; Gopnik et al. 2004) that offers an
analysis of the way humans learn. This research suggests
that human learning behavior can be represented by our cur-
rent generation of probabilistic graphical models.

There is a limitation, however, that makes current prob-
abilistic modeling approaches unable to support this evolu-
tion: most of these approaches are static, namely, they as-
sume that modeling is done only once and that the entire
dataset is available ahead of time. In this paper we intro-
duce a failure-driven probabilistic modeling approach that
incorporates ideas from developmental learning, including
assimilation and accommodation (Piaget 1983), to model
data from dynamic environments.

During learning by assimilation, the system updates the
parameters of the existing network, which in psychology is
similar to an individual incorporating novel events and ob-
jects into an existing way of thinking. During learning by ac-
commodation, the system uses a contextualized repair mech-
anism to reorganize the model to accommodate new data. In
psychology this is similar to an individual discovering new
aspects of an environment that do not fit into his/her exist-
ing mental structures and, consequently, reorganizing these
structures to incorporate this new information. Our compu-
tational environment extends our earlier first-order, stochas-
tic, and Turing complete ”Loopy Logic” language (Pless
2003).

Review of Related Research
There are currently many different probabilistic modeling
systems. Ngo and Haddawy (Haddawy 1994; Ngo & Had-
dawy 1997; Ngo et al. 1997) are the first to produce dynamic
systems by joining graphical probabilistic models (Bayesian
networks) using the first-order predicate calculus. Friedman
et al. (Friedman et al. 1999) present probabilistic relational
models enabling the specification of a probability model on
classes of objects rather than on simple attributes.

Kersting and DeRaedt (Kersting & DeRaedt 2000) pro-
pose another approach based on knowledge-based model
construction that generates Bayesian networks specific for
given queries, using a set of first-order rules with uncer-
tainty parameters. Richardson and Domingos (Richardson
& Domingos 2006) propose a probabilistic system based on-
general first-order logic, sentences of which are converted

into a conjunctive normal form, as opposed to restricted sub-
sets of the general logic. They are the first researchers who
developed a complete mapping from the first-order predicate
calculus with function symbols to probability distributions.

Among all of the logic-based probabilistic modeling ap-
proaches, (Ngo & Haddawy 1997) is the only research in the
field of stochastic logic modeling that explicitly uses context
information about the domain of interest to cut down the size
of the knowledge base needed to answer a query.

Pearl (Pearl 2000) and Halpern (Halpern & Pearl 2001)
emphasize the importance of a causal model when search-
ing for a good explanation of events under consideration.
They argue that the explanation must acknowledge the ac-
tual cause of events. For example, if lightning strikes a tree
and starts a forest fire, then it is reasonable to say that the
lightning is the cause of the fire. But what is the role of
the amount of oxygen in the air and dryness of the wood?
It seems that there would not be a fire, if the wood were
wet and the air was missing oxygen. In order to define the
actual cause in such situations, Halpern and Pearl (Halpern
& Pearl 2001) propose the language of structural equations.
In this paper we use causal structures for context specifica-
tion, since intuitively, a current probabilistic model can be
thought of as an explanation of events.

The research work presented in this paper is partially mo-
tivated by advances in educational and developmental psy-
chology. Gopnik et al. (Gopnik et al. 2004) investigate the
importance of causal representation and several related types
of learning mechanisms in the cognitive development of
children. The authors argue that knowing about causal struc-
ture permits humans to make wide-ranging predictions about
future events. Importantly, knowing about causal structure
also allows humans to interfere in a dynamic world by trig-
gering new events that produce future results.

Gopnik et al. reason (Gopnik et al. 2004) that it is un-
likely that children store large amounts of data in memory
and then use some learning procedure on that data. Most
likely, they say, children use small samples of data to form
hypotheses. They then forget the data and revise their hy-
potheses as suggested by new data. Gopnik et al. note that
during such revision, children change not only the hypothe-
sized causal relations, but also variables and properties they
consider to be useful. Moreover, the authors suggest that
causal regularities learned from one context somehow con-
strain the causal regularities to be learned in other contexts,
supporting learning by analogy.

Granott et al. (Granott, Fischer, & Parziale 2002) give fur-
ther psychological perspective on the basis of human learn-
ing. The key notion of their research is bridging. Using a
term from dynamical systems, bridging is an attractor that
draws development of a system toward more advanced and
more stable levels. The bridging mechanism is carried out
by partially defined shells that are scaffolds directing the de-
velopment of new knowledge by providing a perspective for
processing new experiences.

Granott et al. argue that bridging is a transition mecha-
nism that people use while learning. They claim that differ-
ent types of bridging are created by using the shells of more
advanced knowledge, while leaving out the shell’s particular
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content. They also state that bridging is not the same as hy-
pothesizing, since bridging operates with unknown, not yet
realized objects. Hence, hypotheses are the results of bridg-
ing. In other words, bridging is a process of drafting a viable
path towards an unknown goal.

Non-stationary Stochastic Modeling Using
Context

Most of the probabilistic modeling research cited previously
tends to make minimal assumptions about the data, hence
producing general representations. One of the major short-
comings of these approaches is that they describe stationary
probability distributions, that is, these models assume con-
stant statistical regularities across the data. Over a large set
of data the stationarity assumption produces a good approxi-
mation of correct probability density. However, models with
this assumption do not always reflect variations across con-
texts.

Researchers (Lee, Lewicki, & Sejnowski 2000) have also
attempted to use mixtures of models to employ local data
representations; however later studies showed that such
models do not perform well when the structure of statistical
regularities of the data is significantly more complex. Other
methods (Sutton & Barto 1998; Everson & Roberts 1999;
Pham & Cardoso 2001), that are more successful in rep-
resenting non-stationary stochastic processes, assume that
data statistics vary smoothly from sample to sample. This
assumption frequently does not hold: many complex mod-
eling tasks involve data with steep changes that cannot be
represented by slowly evolving processes. In all of this re-
search there is no attempt to characterize explicitly the no-
tion of context.

In this paper we use an explicit context to switch between
local representations, that is, between probabilistic models
that represent locally stationary processes. We illustrate this
statement with an example.

Context splitting
Suppose there is a burglar alarm installed with remote com-
munication guarding someone’s residence. Suddenly the
owner receives a message that the alarm has been triggered.
We would like to compute the probability that the owner’s
home has been burglarized. In this example let us assume
that the system was produced and sold exclusively in Albu-
querque. Given that the alarm system was used by customers
in Albuquerque, the local police department recorded the
data when the alarm went off and when the residence with
the installed alarm was actually burglarized.

Using a declarative language representation (Pless 2003),
we add the following sentence to the knowledge base (KB):

alarm(x)|burglary(x) = L.

This sentence shows that the event that the alarm goes off is
conditionally dependent on the event that the residence was
burglarized, where the conditional probability distribution is
unknown (L). In our system the rules of the KB are mapped
into a Markov network and then, after inferencing, the KB
is updated with the following facts:

alarm(x)|burglary(x) = [.9, .1, .001, .999].

This indicates that the alarm goes off in 90% of the cases
involving a burglary, and if the alarm does not go off, 99%
of the time there was no burglary. It is important to note that
this information is learned from the data from Albuquerque:
at this time we do not realize that the particular location of
the alarm might be relevant. As far as we are concerned, the
KB represents the whole world.

Now let us extend the example. Assume the company
starts selling its alarm system in Los Angeles, and the po-
lice database expands with new data tuples obtained from
LA. Suppose also that the distribution of data from LA is
very different from that of Albuquerque, because there are
many more false positives in the Los Angeles area. Thus,
the graphical model created with Albuquerque data does not
fit the data from LA.

Consequently, we need to reorganize the model in order to
account for the new data that do not fit the existing structure
of the model. In this example we see that by splitting the rule
on cases depending on location gives a better predictor.1

We can distinguish contexts corresponding to Albu-
querque and Los Angeles, and as a result the original rule
is split into these two contexts. The rule for Albuquerque
stays the same as the original one, but the rule for LA is an
unknown distribution, which can be learned using parameter
estimation as was shown above. As the result, the structure
of the KB is changed and its distributions are updated:

alarm|burglary = [.9, .1, .001, .999] ← Albuquerque
alarm|burglary = [.9, .1, .1, .9] ← LosAngeles.

For these rules we have used the notation of Haddawy (Had-
dawy 1994) that represents a context as a predicate after the
symbol ←. The context distinguishes two cases, each of
which corresponds to a separate Markov network.

Since splitting on the location parameter was successful
when the company expanded to LA, we can do the same
again when the alarm company goes to Moscow. The new
data from Moscow is used separately for this new location
distribution. This approach is inspired in developmental
learning: an individual learns a strategy that works and then
uses it, until it stops working, in which case the individual
will have to then learn a new strategy. The technique de-
scribed here we call context splitting.

Context merging
We expand our burglar alarm example even further and as-
sume that eventually the company grows very large and has
a lot of different retail locations. Consequently, the corre-
sponding modeling system contains the KB with contexts
for each location. So let us assume that San Diego, Los An-
geles, and San Francisco are among other locations of the
company. We would like to simplify the KB by generalizing
it. Generalization may be accomplished by merging rules
with contexts.

1There are many ways to determine the most appropriate at-
tributes of the database to use for context splitting. A simple ap-
proach is to iterate across the attributes of the table and find which
attribute partitions the distribution such that we get the maximum
information gain (Luger 2005).
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Suppose that it can be determined that the distributions
corresponding to San Diego, LA, and San Francisco have
similar properties. Consequently, these three rules can be
generalized into one with a context California. If there is
another location, Tokyo for instance, we might detect that
the distributions for California and Tokyo are also very sim-
ilar. The corresponding rules can be generalized into one
with a context called foo or with some higher level under-
standing: Earthquake-Zone. The technique described here
we call context merging.

Intuitively, context merging can be supported by a form
of causal reasoning. It might be observed in the KB that in
San Diego, LA, Tokyo, and San Francisco the frequency of
an actual burglary being associated with a triggered alarm is
lower, hence, it is possible to reason that there must be an-
other cause for the alarm to go off. Consequently, the new
cause simply gets a new name, say foo. Later, if needed, a
user can provide a better name and the explanation for this
phenomenon. Note that this is the way to learn latent vari-
ables: the systems suggest correlations, that is, that there is a
latent relationship (a possible meaning for the hidden param-
eter), and then a human comes and identifies the relationship
(being in an earthquake zone, in our example). We discuss
the connection between the notion of context and causality
in a later section.

Flexible Modeling Using Context

In this paper a context mechanism is seen as a tool that in-
troduces more flexibility to the modeling process. Context
can be used to granulate the overall representation of a prob-
lem into a set of finer modeling tasks, such that depending
on the current task, the size of a resulting model is much
smaller than that of a general model that tries to incorpo-
rate all the knowledge. Hence, the inference on contextual-
ized models is faster, because they are more lightweight, i.e.,
they contain less information that proves to be irrelevant to
the current task.

Besides being able to efficiently manipulate with context
(as shown in the previous section), we have to address an-
other important issue of how to construct a relatively simple
model containing only relevant information. Since the sys-
tem proposed in this paper uses a knowledge-based model
construction technique, one solution is to use context to filter
which rules of the KB are relevant in the current situation.

A similar approach to ours was proposed by (Ngo & Had-
dawy 1997). They used simple predicates to identify the rel-
evant subset of a KB, thus producing only a rough approx-
imation of the relevant knowledge. Note that we are will-
ing to spend more computational resources on constructing
a tight relevant graphical model corresponding to a current
task, as long as the consequent reasoning across the con-
structed network is efficient. For instance, in the probabilis-
tic modeling system of an airplane, it is reasonable to invest
several seconds to reorganize a current model when a plane
flies into a turbulence zone, if the inferencing on the result-
ing model will only take milliseconds.

Importance of Context Definition
As described in the previous sections, in order to success-
fully operate with context (perform context splitting and
merging) and, as a result, obtain smaller and more relevant
models, a clear definition of context must be provided. In the
burglary alarm example above, the system splits on context
when new data does not fit in a current model. We can see
this as if a so-far-stationary underlying stochastic process
presents non-stationary behavior. We identify this situation
via a failure of the system to incorporate new data into its
current model.

Failure is syntactically straight forward to calculate, for
example, by monitoring the changes of a model’s distribu-
tions across time. It is also possible to set triggers that either
inform the model’s observers, or better, ask the model to re-
calibrate its current context as it processes newly arriving
data. Semantically defined calls for model recalibration are
another matter altogether, perhaps left to the a priori con-
cerns of the human user or results from previous modeling
activity.

Motivated by research in educational psychology (Gra-
nott, Fischer, & Parziale 2002; Gopnik et al. 2004), our
context-based model tries to adapt to abrupt changes it en-
counters by reorganizing its model. In a failure situation,
indicated by a significant shift in the internal structure of the
data, the model’s new structure is captured through the def-
inition of a new context. Intuitively, this is achieved using
causal meta-structures across the components of the model.

Pearl and Halpern (Pearl 2000; Halpern & Pearl 2001)
propose so-called structural equations to describe causal re-
lations. Following their lead, we employ structural equa-
tions in the definition of context. An additional benefit of
defining context using causality enables context merging to
be done using causal reasoning. Recall, in the burglary
alarm example, the situation when we want to merge the
models corresponding to San Diego, Los Angeles, and San
Francisco. It is possible to reason that there must be another
cause for the alarm to go off in these three cities, because
we observe that the frequency of a burglary being associated
with a triggered alarm is lower. As a result, we identify the
new unknown cause as foo, and later as Earthquake-Zone.

Our Approach: The Context-Oriented
Stochastic System

The contextual mechanism discussed earlier is incorporated
in our failure driven probabilistic modeling system as a
top layer that controls knowledge-based model construction
(KBMC). As can be seen in figure 1, the architecture of the
system looks like two concentric loops. The inner loop rep-
resents the execution sequence in the usual case of stationary
data: a knowledge base (KB) is used to construct a network
using a KBMC algorithm. As new data are obtained, we ad-
just the parameters of the network to incorporate these new
data with parameter fitting algorithms such as expectation
maximization (EM). Note that we can successfully update
the network (and, consequently, the KB) if the data do not
significantly deviate from some stable distribution.

When the new data change significantly and we are not
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successful in updating the network, the system’s execution
shifts to the outer loop. The contextual mechanism then
determines the causal structure of the new data, which in
turn constrains the choice of rules from the KB used by the
KBMC algorithm. Note that the world and the user do not
directly control the KB, but rather influence it via the current
network.

Figure 1: A schematic illustration of the architecture of the
failure-driven dynamic probabilistic modeling system that
uses two levels of learning (two loops) and three layers of
control.

A more formal description of our prototype system is re-
flected in the following pseudo-code:

1 KB=InitKB, Context=InitContext
2 (Net,Map)=_kbmc(KB,Context,Queries)
3 repeat_until(no data received)
3.1 Data=_receive()
3.2 if(_no_failure(Net,Data)) then
3.2.1 Net=_get_updated_net(Net,Data)
3.2.2 KB=_get_updated_kb(KB,Map,Net)
3.3 else
3.3.1 Context=_get_new_context(Net,Data)
3.3.2 SimilarModel=

_get_similar_model(Context,KB)
3.3.3 if(_is_null(SimilarModel)) then
3.3.3.1 (Net,Map)=

_kbmc(KB,Context,Queries)
3.3.4 else
3.3.4.1 (Net,Map)=SimilarContext
3.3.5 Net=_get_updated_net(Net,Data)
3.3.6 KB=_get_updated_kb(KB,Map,Net)

Table 1: The prototype of a context-based, failure-driven,
and event-oriented stochastic modeling system.

Step 1 of the code is the initialization. InitContext
and InitKB are supplied by a user in the beginning of the
execution. In step 2, the initial network is created. We use a
knowledge-based model construction approach represented
by the function kbmc() to build the network. The function

kbmc() takes three arguments – a knowledge base (KB), a
context as a current causal structure of the data (Context),
and queries (Queries), that are provided by the user – and
returns a tuple of a network (Net) and a one-to-one map-
ping (Map) between the network and the KB. The mapping
Map updates the KB after parameter fitting on the network,
since the updated parameters of the network can be easily
located in the KB. Note that the function kbmc() takes a
context as an argument, hence it selectively chooses the rel-
evant rules from the KB for model construction. This is one
of the major differences of the proposed system from our
earlier stochastic language, Loopy Logic (Pless 2003). The
rest of the program is described in step 3, which is a loop
that iterates each time new data (NewData) are obtained.

In step 3.1, the new data are received through the ports of
the network. Steps 3.2 and 3.3 represent the switch between
the stationary and non-stationary execution scenarios of the
system. The predicate no failure() checks whether
the current network fails to fit the new data. If the predi-
cate is true (the network adequately captures the new data),
then we perform parameter fitting (step 3.2.1) and update the
distributions of the KB (step 3.2.2). Note that in step 3.2.2
we use the correspondence (Map) between the KB and the
updated network to carry the new distributions over to the
KB.

Steps 3.3.1-6 capture the situation when the network does
not fit the new data. The system attempts to determine a
new context by identifying the new causal structure based
on the current network (Net) and the new data (NewData)
(see step 3.3.1 of the pseudo-code). After a new context is
determined, we check if there is already a model that has a
causal structure similar to the new one. If there are no sim-
ilar models, the new network is constructed, the parameters
of the network are estimated, and the resulting distributions
are transferred into the KB (steps 3.3.5 – 3.3.6).

There are several specific issues that need further clari-
fication in our pseudo-code for it to be successfully imple-
mented. First, we must rigorously define the notion of a con-
text using causal models, and then specify what it means for
a system to break down. Second, precise methods for learn-
ing causal structures from the data are also needed. Fur-
ther, we can see that the no failure() predicate also
depends on the ability to learn causal models from data. Fi-
nally, note that the algorithm implicitly assumes high ef-
ficiency of the update functions ( get updated net(),
get updated kb()), because of the high amount of

consecutive inner loops in the execution of the system.

Conclusions and Future Work
In this paper we identify two major advantages of charac-
terizing context and demonstrate these advantages in our
logic-based probabilistic modeling system. First, modeling
context allows the system to reduce the size of the result-
ing graphical model. This reduction improves the efficiency
of inferencing across the model, which is especially cru-
cial in modeling dynamically changing systems. The sec-
ond advantage of modeling context is the ability to handle
non-stationarity in the data. Intuitively, we envision a com-
plex non-stationary stochastic process that underlies data
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as a composition of simpler stationary or slowly evolving
processes. Modeling context represents the switching be-
tween the snapshot models that correspond to these simpler
stochastic processes.

Further, we propose a strong connection between causal
relationships and context. We feel that contextualized mech-
anisms that support causality can capture and simplify the
regularities underlying sets of data. Our decision to create
“causality organized contexts” is influenced and guided by
Pearl and Halpern’s investigations (Pearl 2000; Halpern &
Pearl 2001) of causal models. The inherent structuring of
causal relationships as well as their modularity and stability
make them good candidates for specifying context. Addi-
tionally, these studies suggest that a satisfactory explanation
of many events must acknowledge their causes; hence our
probabilistic graphical model identifies and utilizes causal
structure, since our model is an attempt to “explain” the
events as supported by the data.

In this paper we also describe how our design of con-
text mechanisms is inspired by recent research in develop-
mental learning. On this view, context is used to filter out
irrelevant information while reorganizing a current model;
similarly, humans ignore redundant and irrelevant informa-
tion when updating or rebuilding their internal knowledge
of situations. We consider the psychological principles of
learning through assimilation and accommodation together
with the notion of context and propose our architecture for
failure-driven and event-oriented stochastic modeling.

This paper only begins to address the deep issues related
to context specification and its application in the design and
use of stochastic models. There are a number of various re-
search directions for further investigation, for instance, to
consider the possibility of combining the original notion of
context proposed by (Ngo & Haddawy 1997) for a set of sys-
tems, with causal models that correspond to a specific sys-
tem. Additionally, we need to further develop computational
ways to implement Pearl and Halpern’s notion of causality
as well as to investigate how causal structures can be learned
from data. Although our Scheme-based prototype has been
developed for several simple models, our current focus of
research is to analyze weather data taken from multiple dis-
tributed sensors supplied by the US Air Force.
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