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Abstract

Clustering attempts to discover significant groups present in
a data set. It is an unsupervised process. It is difficult to
define when a clustering result is acceptable. Thus, several
clustering validity indices are developed to evaluate the qual-
ity of clustering algorithms results. In this paper, we pro-
pose to improve the quality of a clustering algorithm called
”CLUSTER” by using a validity index. CLUSTER is an au-
tomatic clustering technique. It is able to identify situations
where data do not have any natural clusters. However, CLUS-
TER has some drawbacks. In several cases, CLUSTER gen-
erates small and not well-separated clusters. The extension of
CLUSTER with validity indices overcomes these drawbacks.
We propose four extensions of CLUSTER with four validity
indices Dunn, DunnRNG, DB, and DB∗. These extensions
provide an adequate number of clusters. The experimental
results on real data show that these algorithms improve the
clustering quality of CLUSTER. In particular, the new clus-
tering algorithm based on DB∗ index is more effective than
other algorithms.

Introduction
Clusters operations attempt to partition a set of objects into
several subsets. The majority of clustering algorithms parti-
tion a data set into a number of clusters based on some pa-
rameters such as the desired number of clusters (MacQueen
1967), the minimum number of objects (Ester et al. 1996)
and the density threshold (Ester et al. 1996). Thus, the clus-
tering depends on some criteria assuming that the resulting
for the extracted clusters is the optimal. As a consequence,
if a clustering algorithm has not been assigned proper val-
ues, the clustering result cannot be the partitioning that best
fits the underlying data. However, determining the optimal
number of clusters and evaluating the clustering result is not
a trivial task. Therefore, several validity indices (Halkidi,
Batistakis, & Vazirjianis 2001) have been developed to eval-
uate the clustering quality. The most used indices are those
which are based on relative criteria. These indices attempt to
evaluate clustering results comparing to other results created
by different clustering algorithms or by the same algorithm
but using different parameters. In the last case, we must
apply the clustering algorithm several times with different
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parameters. In this article, we propose to use a validity in-
dex, underway and not in the end of clustering process, to
improve clustering quality of a clustering algorithm called
”CLUSTER” (Bandyopadhyay 2004). Thus, we partition
the data set and we evaluate its quality at once. CLUSTER is
a hierarchical clustering method that can automatically de-
tect the number of clusters. It consists of two steps: par-
titioning a relative neighborhood graph (RNG) and merg-
ing small clusters. CLUSTER allows to identify the situ-
ation where the data do not have any natural clusters (one
cluster). CLUSTER does not require a priori knowledge of
clusters number and often provides good results. However,
CLUSTER has some drawbacks. It can identify small clus-
ters not well-separated. We propose to remove the second
step of CLUSTER and to use a validity index as a stop con-
dition of CLUSTER algorithm in order to improve its clus-
tering quality. We develop four new clustering algorithms
using the validity indices Dunn, DunnRNG, DB and DB∗

respectively. Then, we evaluate the results and we choose
the most appropriate index. The rest of the paper is orga-
nized as follows. Section 2 presents an overview of the exist-
ing clustering methods. Section 3 introduces the clustering
validity indices. Section 4 describes CLUSTER algorithm.
Section 5 provide a description of the new algorithms ex-
tending CLUSTER. Section 6 presents experimental results.
Conclusions and future work are presented in section 7.

Related Work
Two main categories of clustering methods are distin-
guished: hierarchical methods and partitioning methods.

Partitioning Methods construct a single partition of the
data set. The principal partitioning algorithms are K-means
(MacQueen 1967), K-medoids such as PAM (Kaufman &
Rousseeuw 1990), CLARA (Kaufman & Rousseeuw 1990)
and CLARANS (Ng & Han 1994), density-based algorithms
such as DBSCAN (Ester et al. 1996) and graph-based al-
gorithms (Bandyopadhyay 2004). The K-means algorithm
(MacQueen 1967) provides K clusters by minimizing the
intra-cluster distance error criterion. Each cluster is repre-
sented by its center of gravity. The K-medoids algorithms
represent each cluster by one of his central objects. These
algorithms try to improve current clustering by exchanging
one of the medoids of the partition with one non-medoid and
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then compare the total quality of this ”new” clustering with
the total quality of the ”old” one. The density-based meth-
ods generate clusters of various forms without specifying the
number of clusters such as DBSCAN (Ester et al. 1996). It
defines an area to be a neighborhood determined by an ob-
ject. However, DBSCAN is very sensitive to the choice of
input parameters: density threshold and minimal number of
point. Also, it does not generate clusters of different densi-
ties. Graph-based clustering algorithms are an important and
interesting category of clustering methods. In general, the
similarity is expressed by a graph. The basic idea is to start
from a neighborhood graph and then to remove the edges
whose size is higher than a certain threshold. The method
introduced in (Zhang, Ramakrishan, & livny 1996) is based
on the relative neighborhood graph (Toussaint 1980) and can
detect well-separated clusters. However, it is sensitive to the
choice of an input parameter.

Hierarchical Methods construct a hierarchy of clusters
and have several advantages:
• It is less sensitive to largely differing densities of clusters.
• It identifies the natural clusters in the database.
• It is less influenced by clusters shapes
Birch (Zhang, Ramakrishan, & livny 1996) stores informa-
tion about cluster based on a hierarchical data structure (CF-
tree). This clustering algorithm groups the data in an in-
cremental and dynamic way according to their order of in-
sertion. Chameleon (Karpys, Han, & Kumar 1999) allows
the partitioning of a neighborhood graph into small clusters.
It then merges these clusters based on a similarity measure.
However, Birch (Zhang, Ramakrishan, & livny 1996) and
Chameleon (Karpys, Han, & Kumar 1999) need some input
parameters. CLUSTER (Bandyopadhyay 2004) can auto-
matically detect any number of clusters. However, it can
generate small clusters because of some minor variation in
the distances. We propose an improvement of this method
by using a validity index as a stop condition of the clustering
process.

Validity Indices
Clustering is an unsupervised process and the majority of
the clustering algorithms depend on certain assumptions in
order to define the subgroups presented in the data set. As
a consequence, in most application, the clustering result re-
quires some sort of evaluation of its validity. Several clus-
tering validity techniques and indices have been developed
(Halkidi, Batistakis, & Vazirjianis 2001). There are three
categories of validity indices. The first is based on external
criteria. This implies that the results of a clustering algo-
rithm are evaluated based on a pre-specified structure, which
is imposed on a data set and reflects our intuition about the
clustering algorithms. The second is based on internal cri-
teria. We may evaluate the results of a clustering algorithm
in terms of quantities that involve the vectors of the data
set themselves (proximity matrix). The third approach is
based on relative criteria. Its basic idea is the evaluation of
the clustering structure by comparing it to other clustering
schemes. The first two categories are based on statistical

tests and their major drawback is their high computational
cost. Therefore, we are interested in the third category of va-
lidity indices. Several indices are developed (Halkidi, Batis-
takis, & Vazirjianis 2001) such as Dunn, DB, SD, SDbw

and DB∗ (Minho & Ramakrishna 2005). However, SD and
SDbw need a very high computational cost (Halkidi, Batis-
takis, & Vazirjianis 2001). We are interested in the indices
Dunn, DunnRNG, DB and DB∗. In (Kovacs, Csaba, & At-
tila 2002), some validity indices are evaluated with several
different data sets. According to this evaluation, Dunn iden-
tifies the appropriate result. The Dunn index based on RNG
is more robust to the presence of noise than Dunn. More-
over, it is based on RNG concept as CLUSTER algorithm.
In the sequel, we present the used indices.

Dunn
It is a cluster validity index for crisp clustering proposed by
Dunn (DUNN 1973). It attempts to identify ”compact and
well-separated clusters”. The Dunn’s validity index, D, is
defined as:

Dnc = min
i=1,..,nc

{ min
j=i+1...,nc

(
d(Ci, Cj)

maxk=1...,ncdiamk
)} (1)

where nc is the number of clusters, d(Ci, Cj) =
minx∈Ci,y∈Cj d(x, y) is a function of dissimilarity between two
clustersCi andCj defined by d(Ci, Cj) = minx∈Ci,y∈Cj d(x, y).
and diamk is the diameter of a cluster defined by
diamk = maxx,y∈Ck d(x, y). Based on Dunn definition,
we conclude that large value of Dunn’s validity index represents a
good clustering. Therefore, the number of cluster that maximizes
D, represents the optimal number of clusters. Three indices, based
on Dunn index, are proposed by Pal and Biswas (Pal & Biswas
1997). They use for their definition the concepts of the minimum
spanning tree (MST), the relative neighborhood graph (RNG) and
the gabriel graph respectively. The Dunn index based on RNG is
defined by the following equation:

Dnc = min
i=1,..,nc

{ min
j=i+1,...,nc

(
d(Ci, Cj)

maxk=1,...,ncdiamRNG
)} (2)

Let eRNG
max the edge of the RNG which has the maximal weight.

diamRNG is defined by the weight of eRNG
max .

Davies-Bouldin (DB) index
DB is based on a similarity measure Rij between the clusters Ci

and Cj . Rij uses a measure of dispersion of a cluster Ci and the
dissimilarity measure dij . It must satisfy the following conditions:
• Rij ≥ 0.
• Rij = Rji.
• If Si = 0 and Sj = 0 then Rij = 0.
• If Sj > Sk and dij = dik then Rij > Rik.
• If Sj = Sk and dij < dik then Rij > Rik.
Where dij defines the distance between clusters Ci and Cj .
Usually, it is calculated as the distance between the centers of two
clusters. Given the centroid ci of the cluster Ci, Si is a scatter
distance. It is defined by:

Si =
1

|Ci|
∑
x∈Ci

‖ x− ci ‖ . (3)

Rij is defined by:

Rij =
Si + Sj

dij
(4)
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DB =
1

nc

nc∑
i=1

Ri. (5)

Ri = max
j=1..nc,i6=j

(Rij). (6)

DB represents the average similarity between each cluster Ci and
its most similar one. Since it is desirable to minimize the similarity
between clusters, we seek the clustering that minimizes DB.

DB* index
DB∗ (Minho & Ramakrishna 2005) index is an improvement of
the DB index. DB is the average of the maximum of Rij of each
cluster. Rij has the maximum in one of the following conditions:
• When dij dominates.
• When (Si + Sj) dominates.
• By combination of dij and (Si+ Sj).
”Dominate” means that it is a decisive factor for determining
max(Rij). In the first case, dij has a relatively small value com-
pared with (Si + Sj) and is usually min(dij). This represents a
situation where two clusters are located very close to each other
and they need to be merged. In the second case, (Si + Sj) has rel-
atively very large value usually when it is equal to max(Si + Sj).
This is a situation of unnecessary merging. In the third case, Rij

has the maximum value when neithermin(dij) normax(Si +Sj)
occurs. It is some combination of dij and (Si + Sj). Thus, DB
can effectively have the minimum value when dij dominates at
nc > ncoptimal and (Si + Sj) dominates at nc > ncoptimal.
From the assumption, that in an ideal situation 1/min{dij} and
max(Si + Sj) have relatively large value when nc > ncoptimal

and nc < ncoptimal. Hence, DB can be redefined as DB*:

DB∗(nc) =
1

nc

nc∑
i=1

(
maxk=1,...,nc,k 6=i{Si + Sk}

minl=1,...,nc,l6=i{dil}
). (7)

Cluster Method
CLUSTER is a hierarchical clustering method based on a partition-
ing of a relative neighborhood graph. It detects automatically the
number of clusters. It can also generate clusters of various densi-
ties. CLUSTER identifies the situation where it is useless to apply
clustering (unique cluster). To present CLUSTER, it is necessary
to introduce the following concepts:

Distance Measure: The distance between two elements of the
DB is expressed by the Euclidean distance. In the case when data
is represented in d dimensions, the distance between two objects
x = {x1, x2, x3, ..., xd} and y = {y1, y2, y3, ..., yd} is defined
by:

d(x, y) =

√√√√ d∑
i=1

(xi − yi)2. (8)

Relative Neighborhood Graph: Let X = {x1, x2, ..., xn}
be a set of points. Two points xi and xj ofX are relative neighbors
(Toussaint 1980) if the following condition is satisfied:
d(xi, xj) ≤ max[d(xi, xk), d(xj , xk)],∀xk ∈ X, k 6= i, j. (9)

Intuitively, this means that two points are relative neighbors if they
are at least as close to each other as they are to any other point.
The relative neighborhood graph (RNG) (Toussaint 1980) is con-
structed by joining via an edge the points that are relative neigh-
bors. The weight of an edge between xi and xj represents the
distance d(xi, xj).

Description of CLUSTER
CLUSTER algorithm consists of two steps: partitioning of the
RNG and merging small clusters. In the first step, CLUSTER con-
structs an initial RNG and then tries to divide it into several sub-
graphs based on a threshold which is dynamically computed. This
process is applied iteratively for each obtained subgraph until a stop
criterion is reached. In the second step, CLUSTER merges small
clusters and removes the noise clusters. These steps are detailed
below.

Step 1: Partitioning of the RNG. In the following, the term
”variation” means the difference between two distances. The ini-
tial or the intermediate RNG, noted G, is partitioned into several
subgraphs as follows:

1. Sort the distances (weights of the edges) in ascending order.

2. Compute the variations between each two successive distances
and sort these variations.

3. Compute the intermediate variation t defined by: t = (vmin+
vmax)÷2. Where vmin is the minimal variation and vmax is
the maximum variation.

4. Determine the value of the threshold, noted th, which allows
partitioning the graph. This threshold is the distance di satisfy-
ing the following conditions:

(a) di+1 − di ≥ t
(b) di ≥ 2×Min

Where (di+1−di) is the difference between two successive dis-
tances of the ordered list of distances and Min is the minimal
distance.

5. If the threshold is found we remove from G all edges whose
weights are strictly greater than th. Hence, we construct a set of
subgraphs.

6. The previous operations can be repeated for each constructed
subgraph.

The above step terminates when at least one of the following con-
ditions is satisfied:

1. Before computing the variations between distances, we verify
the following condition: Max < 2×Min. Where Min is the
minimal distance and Max is the maximal distance. This con-
dition means that the inter-cluster relative neighbors are close to
each other.

2. The threshold is not found: th ≤ 2×Min.

3. | Component |>
√
| G | Where | Component | is the num-

ber of the obtained subgraphs and | G | is the size of G (number
of nodes). This rule of the thumb states that the maximum num-
ber of clusters that may be present is approximately

√
| G |.

Step 2: Merging of Small Clusters. In CLUSTER algo-
rithm, a small cluster is defined as a cluster whose size is lower
than 5% of the DB size. This cluster is merged with the nearest
cluster. However, if the threshold at which the small cluster got
partitioned out is larger than λ ×Max, this cluster is considered
as noise and it is removed from DB. Max is the maximum value
of the nearest cluster. The value kept for λ in CLUSTER is 3.

Improvement of CLUSTER Quality
We propose to remove the second step of CLUSTER algorithm and
to include a new stop condition in the first step based on a validity
index. This condition overcomes the CLUSTER drawbacks and
evaluates the clustering quality underway and not in the end of the
algorithm
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The drawbacks of CLUSTER
The first step may generate small clusters because of some minor
variation in the distances (Bandyopadhyay 2004). The merging
of small clusters resolves this problem partially. We distinguish
mainly the two following drawbacks:
• Clusters which must be naturally merged are not merged. We

identify these clusters by ”missing fusion”.
• Clusters which are not noise are considered as noise clusters .

These clusters are identified by ”not real noise”.
These drawbacks are explained in the following:
1. Missing fusion: in CLUSTER algorithm, a cluster is considered

small when its size is smaller than 5% of the size of the DB.
However, we can obtain, as consequence of the first step, a
cluster whose size is greater than 5% of the DB size and it
should be merged with others neighbors clusters.
Example 1
We consider the following two clusters Ci and Cj among the
10 generated by applying CLUSTER to the ”Books” DB.
Ci = (28.95, 28.95, 29, 29, 29, 29.49, 29.67, 29.67, 29.67,
29.69, 29.69, 29.69, 29.69, 29.69, 29.69, 29.69, 29.7, 29.7,
29.95, 29.95, 29.95, 29.95, 30).
Cj = (30.64, 30.95, 30.95, 30.95, 30.99, 30.99, 31.47, 31.5,
31.95, 31.95, 31.97, 31.99, 32.43, 32.52, 32.95, 32.97, 32.99,
32.99, 32.99, 32.99, 32.9932.99, 32.99, 32.99, 32.99, 32.99,
32.99, 32.99, 32.99, 32.99, 33.08, 33.5, 33.84, 33.95, 33.95,
33.99, 34.14, 34.19, 34.19, 34.5, 34.62, 34.62, 34.62, 34.76
34.95, 34.95, 34.95, 35, 35, 35, 35, 36, 36.06).

According to this database, these two clusters must be merged.
However, they are not merged because they are not considered
as small clusters. In fact, their sizes are respectively 23 and 52
which is greater than 5% of the DB size (400).

2. Not real noise: if a small cluster is not a cluster noise, CLUS-
TER merges it with its nearest neighbor. However, if the nearest
cluster includes only one element, the value ofMax is 0. In this
case, the threshold is always greater than 3 ×max. Thus, this
small cluster is always considered as a cluster noise and will be
removed.
Example 2
Consider again the ”Books” DB. As consequence of step 1, we
obtain, among the small clusters, the following ones:
Ci = (22.65).
Cj = (22.79).
These two clusters are not merged because the value of Max is
equal to 0. Ci and Cj are considered as clusters noise and they
are removed. However, in reality, these clusters are not noise.
This generates an erroneous distribution of clusters.

Optimisation of CLUSTER Quality
We propose an extension of CLUSTER based on a validity index.
The idea is to include in CLUSTER a stopping condition, based on
this index. We test the extension of CLUSTER with different valid-
ity indices: Dunn, DunnRNG, DB and DB∗. Then, we evaluate
these extensions. This proposal attempts to avoid the generation
of small clusters and improve the quality of CLUSTER algorithm.
CLUSTER is extended as follows:
1. For each iteration i, we compute the value of the validity index,

noted indi, according to the overall number of clusters obtained
until this iteration.

2. We compare indi with the index value of previous step indi−1.
If indi decreases(case of Dunn or DunnRNG) or increase(case
of DB or DB∗), the algorithm terminates with the clustering re-
sult of indi−1. If indi does not decrease (or increase)and none

of the other stop criteria is satisfied, the algorithm continues nor-
mally.

Experiments have showed that the new algorithms have the follow-
ing advantages over classic CLUSTER algorithm:
• Avoid generating small clusters.

• Obtain a satisfying number of clusters.

• Increase the effectiveness of CLUSTER by avoiding several
merging of small clusters.

• Improve the quality of clustering by identifying compact and
well-separated clusters.

• Evaluate the clustering quality underway the clustering process.

Experiments
This section presents the experiments that have been performed. A
concise description of the experimentation platform and data sets
is also given.

Experimental Set-Up: we have used the following DB:
1. The ”Books” DB includes over 400 prices of books. This base

is collected from ”www.amazon.com”. It contains two clusters.

2. The ”Censusage” DB (Blake & Merz 2004) includes 606 ob-
jects. We are interested in the value of TSH which allows to
identify two clusters.

3. The ”Pima diabets” DB (Blake & Merz 2004) includes 763 ob-
jects. We are interested in the values of the plasma glucose con-
centration a 2 hours in an oral glucose tolerance test which al-
lows to identify two clusters.

4. A selection of 1000 objects from the ”Hypothyroid” DB (Blake
& Merz 2004). We are interested in the values of the TSH which
allows to identify two clusters.

5. A selection of 5723 objects from the ”Thyroid” DB (Blake &
Merz 2004). We consider the value of the TSH which allows to
identify two clusters.

We compare the new clustering algorithms, (CLUSTER with Dunn
(CLST-Dunn), CLUSTER with DunnRNG (CLST-DunnRNG),
CLUSTER with DB index (CLST-DB) and CLUSTER with
DB∗ (CLST-DB∗)) with CLUSTER and an improved K-
means(deterministic K-means) (Su & Dy 2004). In order to achieve
an effective comparison of these algorithms in the same conditions
(processor, memory, data), we implement them in C++ language
with a Processor INTEL Pentium III 733 MHz and 320 MB of
RAM.

Experimental Results: the results, in Tables 1, 2 and 3 show
that the different extensions of CLUSTER give better results com-
pared to CLUSTER and deterministic K-means (Su & Dy 2004),
noted deter K-means. For example, for the DB used for experimen-
tation, the extension of CLUSTER with validity indices identifies
the optimal number of clusters. CLUSTER generates a large num-
ber of clusters compared to the real number of clusters (Rnbc). In
particular the extension of CLUSTER with DB∗ is more effective
than the other extensions in term of execution time (TE).

Conclusion
In this work, we have proposed a new clustering approach by ex-
tending CLUSTER (Bandyopadhyay 2004) based on validity in-
dices (Halkidi, Batistakis, & Vazirjianis 2001). To evaluate the
effectiveness of our approach, we performed experiments on five
”effective” DB. Our results show that the extension of CLUS-
TER with validity indices produces better result than CLUSTER
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Table 1: Clustering results1
Databases Rnbc CLUSTER Deter K-means

Nbc TE Nbc TE
Books 2 25 14 2 17

Censusage 3 1 11 2 34
Pima diabets 2 3 12 2 24

Thyroid 2 5 172 2 4665
Hypothyroid 2 7 16 2 24

Table 2: Clustering results2
Databases Rnbc CLST-Dunn CLST-DunnRNG

Nbc TE Nbc TE
Books 2 2 20 2 13
Censusage 3 3 15 3 12
Pimadiab 2 2 20 2 12
Thyroid 2 2 949 2 50
Hypoth 2 2 27 2 14

(Bandyopadhyay 2004) and deterministic K-Means. In particu-
lar, the extension of CLUSTER with the DB∗ validity index is
the best in execution time compared to extensions using Dunn,
DunnRNG and DB. The new clustering algorithm allows:
1. Automatic detection of the adequate number of clusters.
2. Improving the clustering quality of CLUSTER by generating

compact and well-separated clusters.
3. Increasing the effectiveness of CLUSTER by avoiding several

intermediate merging which improve the execution time.
4. Evaluating clustering quality underway the clustering algorithm.
In future work, we will evaluate our new algorithms using very
large DB and we will use our clustering algorithm to develop an
automatic membership function generation approach.

References
Bandyopadhyay, S. 2004. An automatic shape independent clus-
tering techniques. Pattern Recognition 37:33–45.
Blake, C., and Merz, C. 2004. Uci repository of machine learn-
ing databases. http://www.ics.uci.edu/ mlearn/mlrepository.html.
accessed 4th march 2004.
DUNN, J. 1973. A fuzzy relative of the isodata process and its use
in detecting compact well separated clusters. J.ccybern 3:32–75.
Ester, M.; Kriegel, H.; Sander, J.; and Xu, X. 1996. A density-
based algorithm for discovering clusters in large spatial databases
with noise. In Proceedings of 2nd international Conference on
Knowledge Discovery and Data Mining.
Halkidi, M.; Batistakis, Y.; and Vazirjianis, M. 2001. On clus-
tering validation techniques. Journal of Intelligent Information
Systems. 107–145.

Table 3: Clustering results3
Databases Rnbc CLST-DB CLST-DB∗

Nbc TE Nbc TE
Books 2 2 8 2 8

Censusage 3 3 9 3 9
Pima diabets 2 2 10 2 10

Thyroid 2 2 30 2 30
Hypothyroid 2 2 11 2 10

Karpys, G.; Han, E.; and Kumar, V. 1999. Chameleon: A hier-
archical clustering algorithm using dynamic modeling. In IEEE
Computer, 68–75.
Kaufman, L., and Rousseeuw, P. 1990. Finding Groups in Data:
an Introduction to Cluster Analysis. John Welley and Sons.
Kovacs, F.; Csaba, L.; and Attila, B. 2002. Cluster validity mea-
surement techniques. Pattern Recognition 30.
MacQueen, J. 1967. Some methods for classication and analysis
of multivariate observations. In Proceedings of Fifth Berkeley
Symposium on Mathematical Statistics and Probability, 281–297.
Minho, K., and Ramakrishna, R. 2005. New indices for cluster
validity assessment. Pattern Recognition Letters 26:2353–2363.
Ng, R., and Han, J. 1994. Efficient and effective clustering
method for spatial data mining. In In proc.of the 20th VLDB Con-
ference, 144–155.
Pal, N., and Biswas, J. 1997. Cluster validation using graph
theoretic concepts. Pattern Recognition 30.
Su, T., and Dy, J. 2004. A deterministic method for initializing
k-means clustering. In Tools with Artificial Intelligence 2004.
Toussaint, G. 1980. The relative neighborhood graph of a finite
planar set. Pattern Recognition 12:261–268.
Zhang, T.; Ramakrishan, R.; and livny, M. 1996. Birch: Efficient
data clustering method for very large databases. SIGMOD 96
Montreal,Canada. 103–114.

483


