# Inference of Edge Replacement Graph Grammars 

Jacek P. Kukluk ${ }^{\mathbf{1}}$, Lawrence B. Holder ${ }^{2}$, and Diane J. Cook ${ }^{\mathbf{2}}$<br>${ }^{1}$ Dept. of Computer Science \& Engineering<br>University of Texas at Arlington<br>${ }^{2}$ School of Electrical Engineering and Computer Science Washington State University<br>kukluk@cse.uta.edu, holder@wsu.edu, cook@eecs.wsu.edu


#### Abstract

We describe an algorithm and experiments for inference of edge replacement graph grammars. This method generates candidate recursive graph grammar productions based on isomorphic subgraphs which overlap by two nodes. If there is no edge between the two overlapping nodes, the method generates a recursive graph grammar production with a virtual edge. We guide the search for the graph grammar using the size of a graph. We show experiments where we generate graphs from known graph grammars, use our method to infer the grammar from the generated graphs, and then measure the error between the original and inferred grammars. Experiments show that the method performs well on several types of grammars, and specifically that error decreases with increased numbers of unique labels in the graph.


## 1. Introduction

There is overlap in the recurring patterns or motifs representing the building blocks of networks in nature. Palla et al. [11] point out the existence of an overlap between parts of graphs representing social networks and proteins. They call them overlapping communities. Most knowledge discovery and data mining approaches look for independent recurring patterns, but do not consider how these patterns can connect and overlap iteratively or recursively to generate arbitrary-sized relational data. Graph grammars provide a representation for such knowledge.

In our method of graph grammar inference we search for overlap between isomorphic subgraphs of a graph. The overlap allows our method to propose recursive graphgrammar productions. The first approach was to search for overlap by a single node, which led to developing a system for inference of Node Replacement Recursive Graph Grammars [7]. In this paper we describe an approach that allows inference of Edge Replacement Recursive Graph Grammars. In the next section we will describe related work. Then, we give definition, inference algorithm and discuss inference error. We also address how different

[^0]numbers of labels used in the graph affect the inference error. Experiments with the chemical structure of G tetrad and conclusions close the paper.

## 2. Related work

Jeltsch and Kreowski [4] analyzed theoretically the inference of hyperedge replacement graph grammars introducing operations on a set of undirected, unlabeled graphs which guarantee that the inferred grammar can generate the input set of graphs. Oates, Doshi, and Huang [13] assume that the structure of a graph of a hyperedge replacement context free graph grammar is given. They are interested in inference of probabilities associated with every rule of a grammar. Jonyer, Holder, and Cook [5][6] developed an approach to infer node replacement graph grammars which describe graphs in the from of 'chains', where isomorphic copies of subgraphs are adjacent to each other in a chain by a single edge. Nevill-Manning and Witten [10] developed SEQUITUR which works on strings, but their approach is similar to ours in the sense that it infers hierarchical structure by replacing substrings by grammar rules. The new, compressed string is searched for substrings which can be described by grammar rules, and they are then compressed with the grammar and the process continues iteratively. Similarly, in our approach we replace the part of a graph described by the inferred graph grammar with a single node, and we look for grammar rules on the compressed graph and repeat this process iteratively until the graph is fully compressed.

Our system grows isomorphic subgraphs similarly as Cook and Holder's [2][3] approach to frequent subgraphs discovery with the main difference that it checks for overlap between growing subgraphs. The overlap allows us to propose recursive grammar rules. There are other systems which search for frequent subgraphs in a graph and therefore they could possibly be adopted to graph grammar inference. Kuramochi and Karypis [8] developed FSG. Yan and Han introduced gSpan [14].

## 3. Edge replacement recursive graph grammar

We define a graph as a set of nodes and edges, where each can have a label. Each edge can be directed or undirected. We infer an embedding mechanism for recursive productions which consists of four integers for every nonterminal edge. These integers are node numbers. Two nodes belong to one instance of a graph and two to the other. They describe how instance of a graph defined in the grammar production would be expanded during derivations. In every iteration of the grammar inference algorithm we are finding only one production, and it is ether non-recursive or recursive. The reader can refer to examples in Figure 1 and Figure 3 while examining the definition. In Figure 1 (a) we see an example of the grammar used for generation and in Figure 1 (b) the equivalent inferred grammar.


Sa $\longmapsto \mathbf{s}(1-2,3-4) \mid{ }_{0} d$
Figure 1. The original grammar (a) used to generate examples and the inferred grammar (b).

A labeled graph $G$ is a 6-tuple, $G=(V, E, \mu, \nu, \eta, L)$, where $V$ - is the set of nodes, $E \subseteq V \times V$ - is the set of edges, $\mu: V \rightarrow L$ - is a function assigning labels to the nodes, $v: E \rightarrow L-$ is a function assigning labels to the edges, $\eta: E \rightarrow\{0,1\}$ - is a function assigning direction property to edges ( 0 if undirected, 1 if directed).
$L$ - is a set of labels on nodes and edges.
An edge replacement recursive graph grammar is a 5-tuple $G r=\left(\sum, \Delta, \Gamma, \Omega, P\right)$, where $\Sigma-$ is an alphabet of node labels, $\Delta$ - is an alphabet of terminal node labels, $\Delta \subseteq \Sigma$, $\Gamma$ - is an alphabet of edge labels, $\Omega$-is an alphabet of terminal edge labels, $\Omega \subseteq \Sigma, P$ - is a finite set of productions of the form $(d, G, C), G$ is a graph, and there are recursive productions, where $d \in \Gamma-\Omega$, and there is at least one edge in $G$ labeled $d . C$ is an embedding mechanism with a set of connection instructions, $C \subseteq(V \times V ; V \times V)$, where $V$ is the set of nodes of $G$. A connection instruction $\left(v_{i}, v_{j} ; v_{k}, v_{l}\right) \in C$ implies that derivation can take place by replacing $v_{i}, v_{k}$ in one instance
of $G$ with $v_{j}, v_{l}$ respectively, in another instance of $G$. All the edges incident to $v_{i}$ are incident to $v_{j}$, and all the edges incident to $v_{k}$ are incident to $v_{l}$. All the edges incident to $v_{j}$ and $v_{k}$ remain unchanged. If, in derivation process after applying connection instruction $\left(v_{i}, v_{j} ; v_{k}, v_{l}\right)$, nodes $v_{i}, v_{j}$ are adjacent by an edge, we call edge $e=\left(v_{i}, v_{j}\right)$ a real edge, otherwise edge $e=\left(v_{i}, v_{j}\right)$ is used only in the specification of the grammar, and we drow it to show two nodes where the connection instructions are applied, and we call this edge a virtual edge.

## 4. The Algorithm

The algorithm operates on a data structure called a substructure. A substructure consists of a graph definition of the repetitive subgraph and its instances. We illustrate it in Figure 2. Initially, the graph definitions of substructures are single nodes, and there are as many substructure inserted into the queue $Q$ as there are different labels on nodes in the input graph. We expand the substructure in all possible ways by a single edge or by single edge and a node. We allow substructures to grow and their instances to overlap but by no more than two nodes. We evaluate substructures. The total number of substructures considered is determined by the input parameter Limit. The input parameter Beam specifies the width of a beam search, i.e., the length of Q .


Figure 2. The input graph (a), substructure graph definition (b) and four overlapping instances of repetitive subgraph (c).

If two nodes $v_{1}, v_{2}$ in G both belong to two different instances, we propose a recursive grammar rule. If $v_{1}, v_{2}$ are adjacent by an edge, it is a real edge, and we determine
its label which we use to specify the terminating production (see Figure 3). We insert recursive substructures together with non-recursive substructures into the new $Q$. Recursive substructures compete with non-recursive substructures. They are evaluated with a measure:

$$
\frac{\operatorname{size}(G)}{\operatorname{size}(S)+N T+\operatorname{size}(G \mid S)}
$$

$N T$ is the number of connection instructions. $G \mid S$ is a graph G where we compress all instances of the substructure $S$ to a single node. The size is number of nodes plus number of edges. The algorithm uses a heuristic search whose complexity is polynomial in the size of the input graph to find frequent subgraphs. Checking for overlap between instances of substructures, do not change the complexity of this algorithm.

The algorithm can learn grammars with multiple productions. When we find production (recursive or not) we compress portion of the graph described by the production. Every connected subgraph described by the production is compressed into a node. Then we perform again inference on the compressed graph. We progress with alternating inference and compression until we cannot compress the graph any more.

## 5. Experiments

### 5.1 Methodology

In our experiments we generate thirty graphs from a known grammar, and then we infer the grammar from every generated graph. We compute the average inference error over these thirty examples. The generated graphs have 40 to 60 nodes. Our generator can assign a random label to a node or an edge. We compare the original grammar and inferred grammar using the following measure of the error:
Error $=\min \left(1, \frac{\operatorname{matchCost}\left(g_{1}, g_{2}\right)+|\# C I-\# N T|}{\operatorname{size}\left(g_{1}\right)+\# N T}\right)$, where matchCost $\left(g_{1}, g_{2}\right)$ is the minimal number of operations required to transform $g_{1}$ into a graph isomorphic to $g_{2}$, or $g_{2}$ into a graph isomorphic to $g_{1}$. The operations are: insertion of an edge or node, deletion of an edge or node, or substitution of a node or edge label. \#CI is the number of inferred connection instructions, \# NT is the number of non-terminal edges in the original grammar, $\operatorname{size}\left(g_{1}\right)$ is the sum of the number of nodes and edges in the graph used in the grammar production
matchCost $\left(g_{1}, \mathrm{~g}_{2}\right)$ measures the structural difference between two graphs with an algorithm for inexact graph
match initially proposed by Bunke and Allermann [1]. For more details see also [2][3]. Our definition of an error has two aspects. First, there is the structural difference between the inferred and the original graph used in the productions. Second, there is the difference between the number of nonterminals and the number of connection instructions. If there is no error, the number of non-terminals in the original grammar is the same as the number of connection instructions in the inferred grammar. We would like our error to be a value between 0 and 1 ; therefore, we normalize the error by having in the denominator the sum of the size of the graph used in the original grammar and the number of non-terminals. We do not allow an error to be larger than 1 ; therefore, we take the minimum of 1 and our measure as a final value. The restriction that the error is not larger than 1 prohibits unnecessary influence on the average error by inferred graph structures significantly larger than the graph used in the original grammar. We now describe several experiments showing different aspects of the edge replacement graph grammar inference system.

### 5.2 Experiment 1: Virtual and real edges in productions

In Figure 3 we see the graph on the top where all nodes have the same label and on the bottom of the figure the grammar inferred from this graph. We intend to demonstrate verity of productions and the nature of edge replacement grammars our approach can handle. The input graph has four different repetitive patterns. In every pattern subgraphs overlap on two nodes. The part of the graph with overlapping squares is isolated. The rest of the graph is a connected graph. The four patterns correspond to nodes S1, S2, S3, S4 of the first production S. Our approach finds production $S$ last. Production $S$ is a non-recursive node replacement production We find production $S$ by compressing the input graph with recursive edge replacement productions found earlier. Production S1 we find first because it compresses the graph the most. This production has two non-terminal edges. Edge S1a is virtual. Edge S1b is real. We can replace both S1a and S1b nonterminal edges with the graph on the right hand side of production S1 or terminate. Connection instructions for S1a and S1b are different as is their termination. The terminating edge of S 1 b is an edge with label q . The termination of S1a is by taking no action. We mark it by two nodes without an edge. We compress to a single node the part of the input graph described by the S1 production before we repeat the inference process. We also do similar compression after finding S2, S3, and S4. The second production we find is S 2 . This production has two virtual edges as non-terminals. The production S3 has two nonterminal real edges and production S 4 has one non-terminal real edge.


Figure 3. The graph and inferred grammar from this graph.

### 5.3 Experiment 3: Inference error with different graph structures

We are interested in how inference error depends on grammar structure. We tested several structures. We show results in Figure 4. Every point in the plots in Figure 4 was an average of the inference error from thirty experiments. In every experiment we generated graphs with 40 to 60 nodes. Every label of an edge and a node of the graphs not marked in the Figure 4 and Figure 5 was assigned a label chosen from $k$ distinct labels, where $k$ is an integer from 1 to 7 in Figure 4 and from 1 to 16 in Figure 5. We see that the smallest error we achieved is for the tree structure. As we complicate the structure and increase the average degree of nodes and the ratio of the number of edges to the number of nodes, the error increases. The highest error we had with
complete graph. We show this case separately in Figure 5. We observed the average value of the inference error for a complete graph with six nodes. Then we removed from the complete graph four edges and repeated the experiment. Next, we remove from the complete graph eight edges and repeated the experiments again. As we see in Figure 5, the more edges we have in the graph and the closer the graph is to the complete graph, the higher the average error. In other words, the closer the graph is to the complete graph the more unique labels we need to decrease the error.


Figure 4. The influence on the error of different graph structures used in grammar productions.


Figure 5. The change in the error with reduced number of edges from the complete graph structure (top) and an example of the inferred grammar (bottom).

### 5.4 Experiment 4: Inference error in the presence of noise

In Figure 6 we show the results of an experiment where we generated graphs with the number of nodes from 40 to 60 . The Peterson graph (Figure 6 (a)) was the structure we used in the graph grammar. The Peterson graph has 10 nodes and 15 edges which allowed us to vary the number of nonterminal edges in the structure. We assigned distinct labels to all nodes except six and all edges except six. We generated graphs with $1,2,3,4$, and 5 non-terminals and noise value, $0.1,0.2, \ldots, 0.8$. For every value of noise and number of non-terminals we generated thirty graphs from the grammar and computed average inference error over thirty values. We distinguish two types of noise: corrupted and not corrupted. Not corrupted noise is the addition of nodes and edges to the graph structure generated from the grammar. We add the number of nodes equal to (noise/(1- noise)) *number_of_nodes and number of edges equal to (noise/(1- noise))*number_of_edges. Every new edge randomly connects two nodes of the graph. We randomly assigned the labels to added edges and nodes from labels already existing in the graph. We do not change the structure generated from the graph grammar in the notcorrupted version. However, in the corrupted version we change the structure of that generated from the grammar graph. After adding additional nodes and edges, in the way we do for non-corrupted version, we redirect randomly selected edges. The number of edges of a graph multiplied by noise gives the number of redirected edges. We randomly assign two new nodes to every selected edge.

The results in Figure 6 show that there is little influence on error from the number of non-terminals. We see an increase in the error in the not-corrupted version when the number of non-terminals reaches 5, but for number of non-terminals 14 we do not see any significant changes. Also, the error in the not-corrupted version does not increase significantly as long as the value of noise is less than about 0.5 . Corruption of the graph structure, as expected, causes greater error than non-corruption. The error increases significantly even with 0.1 noise, and is close to $100 \%$ for noise 0.3 and higher.

### 5.5 Experiment 5: Chemical structure

In Figure 7 (a) we show the chemical structure of G tetrad [9]. Versions of this structure are used in research on the HIV-1 virus [12]. We converted this structure to a graph which we use as an input to our grammar inference system. We found the grammar which represents the repetitive pattern of this chemical structure. We show the grammar in Figure 7 (b). This experiment demonstrates the potential application of our approach and also a weakness for further
study. Although the grammar production we found captures the underlying motifs of the chemical structure, it cannot regenerate the original structure which has the ring form.

We also performed experiments with biological networks, XML file structures and other chemical structures, which we will report in other publications. In general, our graphgrammar inference methods have been able to capture known recursive structure in these domains.


Figure 6. Inference error of a graph grammar with the Peterson graph structure in the presence of noise and different number of non-terminals.

## 6. Conclusions and future work

We described an algorithm for inference of edge replacement graph grammars. The performance of the algorithm depends on the number of distinct labels in the input graph. If there is only one label, the algorithm finds a two edge grammar. If we use three or more labels in the input graph, the inference error drops to zero or to a value close to zero in inference of grammars with a graph structure of a tree, cycle, Peterson graph, and tetrahedron. However, as we complicate the structure and increase the average degree of nodes and the ratio of the number of edges to number of nodes, the error increases. The highest error we had is with a complete graph. The closer the graph structure of the grammar is to a complete graph, the more unique labels we need to use in the graph to achieve the same level of average inference error. If we generate graphs from a graph grammar and then add nodes and edges to this graph, it does not influence significantly the inference error in the range of noise 0 to 0.5 . There is little influence on error from the number of non-terminal edges in the Peterson
graph grammar structure when the number of non-terminals changes from 1 to 4.

In this paper we described the approach to graph grammar inference which extends the class of learnable graph grammars. Node Replacement Recursive Graph Grammar inference was limited to the patterns where instances overlap on exactly one node. In the approach presented in this paper allowing instances to overlap on two nodes led to the definition of real and virtual non-terminal edges. With this approach we can infer the grammar generating chains of squares overlapping on one edge which was not possible with node replacement grammars. Patterns often overlap on two nodes in chemical structures, as we saw in the example of the previous section; therefore, we have a tool which can find and represent important patterns in the chemical domain.


Figure 7. The chemical structure of $\mathbf{G}$ tetrad (a) and inferred grammar structure (b).

The approach has higher error when inferring more complete graphs. The inferred grammars, as in the example of chemical structure, can represent the underlying pattern of the structure, but cannot regenerate the structure if it has the ring form. The approach requires the existence in the input graph of frequently occurring isomorphic subgraphs and their overlap by one edge to infer recursive productions. Otherwise, the approach can infer nonrecursive productions. Eventually, we will integrate
inference of non-recursive, node-replacement and edgereplacement productions into one graph-grammar inference system. All these issues represent directions for future research.

## 7. References

[1] H. Bunke,. G Allermann, "Inexact graph matching for structural pattern recognition." Pattern Recognition Letters, 1(4) 245-253. 1983
[2] D. Cook and L. Holder, "Substructure Discovery Using Minimum Description Length and Background Knowledge." Journal of Artificial Intelligence Research, Vol 1, (1994), 231-255, 1994
[3] D. Cook and L. Holder, "Graph-Based Data Mining." IEEE Intelligent Systems, 15(2), pages 32-41, 2000.
[4] E. Jeltsch, H. Kreowski, "Grammatical Inference Based on Hyperedge Replacement. Graph-Grammars." Lecture Notes in Computer Science 532, 1990: 461-474, 1990
[5] I. Jonyer, L. Holder, and D. Cook, "Concept Formation Using Graph Grammars", Proceedings of the KDD Workshop on Multi-Relational Data Mining, 2002.
[6] I. Jonyer. L. Holder, and. D. Cook, "MDL-Based ContextFree Graph Grammar Induction and Applications." International Journal of Artificial Intelligence Tools, Volume 13, No. 1, 65-79, 2004.
[7] J. Kukluk, L. Holder, and D. Cook, "Inference of Node Replacement Recursive Graph Grammars." Sixth SIAM International Conference on Data Mining, 2006
[8] M. Kuramochi and G. Karypis, "Frequent subgraph discovery." In Proceedings of IEEE 2001 International Conference on Data Mining (ICDM '01), 313-320, 2001.
[9] S. Neidle (editor), Oxford Handbook of Nucleic Acid Structure. Oxford University Press, 326, 1999
[10] G. Nevill-Manning and H. Witten, "Identifying hierarchical structure in sequences: A linear-time algorithm." Journal of Artificial Intelligence Research, Vol 7, (1997, 1997),67-82
[11] G. Palla, I. Derényi, I. Farkas and T. Vicsek, "Uncovering the overlapping community structure of complex networks in nature and society." Nature 435, 2005, 814-818
[12] A. Phan, V. Kuryavyi, J. Ma, A. Faure, M. Andreola, D. Patel, "An interlocked dimeric parallel-stranded DNA quadruplex: A potent inhibitor of HIV-1 integrase." Proc.Natl.Acad.Sci. USA , 102, 2005, 634-639
[13] T. Oates, S. Doshi, and F. Huang, "Estimating maximum likelihood parameters for stochastic context-free graph grammars." volume 2835 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 2003, 281--298
[14] X. Yan and J. Han, gSpan: "Graph-based substructure pattern mining." In IEEE International Conference on Data Mining, Maebashi City, Japan, 2000


[^0]:    Copyright © 2007, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

