
Knowledge Representation with Granular Attributive Logic for XTT-based
Expert Systems

Antoni Ligęza and Grzegorz J. Nalepa
Institute of Automatics,

AGH – University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland

ligeza@agh.edu.pl gjn@agh.edu.pl

Abstract

This paper presents an extension of classical attributive logic
using atomic values of attributes. In the proposed logic set
values are allowed and various relational symbols are used
to form atomic formulae. The proposed language provides a
concise and elegant tool for design, implementation and ver-
ification of rule-based systems.

Introduction

Attributive Logic (AL, for short) is one based on the use of
attributes for denoting some properties of objects and val-
ues of system variables in a system under consideration. In
order to define current characteristics of the system, one se-
lects some specific set of attributes and assigns them cur-
rent values. A typical atomic formula (fact) takes the form
A(o) = d, where A is an attribute, o is an object and d is the
current value of A for o. For example,

temperature(room_7) = 17

means that the current temperature in room_7 is 17 de-
grees Centigrade. More complex descriptions take usually
the form of conjunctions of such atoms and are omnipresent
in the AI literature. It is close to the use of state variables in
control engineering practice and follows the pattern of rela-
tional and object-oriented databases.

It is, however, symptomatic, that although Propositional
Logic and Predicate Logic (in the form of First-Order Pred-
icate Calculus) have well-elaborated syntax and seman-
tics, presented in details in numerous books covering logic
for knowledge engineering (Genesereth & Nilsson 1987;
Jackson 1999; Torsun 1995), logic for computer science or
artificial intelligence (Ben-Ari 2001; Liebowitz 1998), the
discussion of syntax and semantics of attribute-based logic
is omitted in such positions. It is often assumed, that at-
tributive logic is some technical language equivalent with
respect to expressive power to propositional calculus, and as
such it is not worth any more detailed discussion. However,
it seems that the real reason for the omission of the presen-
tation is that, in fact a more detailed discussion might be
not so straightforward, concise and elegant as in the case of
classical logics.

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Furthermore, for efficient knowledge specification and
management it is certainly not enough to employ atomic val-
ues only. More complex values of variables and attributes
are necessary. In (Ligęza 2002) a granular approach to al-
gebraic knowledge representation and manipulation was put
forward. The ideas of granular sets and granular relations
were defined and proposed to put in use in tabular rule-based
systems and databases. In this paper the ideas are followed
with main focus on the attributive logic approach to repre-
sent such granules and granularly specified knowledge. In
fact, granular relations of (Ligęza 2002) can be represented
with minterms (Granular Conjunctive Formulae) incorpo-
rating attributes taking set values.

This paper follows the presentation of attributive logic
(with set values) given in (Ligęza 2006). Two attribute-
based logical languages, namely Atomic Attributive Logic
(AAL) and Set Attributive Logic (SAL) are presented in some
details. In AAL the attributes can take atomic (unique) val-
ues only; in SAL the attributes can take set values, i.e. sev-
eral different values at a time. Both syntax and semantics
of AAL and SAL are presented. The paper follows the line
of extensions recently proposed in (Ligęza & Parra 2006).
Some patterns of inference rules specific for these granular
languages are given. Finally, application of attributive logic
for knowledge representation with PROLOG is presented.

An Example
A very short example introducing the ideas of granular at-
tributive logic is presented in brief. Consider on of the
rules specifying the Thermostat System (Negnevitsky 2002),
(Ligęza 2006). The rule is as follows:
Rule 11
if the day is Monday or

the day is Tuesday or
the day is Wednesday or
the day is Thursday or
the day is Friday

then today is a workday

Using granular set values for attributes the rule can be
represented in a concise and elegant way as:

Rule1: aDD ∈ sWD −→ aTD = wd,

where aDD is an attribute denoting the day, sWD is a set
denoting the five working days listed in the rule, aTD is the

530

attribute denoting today, and wd is a value denoting work-
day.1

This simple example is aimed at providing intuitions con-
cerning the idea and advantages of using granular rather then
singular values of attributes for knowledge specification. In
the further part a syntax, semantic, inference and PROLOG
representation of granular logic is outlined.

Syntax of Attributive Logic

Let there be given the following, pairwise disjoint sets of
symbols: O – a set of object symbols, A – a set of at-
tribute names, D – a set of attribute values (the domains).
It is further frequently assumed that the overall domain D
is divided into several sets (disjoint or not), such that any of
these sets defines the domain of some attribute. More pre-
cisely, a finite set of attributes is considered to be specified as
A = {A1, A2, . . . , An}. Then also D = D1∪D2∪. . .∪Dn,
where Di is the domain for attribute Ai, i = 1, 2, . . . , n.

After (Ligęza 2006) it is assumed that an attribute Ai is
a function (or partial function) of the form Ai: O → Di. A
generalized attribute Ai is a function (or partial function) of
the form Ai: O → 2Di , where 2Di is the family of all the
subsets of Di.

The generalized attributes are of limited use in some mod-
ern relational databases and object-oriented databases. A
language incorporating such values of attributes will be re-
ferred to as SAL (Set Attributive Language). If it does not
introduce ambiguity, the qualifier generalized may be omit-
ted.

Attribute symbols are used to denote properties of certain
objects. To denote the fact that a certain attribute takes a
certain value, atomic formulae are used. In case of AAL
atomic formulae are defined in the following way (Ligęza
2006).

Definition 1 (AAL) Let o ∈ O be a certain object, Ai ∈ A
be an attribute and let d ∈ Di be a certain atomic value of
the domain of Ai. Any expression of the form Ai(o) = d is
an atomic formula of AAL.

In case of SAL an extended definition is put forward; a
modified version of the initial proposal of is given below
(Ligęza & Parra 2006).

Definition 2 (SAL) Let o ∈ O be some object, Ai ∈ A be
a generalized attribute and let t ⊆ Di be a certain subset of
the domain of Ai. Any expression of the form: Ai(o) = t,
Ai(o) ∈ t, Ai(o) � t, Ai(o) ⊆ t, Ai(o) ⊇ t and Ai(o) ∼ t
are legal atomic formulae of SAL.

For intuition, the meaning of the atomic formulae is:
equal to (covers all the elements of t), is a single element of,
is a set and covers some single element, is a subset of, and is
a superset of and have non-empty intersection, respectively.
Note that the definition of atomic formulae in SAL (2) cov-
ers the one in AAL (1); in fact, any atomic value can be
considered as a single-element set. The vice versa is obvi-
ously not true. The presented definition is extended w.r.t. the

1We keep the notation used in (Ligęza 2006).

one of (Ligęza 2006) by introducing the forms: Ai(o) ⊆ t,
Ai(o) ⊇ t, Ai(o) � t and Ai(o) ∼ t.

Note also, that the proposed set of relations is not inde-
pendent. For example, Ai(o) = t can perhaps be defined as
Ai(o) ⊆ t ∧ Ai(o) ⊇ t; but it is much more convenient to
use “=” directly.

For simplicity, if the object is known, the formulae are
simplified to Ai = d, Ai = t, Ai ∈ t, Ai ⊆ t, Ai ⊇ t, or
Ai ∼ t respectively. Without object specification, such sim-
plified formulae are called selectors since they can be used
for selecting a set of objects satisfying the specific condition.
They may be denoted as [Ai = d] and [Ai = t], [Ai ∈ t],
[Ai ⊆ t], [Ai ⊇ t], or [Ai ∼ t].

Semantics of Attributive Logic

Below, semantics of atomic formulae of AAL and SAL will
be presented. Instead of a formal, theoretical presentation
(Ligęza 2006) we rather follow an intuitive discussion based
on examples and relativization to simpler formulae.

Consider an atomic formula of AAL of the form Ai(o) =
d, where d is an atomic value of attribute Ai. The meaning
of such a formula is that some real-world property (denoted
with Ai) of some real-world object (denoted with o) takes
the unique value (specified by d). We usually think about
some intended meaning which is defined by a mapping of
attribute, object and value denoting symbols into real-world
object characteristics, objects and values.

Consider a formula Ai(o) = t of SAL. The interpretation
of such a formula can be specified through relativization to
the case of AAL. First, consider the case of discrete, finite
domains. Using the language of AAL attributes can take
only atomic values. After moving to a more expressive lan-
guage of SAL, attributes can take set values. This means
that such an attribute can take more than one value at a time
for a given object. Such attributes are specific2 but useful in
numerous practical applications. Especially when the set of
values assigned to an object contains numerous values the
notation Ai(o) = t can be considered as a useful shorthand.

Consider example of specifying foreign languages known
by people. This problem encountered in classical RDBS
with atomic values leads to the so-called fourth normal form,
where values of a set are to be listed in subsequent records.

In case of finite sets, an atom of SAL specifying that
an attribute takes a set value can be represented in a (log-
ically equivalent) form incorporating atomic values only.
Such a representation of several atomic values is also re-
ferred to as internal conjunction. Thus instead of writ-
ing Knows(Smith) = English ∧ Knows(Smith) =
French ∧ Knows(Smith) = Spanish one can simply
write Knows(Smith) = {English, French, Spanish}.

In AAL, where attributes can take atomic values, a con-
junctive formula can be transformed into a single atom of
SAL according to the following scheme

[(Ai(o) = d1) ∧ . . . ∧ (Ai(o) = dj)] ≡ [Ai(o) = t], (1)

where t = {d1, d2, . . . , dj} is a subset of D.

2Sometimes such attributes are called multiple-valued at-
tributes.

531

An analogous extension applies to finite, discrete interval
representation (sequences). For example, Ai = [a, b] means
that all the values belonging to the interval [a, b] are covered.

Note, however, that in case of infinite domains (even dis-
crete ones) transformation of the form (1) is no longer pos-
sible. In case of infinite set t, the atom Ai(o) = t does not
have finite internal conjunction form replacing it; hence, the
expressive power of SAL is intrinsically higher than the one
of AAL and so the propositional logic.

A similar problem to the above occurs when one has
to specify a long disjunctive formula specifying possible
atomic values for the same object and attribute.

Consider an atomic formula of the form Ai(o) ⊆ t. In
fact, in the atomic representation in AAL, where attributes
can take atomic values, a disjunctive formula as below can
be transformed into a single atom of SAL according to the
following principle:

[(Ai(o) = d1) ∨ . . . ∨ (Ai(o) = dj)] ≡ [Ai(o) ⊆ t], (2)

where t = {d1, d2, . . . , dj} is a subset of D.
An analogous extension applies to finite, discrete interval

representation. For example, Ai ∈ [a, b] means that all the
values belonging to the interval [a, b] are possible values for
Ai (both in case of discrete and continuous domain of the
attribute).

Note, however, that the above transformation (2) can be
applied only in case of finite domains. In case of infinite
domains, both countable and continuous, the set notation of
SAL has no equivalent in the language of AAL. Hence, the
expressive power of SAL is higher than the one of AAL and
obviously of propositional logic.

Now, consider a formula of the form Ai(o) ∈ t. This time,
it is assumed that attribute A take a unique value belonging
to t. Let ⊕ denote the Exclusive Or logical connective. In
case of finite sets the following transformation is possible:

[(Ai(o) = d1) ⊕ . . . ⊕ (Ai(o) = dj)] ≡ [Ai(o) ∈ t], (3)

where t = {d1, d2, . . . , dj} is a subset of D.
As before, the above transformation (3) can be applied

only in case of finite domains. In case of infinite domains,
both countable and continuous, the set notation of SAL has
no equivalent in the language of AAL. Hence, also in this
case, the expressive power of SAL is higher than the one of
AAL and obviously of propositional logic.

Consider a formula of the form Ai(o) ⊇ t. The intuitive
meaning is that the set of values of attribute A for object o
covers the set t, i.e. constitutes a superset of t. In case of
finite domains the interpretation can be presented with use
of external conjunction. Let Ai(o) = {d1, d2, . . . , dj}; this
can be interpreted as:

(Ai(o) = d1) ∧ (Ai(o) = d2) ∧ . . . ∧ (Ai(o) = dj). (4)

Then, Ai(o) ⊇ t simply means that t ⊆ {d1, d2, . . . , dj}.
Next, consider a formula of the form Ai(o) � t. This

time, it is assumed that attribute A take a unique or set value
to which t (a single element) belongs. In case of finite sets
the following transformation is possible:

[(Ai(o) = d1) ∨ . . . ∨ (Ai(o) = dj)] ≡ [Ai(o) � t], (5)

where t ∈ {d1, d2, . . . , dj} is a single-element of D.
As before, the above transformation (5) can be applied

only in case of finite domains. In case of infinite domains,
both countable and continuous, the set notation of SAL has
no equivalent in the language of AAL. Hence, also in this
case, the expressive power of SAL is higher than the one of
AAL and obviously of propositional logic.

Finally, consider an atomic formula of the form Ai(o) ∼
t. The meaning is that the intersection of Ai(o) and t is a
non-empty set, i.e. Ai(o) ∩ t �= ∅.

Granular Formulae in Attributive Logic

More complex formulae in attributive logic can be gener-
ated from the atomic ones with the use of logical connec-
tives (Ligęza 2006). For the purposes of this paper we are
interested only in simple conjunctive formulae (the so called
minterms) and in Disjunctive Normal Form (DNF) formulae.

For specification of rules it is important to have the pos-
sibility to precisely define a set of constraints which have to
be satisfied at the same time instant. For the purpose of that
one normally uses a conjunction of atomic formulae (with
or without negation). Such a conjunction is normally called
a simple conjunctive formula or a minterm (Ligęza 2006).

For the sake of specifying rules in this paper we shall de-
fine a special form of conjunctions of positive atomic formu-
lae (a subset of minterms). Since such a conjunction can be
interpreted as a granule in the conceptual space defined by
the attributes, we shall call it a Granular Conjunctive For-
mula (GCF) or a box.
Definition 3 (Granular Conjunctive Formula) Let
A1, A2, . . . , An be some attributes, o1, o2, . . . , on denote
certain objects, and let t1, t2, . . . , tn be some subsets
of the domains of given attributes, where ti ⊆ Di, for
i = 1, 2, . . . , n. A formula ψ,

ψ = A1(o1) = t1 ∧A2(o2) = t2 ∧ . . .∧An(on) = tn (6)

will be called a (strong) Granular Conjunctive Formula or a
(strong) box. The Cartesian Product t1 × t2 × . . . × tn will
be called a granule.
Often o1 = o2 = . . . = on, i.e. the attributes describe the
same object. In terms of relational databases such a formula
can be interpreted as a table of the scheme defined by the
sequence of attributes A1, A2, . . . , An and covering all the
Cartesian Product t1 × t2 × . . . × tn, but in case of infinite
ti (e.g. ti ⊂ R), there is no finite relational model.
Definition 4 (Weak Granular Formula) Let
A1, A2, . . . , An be some attributes, o1, o2, . . . , on de-
note certain objects, and let t1, t2, . . . , tn be some subsets
of the domains of given attributes, where ti ⊆ Di, for
i = 1, 2, . . . , n. A formula φ,

ψ = A1(o1) � t1 ∧A2(o2) � t2 ∧ . . .∧An(on) � tn (7)

will be called a Weak Granular Conjunctive Formula or a
weak box; here � denotes either ⊆ or ∈. The Cartesian
Product t1× t2× . . .× tn will be called a boundary granule.
In order to cover some arbitrary area (especially a non-
convex one) located in the Cartesian Product of the attribute

532

domains D1 × D2 × . . . × Dn one may need a disjunctive
composition of Granular Conjunctive Formulae. Such a for-
mula is a specific case of the Disjunctive Normal Formula
(DNF) and it is defined as follows.
Definition 5 Let ψ1, ψ2, . . . , ψk be some strong GCF. A for-
mula Ψ of the form

Ψ = ψ1 ∨ ψ2 ∨ . . . ∨ ψk (8)
will be called a (strong) Granular DNF.
In case of weak GCF components we have the following
definition.
Definition 6 Let φ1, φ2, . . . , φk be some weak GCF. A for-
mula Φ of the form

Φ = φ1 ∨ φ2 ∨ . . . ∨ φk (9)
will be called a Weak Granular DNF.

Inference in Attributive Logic
Firstly, consider two subset symbols s, t ⊆ D. Obviously,
for any object symbol o ∈ O and any attribute Ai ∈ A, if t
is a subset of s the following rule holds:

Ai(o) = s

Ai(o) = t
(10)

Rule (10) will be referred to downward consistency rule or
subset consistency rule. The meaning of the downward con-
sistency rule is obvious — if an attribute takes values from
a certain set, then certainly its values stay within any subset
of that set.

By analogy, consider two subset symbols s, t ⊆ D. Ob-
viously, for any object symbol o ∈ O and any attribute
Ai ∈ A, if s is a subset of t the following rule holds:

Ai(o) ⊆ s

Ai(o) ⊆ t
(11)

Rule (11) will be referred to upward consistency rule or su-
perset consistency rule. The meaning of the upward consis-
tency rule is obvious — if an attribute takes values from a
certain set, then certainly its values stay within any superset
of that set. Note that, the rule holds also for the relational
symbol ∈, i.e.:

Ai(o) ∈ s

Ai(o) ∈ t
(12)

as a specific case. Further, the following rule holds as well:
if t is a subset of s the following rule holds:

Ai(o) ⊇ s

Ai(o) ⊇ t
(13)

In fact, this is and inverse (or dual) rule to (11).
As an example consider two atomic formulae as follows:

Ai(o) = t and Ai(o) ⊆ s. Taking into account the interpre-
tation, if t ⊆ s, then [Ai(o) = t] |= [Ai(o) ⊆ s].

In the table in Fig. 1 we examine when the atoms located
in the left-hand column imply atoms in the header (for sim-
plicity, A is used instead of Ai). The table specifies infer-
ence possibilities among atomic formulae for checking sat-
isfaction of rule preconditions. In fact, if the fact base con-
tains facts of the form specified in the left-hand column, the
preconditions contains facts of the header line, and the ap-
propriate relation holds, the satisfaction of atomic part of the
precondition can be claimed.

Application of Inference Rules for Verification

The inference rules specified for Attributive logic can be ap-
plied for checking if preconditions of a rule are satisfied and
in verification of theoretical properties of rule-based systems
(Ligęza 2006). Note that for

• checking satisfaction of rule preconditions (rule firing),

• checking logical relationship among preconditions of
rules (e.g. rule subsumption),

• checking covering of a set of states by a set of rules (com-
pleteness check),

• detection of overlapping rule preconditions (indetermin-
istic and inconsistent rules)

the basic operation consists in checking for logical conse-
quence. More details on that are given in (Ligęza 2006).

Rule-Based Systems in Attributive Logic

Numerous rule-based systems use simple knowledge repre-
sentation logic based on attributes. Unfortunately, most of
the systems allow for use of very simple atomic formulae
only. Two most typical examples are of the form A = d and
A(o) = d, where A is an attribute, o is an object, and d is an
atomic value of the attribute. In this way the specification of
attribute values is restricted to atomic values only.

In the proposed XTT approach (Nalepa 2004) an extended
attributive language is used. In fact we use SAL, the Set At-
tributive Language. XTT uses extended attributive decision
rules for the construction of rule-based systems. A rule is
based on the basic rule format but includes both the control
statement and dynamic operation definitions. Hence, it can
operate on the system memory and show where to pass con-
trol in an explicit way. The full rule format incorporates the
following components: a unique identifier of the rule (it can
be the name or the number of the rule, or both), a context for-
mula defining the context situation in which the rule is aimed
to operate, preconditions of the rule (specifying the logical
formula that has to be satisfied in order that the rule can be
executed), a dynamic operation specification with the use of
retract and assert parts, a conclusion/decision part being the
output of the rule, and a control specification with the use of
the next part.

The above components can be presented as follows:

rule(i): context = ψ and
[A1 ∈ t1] ∧ [A2 ∈ t2] ∧ . . . ∧ [An ∈ tn]
−→
retract(B1 = b1, B2 = b2, . . . , Bb = bb),
assert(C1 = c1, C2 = c2 . . . , Cc = cc),
do(H1 = h1, H2 = h2, . . . , Hh = hh),
next(j), else(k).

where ψ defines the specific environmental and internal con-
ditions under which the rule is valid, [A1 ∈ t1] ∧ . . . ∧
[An ∈ tn] is the regular precondition formula, B1 =
b1, B2 = b2, . . . , Bb = bb is the specification of the facts
to be retracted from the knowledge base, C1 = c1, C2 =
c2, . . . , Cc = cc is the specification of the facts to be as-
serted to the knowledge base, H1 = h1, . . . , Hh = hh is the

533

|= A = t A ∈ t A � t A ⊆ t A ⊇ t A ∼ t

A = s t ⊆ s s ∈ t t ∈ s s ⊆ t t ⊆ s s ∩ t �= ∅
A ∈ s t = {s} s ⊆ t t = s s ⊆ t t = {s} s ⊆ t
A � s s = t _ s = t t = {s} s ∈ t
A ⊆ s s = {t} s ∈ t t ∈ s s ⊆ t _ s ⊆ t
A ⊇ s t ⊆ s t ∈ s t ∈ s _ t ⊆ s s ⊆ t
A ∼ s _ _ s = {t} _ _ s ⊆ t

Figure 1: Inference in SAL.

specification of conclusions forming a direct output of the
rule, next(j) is the control specification, possibly including
the PROLOG cut marker.

Rules of a similar attribute structure can be easily com-
bined into a special form of decision table, the Extended
Attributive Table (Ligęza 2006; Nalepa 2004) (XAT, or eX-
tended Table (XT), for short).

An important feature of XTT is the fact that, besides
visual representation important for the design (Ligęza,
Wojnicki, & Nalepa 2001; Nalepa 2004; Nalepa &
Ligęza 2005), it offers a well-defined, logical representa-
tion (Nalepa 2004; Ligęza 2006). The XTT hierarchy can
be mapped to the corresponding PROLOG code.

Transformation from XTT tables to a PROLOG-based rep-
resentation allows for obtaining a logically equivalent code
that can be executed, analyzed, verified, optimized, trans-
lated to another language, transferred to another system, etc.

In order to fully represent the XTT model using SAL
the fact (Object-Attribute-Value triple) representation has to
specified, the attribute domains with all the constraints have
to be represented, a rule syntax has to be defined.

Every XTT cell corresponds to a certain fact in the rule
base. An XTT fact is represented by the following term:

f(< attribute_name >, < value_type >, < value >)

where attribute_name is an XTT attribute name pre-
fixed by a lower-case a in order to prohibit upper-case
names (they would be interpreted as variables in PROLOG);
value_type is one of {atomic, set, interval,
natomic, nset, ninterval}, and value is the at-
tribute value held in cell, possibly a non-atomic one.

In order to represent different attribute types and value
domains the following rules are established:
• Atomic values, e.g A(O) = V , are represented by
f(aA,atomic,V) term.

• Negated atomic values, e.g A(O) �= V , are represented
by f(aA,natomic,V) term.

• Non-atomic numerical values, such as A(O) ∈< x, y >,
are represented by f(aA,interval,i(x,y)) term.

• Negated non-atomic numerical values, such as A(O) /∈
(x, y), or A(O) /∈< x, y >) are represented by
f(aA,ninterval,i(x,y)) term.

• Non-atomic symbolic values, such as A(O) ∈
{monday, tuesday} are represented by
f(aA,set,Seti) term, where Seti is a prede-
fined set Seti = {monday, tuesday}.

• Negated non atomic symbolic values, such as:
A(O) /∈ {monday, tuesday} are represented by
f(aA,nset,Seti) term, where Seti is a predefined
set Seti = {monday, tuesday}.

Considering that every attribute domain has lower and up-
per constraints, and there is a predefined real numbers pre-
cision, every relational expression with numerical value can
be mapped to an interval of the form: < v1, v2 >.

Rules are represented as PROLOG facts. This allows for
encoding virtually any structured information. Note that in
such a case the built-in PROLOG inference facilities can-
not be used directly – there is a need for a meta-interpreter
(however, this gives more flexibility in terms of rule pro-
cessing). Using PROLOG for meta-programming (writing
an interpreter) is a standard approach used in the implemen-
tation of advanced PROLOG applications. The extended rule
syntax is:
rule(table-num, rule-num, precondition-list,

retract-list, assert-list, decision-list,
next-table, next-rule in next-table).

In this application the else part is implicitly considered to
be the next rule in the current table.

The whole table-tree structure of XTT is represented by
one flat rule-base. The rule-base is separated from the infer-
ence engine code. All tables have unique identifiers (num-
bers), and rules are assigned unique numbers too. This al-
lows for a precise inference control. For example, an excerpt
of rule-base for the Thermostat example (Ligęza 2006) is
represented by the following PROLOG code:

rule(2,3, [f(aTD,atomic,wd), f(aTM,interval,i(9,17))],

[f(aOP,atomic,_)], [f(aOP,atomic,true)], [], 3,7).

rule(2,4, [f(aTD,atomic,wd), f(aTM,interval,i(0,8))],

[f(aOP,atomic,_)], [f(aOP,atomic,false)], [], 3,7).

rule(2,5, [f(aTD,atomic,wd), f(aTM,interval,i(18,24))],

[f(aOP,atomic,_)], [f(aOP,atomic,false)], [], 3,7).

rule(2,6, [f(aTD,atomic,wk)],

[f(aOP,atomic,_)], [f(aOP,atomic,false)], [], 3,7).

where: aTD, aTM, aOP, are abbreviated attribute names:
today, time, operation respectively. In order to interpret
XTT rules there is a need for a meta-interpreter. As a proof-
of-concept an XTT meta-interpreter engine has been devel-
oped and described in detail in (Nalepa 2004; Nalepa &
Ligęza 2006). A code-excerpt from the PROLOG inference
engine for proving logical satisfaction in a limited version of
the granular attributive logic is presented below.

satisfied([]) :- !.
satisfied([Fact|Facts]) :-

534

valid(Fact), satisfied(Facts).
fails([Fact|_]) :-

\+ valid(Fact), !.
fails([_|Facts]) :-

fails(Facts).
valid(f(A,atomic,V)) :-

f(A,atomic,V), !.
valid(f(A,natomic,V)) :-

f(A,atomic,W), V \== W, !.
valid(f(A,set,Set)) :-

f(A,atomic,V), set(Set,SetValue),
member(V,SetValue),!.

valid(f(A,nset,Set)) :-
f(A,atomic,V), set(Set,SetValue),
\+ member(V,SetValue),!.

valid(f(A,interval,i(B,E))) :-
f(A,atomic,V), V >= B, V =< E.

valid(f(A,ninterval,i(B,_))) :-
f(A,atomic,V), V < B.

valid(f(A,ninterval,i(_,E))) :-
f(A,atomic,V), V > E.

Conclusions

This paper presents a development of logical and algebraic
approach of (Ligęza & Parra 1996), (Ligęza 2006). In par-
ticular, it presents attributive logic for knowledge represen-
tation and knowledge management in knowledge engineer-
ing applications. A particular interest was devoted to Set
Attributive Logics (SAL) where attributes can take set val-
ues. Five basic forms of atomic formulae of SAL were in-
troduced. The relations symbols used were = (equality), ∈
(element of), ⊆ (subset), ⊇ (superset) and ∼ (non-empty in-
tersection).

In this kind of logic, when attributes can take set values,
conjunctive formulae can be interpreted as granules in the
conceptual space of attributes (Ligęza 2002). Such a gran-
ular formula can be used for efficient specification of pre-
conditions of inference rules. Moreover, thanks to the phe-
nomenon of internal conjunction, it can specify facts and
relations in the knowledge base in an efficient way. This is
so because a granular formula covers a number of formulae
incorporating atomic values only (of AAL).

Specific rules of inference for the introduce logic were
also presented. Such rules are necessary when checking
preconditions of rules expressed with SAL. The introduced
logic is applied in the eXtended Tabular Trees (XTT) for-
malism for knowledge representation (Ligęza 2006; Nalepa
2004).

The benefits of using granular attributive logic include
much more concise specification of knowledge than in the
case of logic using atomic values only followed by possi-
bilities of more efficient knowledge verification and easier
design. The price of higher expressive power is that veri-
fication procedures require more complex checks based on
logical inference and not just simple comparison (as in the
case of atomic values of attributes). An idea of a tool for sup-
porting the design, implementation and verification of rule-
based systems with granular logic is presented in (Nalepa
2004), (Ligęza 2006).

References

Ben-Ari, M. 2001. Mathematical Logic for Computer Sci-
ence. London: Springer-Verlag.
Genesereth, M. R., and Nilsson, N. J. 1987. Logical Foun-
dations for Artificial Intelligence. Los Altos, California:
Morgan Kaufmann Publishers, Inc.
Jackson, P. 1999. Introduction to Expert Systems.
Addison–Wesley, 3rd edition. ISBN 0-201-87686-8.
Liebowitz, J., ed. 1998. The Handbook of Applied Expert
Systems. Boca Raton: CRC Press. ISBN 0-8493-3106-4.
Ligęza, A., and Parra, P. F. 1996. Towards logical analy-
sis of tabular rule-based systems. In Trappl, R., ed., Proc.
of the 13th European Meeting on Cybernetics and Systems
Research (EMCSR’96), volume 2, 1211–1216.
Ligęza, A., and Parra, P. F. 2006. A granular attribute
logic for rule-based systems management within extended
tabular trees. In Trappl, R., ed., Cybernetic and Systems,
volume 2, 761–766. Austrian Society for Cybernetic Stud-
ies.
Ligęza, A.; Wojnicki, I.; and Nalepa, G. 2001. Tab-trees: a
case tool for design of extended tabular systems. In et al.,
H. M., ed., Database and Expert Systems Applications, vol-
ume 2113 of Lecture Notes in Computer Sciences. Berlin:
Springer-Verlag. 422–431.
Ligęza, A. 2002. Granular algebra: Towards a calculus of
semipartitions for analysis, manipulation and verification
of tabular systems. In Trappl, R., ed., Proc. of the 16th
European Meeting on Cybernetics and Systems Research
(EMCSR’02), 806–811.
Ligęza, A. 2006. Logical Foundations for Rule-Based Sys-
tems. Berlin, Heidelberg: Springer-Verlag.
Nalepa, G. J., and Ligęza, A. 2005. Conceptual modelling
and automated implementation of rule-based systems. In
Krzysztof Zieliński, T. S., ed., Software engineering : evo-
lution and emerging technologies, volume 130 of Frontiers
in Artificial Intelligence and Applications, 330–340. IOS
Press.
Nalepa, G. J., and Ligęza, A. 2006. Prolog-based analysis
of tabular rule-based systems with the xtt approach. In Sut-
cliffe, G. C. J., and Goebel, R. G., eds., FLAIRS 2006 : pro-
ceedings of the nineteenth international Florida Artificial
Intelligence Research Society conference : [Melbourne
Beach, Florida, May 11–13, 2006], 426–431. FLAIRS.
- Menlo Park: Florida Artificial Intelligence Research So-
ciety.
Nalepa, G. J. 2004. Meta-Level Approach to Integrated
Process of Design and Implementation of Rule-Based Sys-
tems. Ph.D. Dissertation, AGH – University of Science and
Technology, Institute of Automatics, Cracow, Poland.
Negnevitsky, M. 2002. Artificial Intelligence. A Guide to
Intelligent Systems. Harlow, England; London; New York:
Addison-Wesley. ISBN 0-201-71159-1.
Torsun, I. S. 1995. Foundations of Intelligent Knowledge-
Based Systems. London, San Diego, New York, Boston,
Sydney, Tokyo, Toronto: Academic Press.

535

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

