
A Proposal of Hybrid Knowledge Engineering and Refinement Approach

Grzegorz J. Nalepa and Igor Wojnicki
Institute of Automatics,

AGH – University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland

gjn@agh.edu.pl wojnicki@agh.edu.pl

Abstract

The paper deals with some possible applications of Knowl-
edge Engineering methods to the practical Software Engi-
neering. Such an integration could provide a way to over-
come some constant problems present in the contemporary
Software Engineering. This paper describes foundations of
the HEKATE Project, which aims at incorporating well es-
tablished Knowledge Engineering tools and paradigms into
the Software Engineering domain. A new Hybrid Knowledge
Engineering (HEKATE) methodology is proposed, which
would allow for faster development of highly reliable soft-
ware. The HEKATE design process is introduced which of-
fers important capabilities of formal verification, and gradual
refinement of software from the conceptual model stage to an
executable prototype. An integrated design environment and
runtime based on the ARD/XTT concept is also proposed.
Furthermore, HEKATE-based applications can be integrated
with existing software, designed in a classical way.

Introduction
Knowledge-based systems (KBS) are an important class of
intelligent systems originating from the field of Artificial In-
telligence (Russell & Norvig 2003). They can be especially
useful for solving complex problems in cases where purely
algorithmic or mathematical solutions are either unknown or
demonstrably inefficient. In AI, rules are probably the most
popular choice for building knowledge-based systems, that
is the so-called rule-based expert systems (Jackson 1999;
Ligęza 2006). Rule-based systems (RBS) constitute today
one of the most important classes of KBS. Building real-life
KBS is a complex task. Since their architecture is funda-
mentally different from classic software, typical Software
Engineering approaches cannot be applied efficiently. Some
specific development methodologies, commonly referred to
as Knowledge Engineering (KE), are required.

Software Engineering (SE) does not contribute much con-
cepts in Knowledge Engineering. However, it does pro-
vide some important tools and techniques for it. On the
other hand some important Knowledge Engineering concep-
tual achievements and methodologies can be successfully
transferred and applied in the domain of Software Engineer-
ing (Maurer & Ruhe 2004). This conclusion is drawn based

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

on several observations related to the Software and Knowl-
edge Engineering concepts described below.

This paper presents a concept of a new software engineer-
ing approach based on knowledge engineering methods. In
the paper some important features of both KE and SE ap-
proaches are summarized. Furthermore, common design
and evaluation problems encountered in SE are outlined.
Most of these problems can be successfully approached,
and possibly minimized in the field of KE and RBS design.
This is why, selected concepts and tools developed for the
MIRELLA Project are presented; they aim at supporting the
design and evaluation of RBS. Finally, the main concept of
the hybrid knowledge engineering, on which the HEKATE
project is based, is discussed. The paper ends with conclud-
ing remarks where some main features of HEKATE are sum-
marized.

From Knowledge to Software Engineering
It is asserted, that some important concepts and experiences
in the field of Knowledge Engineering could be transferable
into the domain of Software Engineering. Several observa-
tions regarding relations between these two approaches are
discussed below.

Knowledge Engineering Approach
What makes KBS distinctive is the separation of knowledge
storage (the knowledge base) from the knowledge process-
ing facilities. In order to store knowledge, KBS use various
knowledge representation methods, which are declarative in
nature. In case of RBS these are production rules. Specific
knowledge processing facilities, suitable for particular rep-
resentation method being used, are selected then. In case of
RBS these are logic-based inference engines.

The knowledge engineering process, in case of RBS, in-
volves two main tasks: knowledge base design, and infer-
ence engine implementation. Furthermore, some other tasks
are also required, such as: knowledge base analysis and ver-
ification, and inference engine optimization. The perfor-
mance of a complete RBS should be evaluated and vali-
dated. While this process is specific to expert systems, it
is usually similar in case of other KBS.

What is important about the process, is the fact that it
should capture the expert knowledge and represent it in a
way that is suitable for processing (this is the task for a

542

knowledge engineer). The actual structure of a KBS does
not need to be system specific – it should not „mimic” or
model the structure of the real-world problem. However, the
KBS should capture and contain knowledge regarding the
real-world system. The task of programmers is to develop
processing facilities for the knowledge representation. The
level at which KE should operate is often referred to as the
knowledge level (Newell 1982).

It should be pointed out, that in case of KBS there is
no single universal engineering approach, or universal mod-
elling method (such as UML in software engineering). Dif-
ferent classes of KBS may require specific approaches,
see (Ligęza 2006; Torsun 1995).

Having outlined the main aspects of KBS development,
it can be discussed how they are related to classic software
engineering methods.

Software Engineering Approach
Software engineering (SE) is a domain where a number of
mature and well-proved design methods exist; furthermore,
the software development process and its life cycle is repre-
sented by several models. One of the most common models
is called the waterfall model (Sommerville 2004). In this
process a number of development roles can be identified:
users and/or domain experts, system analysts, programmers,
testers, integrators, and end users (customers). What makes
this process different from knowledge engineering is the fact
that systems analysts try to model the structure of the real-
world information system in the structure of computer soft-
ware system. So the structure of the software corresponds,
to some extent, to the structure of the real-world system.
The task of the programmers is to encode and implement the
model (which is the result of the system analysis) in some
lower-level programming language.

The most important difference between software and
knowledge engineering, is that the former tries to model
how the system works, while the latter tries to capture and
represent what is known about the system. The knowledge
engineering approach assumes that information about how
the system works can be inferred automatically from what is
known about the system.

Common Design and Evaluation Problems
Having outlined some distinctive features of KE and SE ap-
proaches, several observations can be made in the field of
Software Engineering. They provide a basis for a critical
overview of current SE approaches and pinpointing most
common problems. These issues are presented below.

Observations
Historically, there has always been a strong feedback be-
tween SE and computer programming tools. At the same
time, these tools have been strongly determined by the ac-
tual architecture of computers themselves. For a number of
years there has been a clear trend for the software engineer-
ing to become as implementation-independent as possible.
Modern software engineering approaches tend to be abstract
and conceptual (Sommerville 2004).

On the other hand, knowledge engineering approaches
have always been device and implementation-agnostic. The
actual implementation of KBS has been based on some high
level programming languages such as Lisp or Prolog. How-
ever, modern knowledge engineering tools heavily depend
on some common development tools and programming lan-
guages, especially when it comes to user interfaces, network
communication, etc.

It could be said, that these days software engineering be-
comes more knowledge-based, while knowledge engineer-
ing is more about software engineering. This opens multi-
ple opportunities for both approaches to improve and ben-
efit. Software engineering could adopt from knowledge
engineering advanced conceptual tools, such as declarative
knowledge representation methods, knowledge transforma-
tion techniques based on existing inference strategies, as
well as verification, validation and refinement methods.

This trend is already visible in the Model-Driven Ar-
chitecture proposed by OMG (Miller & Mukerji 2003).
It is a new software engineering paradigm that tries to
provide a unified design and implementation method and
appropriate tools for the declarative specification of soft-
ware. MDA has already been adapted for business logic
applications, so-called business rules approach (Ross 2003;
von Halle 2001).

In order to improve and better integrate KBS with exist-
ing software, knowledge engineering could adopt program-
ming interfaces to existing software systems and tools, in-
terfaces to advanced storage facilities such as databases and
data warehouses, modern user interfaces, including graphi-
cal and web-based ones. In this paper a concept of possible
integration of some KE solutions with SE is put forward.

Critical Overview
The Software Engineering is derived as a set of paradigms,
procedures, specifications and tools from pure program-
ming. It is heavily tainted with the way how programs work
which is the sequential approach, based on the Turing Ma-
chine concept. Historically, when the modelled systems be-
came more complex, SE became more and more declara-
tive, in order to model the system in a more comprehen-
sive way. It made the design stage independent of program-
ming languages which resulted in number of approaches;
the best example is the MDA approach (Miller & Mukerji
2003). So, while programming itself remains mostly se-
quential, designing becomes more declarative. The intro-
duction of object-oriented programming does not change the
situation drastically. However, it does provide several useful
concepts, which simplify the coding process.

Since there is no direct bridge between declarative design
and sequential implementation, a substantial work is needed
in order to turn a design into a running application. This
problem is often referred to as a Semantic Gap between a
design and its implementation (Mellor & Balcer 2002).

It is worth noting, that while the conceptual design can
sometimes be partially formally analyzed and evaluated, the
full formal analysis is impossible in most cases. The excep-
tions include purely formal design methods, such as Petri
Nets, or Process Algebras. However, there is no way to as-

543

sure, that even fully formally correct model, would translate
to a correct code in a programming language. What is even
worse, if an application is automatically generated from a
designed conceptual model, then any changes in the gen-
erated code have to be synchronized with the design. It is
not always possible because of the lack of compatibility be-
tween these two separate approaches: the declarative model
and sequential application, which constitutes the mentioned
earlier semantic gap. Sometimes such a code is generated in
a way, which is barely human readable.

There is also another gap in the specification-design-
implementation process called Analysis Specification
Gap (Rash et al. 2005). It regards the difficulty with the
transition from the specification to the design. Formulating
a specification which is clear, concise, complete and
amenable to analysis turns out to be a very complex task,
even in small scale projects.

Problem statement
It could be summarized, that constant sources of errors in
software engineering are:

• The Semantic Gap between existing design methods,
which are becoming more and more declarative, and
implementation tools that remain sequential/procedural.
This issue results in the problems mentioned below.

• Evaluation problems due to large differences in semantics
of design methods and lack of formal knowledge model.
They appear at many stages of the SE process, including
not just the correctness of the final software, but also va-
lidity of the design model, and the transformation from
the model to the implementation.

• The so-called Analysis Specification Gap, which is the
difficulty with proper formulation of requirements, and
transformation of the requirements into an effective de-
sign, and then implementation.

• The so-called Separation Problem, which is the lack of
separation between Core Software Logic, software inter-
faces and presentation layers.

While some some of the methodologies, (mainly the
MDA) and design approaches (mainly the MVC (Model-
View-Controller) (Burbeck 1992)) try to address these is-
sues, it is clear that they do not solve the problems. How-
ever, it seems that some of the problems could be more eas-
ily solved in case of RBS, thanks to the fact that the field
is narrower and well formalized. The proof of concept is
the MIRELLA (Nalepa 2004) approach which is shortly dis-
cussed below. Within this approach a new knowledge rep-
resentation method and design process has been developed.
Based on outcomes from the MIRELLA Project, a founda-
tion of a more general approach to software design, called
HeKatE, is proposed.

Mirella Project
In (Nalepa 2004) results of a research and evaluation of
multiple design and evaluation methods for RBS have been
presented. The main contribution of (Nalepa 2004) was:

the XTT (Extended Tabular-Trees) knowledge represen-
tation method, the concept of an integrated design pro-
cess for RBS, and a prototype Mirella CASE tool. Fur-
ther developments include ARD (Attribute-Relationship Di-
agrams) conceptual design (Nalepa & Ligęza 2005; Ligęza
2006). These results are a basis for the MIRELLA Project,
(see mirella.ia.agh.edu.pl). The main goal of the
project is to fully develop and refine the integrated design
process for RBS. All of these are shortly introduced below.

The integrated design process proposed in Mirella can
be considered a top-down hierarchical design methodology,
based on the idea of meta-level approach to the design pro-
cess. It includes three phases: conceptual, logical, and phys-
ical. It provides a clear separation of logical and physical
(implementation) design phases. It offers equivalence of
logical design specification and prototype implementation,
and employs XTT, a hybrid knowledge representation. The
methodology is supported by a CASE tool.

The main goal of the methodology is to move the design
procedure to a more abstract, logical level, where knowledge
specification is based on the use of abstract rule representa-
tion. The design specification can be automatically trans-
lated into a low-level code, including Prolog and XML, so
that the designer can focus on logical specification of safety
and reliability. On the other hand, selected formal system
properties can be automatically analyzed on-line during the
design, so that its characteristics are preserved. The gener-
ated Prolog code constitutes a prototype implementation of
the system. Since it is equivalent to the visual design speci-
fication it can be considered an executable.

The main idea behind XTT (Nalepa 2004) knowledge rep-
resentation and design method aims at combining some of
the existing approaches, namely decision trees and decision
tables, by building a special hierarchy of Object-Attribute-
Tables (Ligęza, Wojnicki, & Nalepa 2001; Ligęza 2006). It
allows for a hierarchical visual representation of the OAV
tables linked into tree-like structure, according to the con-
trol specification provided. XTT, as a design and knowl-
edge representation method, offers transparent, high density
knowledge representation as well as a formally defined logi-
cal, Prolog-based interpretation, while preserving flexibility
with respect to knowledge manipulation. On the machine
readable level XTT can be represented in an XML-based
markup language, and possibly be translated to other XML-
based rule markup formats such as RuleML.

The conceptual design of the RBS aims at modelling
the most important features of the system, i.e. attributes
and functional dependencies among them. ARD stands for
Attribute-Relationship Diagrams (Nalepa & Ligęza 2005;
Ligęza 2006). It allows for specification of functional de-
pendencies of system attributes using a visual representa-
tion. An ARD diagram is a conceptual system model at a
certain abstract level. It is composed of one or several ARD
tables. If there are more than one ARD table, a partial order
relation among the tables is represented with arcs. The ARD
model is also a hierarchical model. The most abstract level 0
diagram shows the functional dependency of input and out-
put system attributes. Lower level diagrams are less abstract,
i.e. they are close to full system specification. They contain

544

also some intermediate conceptual variables and attributes.
The eXtended Tabular Trees-based design method intro-

duces possibility of on-line system properties analysis and
verification, during the system design phase. Using XTT as
a core, an integrated design process, covering the following
phases has been presented in (Nalepa 2004):

1. Conceptual modeling, in which system attributes and their
functional relationships are identified; during this design
phase the ARD modelling method is used. It allows
for specification of functional dependencies of system at-
tributes using a visual representation. Using this model
the logical XTT structure can be designed.

2. Logical design with on-line verification, during which
system structure is represented as XTT hierarchy, which
can be instantly analyzed, verified (and corrected, if nec-
essary) and even optimized on-line, using Prolog.

3. Physical design, in which a preliminary Prolog-based im-
plementation is carried out. A RuleML translation of the
XTT rule base is also available.

Using the predefined XTT translation it is possible to au-
tomatically build a prototype. It uses Prolog-based meta-
language for representing XTT knowledge base and rule in-
ference (also referred to as XTT-PROLOG).

A prototype CASE tool for the XTT method called
Mirella Designer (Nalepa 2004) has been developed. It sup-
ports XTT-based visual design methodology, with an inte-
grated, incremental design and implementation process, pro-
viding the possibility of the on-line, incremental, verifica-
tion of formal properties. Logical specification is directly
translated into Prolog-based representation providing an ex-
ecutable prototype, so that system operational semantics is
well-defined.

The approach is based on the idea of a knowledge repre-
sentation method which offers the design and implementa-
tion equivalence by a direct XTT → Prolog mapping. Using
a visual design method the designer can focus on building
the system structure, since the prototype implementation can
be dynamically generated and automatically analyzed. The
approach discussed herein offers strict, formal description of
system attributes and structure, creates a framework for inte-
grating the design and verification process, and supports the
design and verification process by a CASE tool. In this way,
it is possible to assure that some safety-critical system prop-
erties such as attribute domains, and basic system structural
logical constraints are preserved during the design process.

HeKatE – Hybrid Knowledge Engineering
The HEKATE project addresses the problems described pre-
viously. It is based on experiences with the MIRELLA
project but it extends its RBS perspective towards SE.

A principal idea in this approach is to model, represent,
and store the logic behind the software (sometimes referred
to as business logic) using advanced knowledge representa-
tion methods taken from KE. The logic is then encoded with
use of a Prolog-based representation. The logical, Prolog-
based core (the logic core) would be then embedded into a

business application, or embedded control system. The re-
maining parts of the business or control applications, such
as interfaces, or presentation aspects, would be developed
with a classic object-oriented or procedural programming
languages such as Java or C. The HEKATE project should
eventually provide a coherent runtime environment for run-
ning the combined Prolog and Java/C code.

From the implementation point of view HEKATE is based
on the idea of multiparadigm programming. The target
application combines the logic core implemented in Pro-
log, with object-oriented interfaces in Java, or procedural
in ANSI C. This is possible due to the existence of advanced
interfaces between Prolog and other languages. Most of
the contemporary Prolog implementations have well devel-
oped ANSI C interfaces. There is also a number of Object-
Oriented interfaces and extensions in Prolog. The best ex-
ample is LogTalk (de Moura 2003) (www.logtalk.org).

In HEKATE, the Semantic Gap problem is addressed by
providing declarative design methods for the business logic.
There is no translation from the formal, declarative design
into the implementation language. The knowledge base is
specified and encoded in the Prolog language. The logical
design which specifies the knowledge base becomes an ap-
plication executable by a runtime environment, combining
an inference engine and classic language runtime (e.g. a
JVM). It is called an Executable Design (ED) concept.

The knowledge base design process and knowledge visu-
alization is derived from the XTT methodology. The XTT
methodology is currently being extended (code name XTT2)
towards covering not only forward and backward chaining
RBS but also control applications, databases and general
purpose software.

At the starting point for solving the Analysis Specifica-
tion Gap problem the ARD method is used. In HEKATE,
ARD is extended and renamed to Advanced Relationship Di-
agrams. ARD allows to specify components of the system
and dependencies among them at different levels of detail.
It allows to design software in a top-down fashion: starting
from a very general idea what is to be designed, and go-
ing into more and more details about each single quantum
of knowledge which refers to the system. This approach is
somehow similar to the Requirements Based Programming
proposal, however implemented in a different way that this
of R2D2C (Rash et al. 2005).

The executable design concept is presented in Fig. 1. It
is based on ARD/XTT concept. ARD is used to describe
dependencies in the knowledge base on different abstraction
levels, while XTT2 represents the actual knowledge. The
design process starts with an ARD model at a very general
level which is developed to be more and more specific. The
nature of knowledge dependencies, facts and rules, are en-
coded with XTT2. An application model based on combined
XTT2 and ARD, along with interfaces and views, becomes
the Application. The Application, in turn, is executed by the
HeaRT (Hekate Run-Time), an inference engine supported
with optional sequential (C/Java) runtime.

The HEKATE project provides means for the design and
implementation of software logic, and the integration of this
logic with the presentation layer, which is in some cases

545

XTT 2

ARD

Executable Design
Knowledge Base /

Inference Engine C/Java Runtime

Application
HeaRT

Logic Core

Figure 1: Executable Design Concept.

minimal, or even optional. It would allow for integrating and
interfacing the Executable Design with existing technolo-
gies i.e. interfaces written using classical sequential ways
provided by object-oriented or procedural languages. It
would be also possible to interface with existing modules
and libraries implemented in procedural (or object-oriented)
languages – they often provide access to specialized hard-
ware, or communication protocols. The approach forms so-
called Multiparadigm Programming, making a bridge be-
tween declarative logic and sequential presentation (this is
where „hybrid” comes from). It is worth pointing out that
this is not to negate a possibility of declarative presentation
layer design, but to provide compatibility with other, conser-
vative programming approaches. A declarative presentation
layer is also a research thread within HEKATE. Regardless,
whether the design contains a presentation layer or not, there
is a clear separation between it and the software logic.

In some aspects, there is a analogy between some solu-
tions within HeKatE and the MVC approach used in object-
oriented software designs. It consists in strong separa-
tion between the software logic model, and the presentation
layer. However, in HeKatE the emphasis is on the rich for-
mally designed and analyzed knowledge-based model.

At first sight, the HeKatE point-of-view may seem some-
how similar to the MDA approach, and the formalized tran-
sition from the PIM to the PSM. However, in HeKatE dif-
ferent abstraction layers correspond to different levels of the
knowledge base specification (more, and more detailed). No
different implementation technologies are considered, since
the Prolog-based unified run-time environment is provided
by HeaRT.

The above multiparadigm hybrid approach is presented in
Fig. 2. The application’s logic is given in a declarative way
as the Knowledge Base. Interfaces with other systems (in-
cluding Human-Computer Interaction) can be provided in
classical sequential manner. There is a bridging module be-
tween the Knowledge Base and the sequential Code (C/Java
language code): the Sequential Language Interface (SLIN).
It allows communication in both directions. The Knowledge
Base can be extended, new facts or rules added by a stim-

uli coming through SLIN from the View/Interface. There
are two types of information passed this way: events gener-
ated by the HeaRT Runtime and knowledge generated by the
Code. Any inferred knowledge, facts or even rules could be
passed to other systems, or visualized by the View/Interface
through SLIN.

Code
C/Java

Runtime
C/Java

Knowledge Base

SLIN

Application

View/InterfaceModel

Inference Engine

HeaRT

Hardware

Figure 2: Multiparadigm Hybrid Approach: an Application.

It is hoped, that this methodology could provide univer-
sal modelling methods for software design and implemen-
tation. The HEKATE project aims at applying this method-
ology to practical design and analysis of real-life software.
Main goals of the HEKATE project are to: develop an ex-
tended, hierarchical methodology for practical design, anal-
ysis and implementation of selected software classes, build
CASE tools package supporting this methodology, test the
approach on illustrative software examples, and benchmark
test cases.

The projects focuses on wide class of software, namely
two very different “benchmark” classes, that is: general
business software based on the so called business logic, (in-
cluding business rules), and low-level control software (pos-
sibly for the embedded control systems, based on a control
logic (Nalepa & Zięcik 2006)). Other software classes, such
as general purpose or scientific software are also considered.

HEKATE is currently (fall 2006) in a very early develop-
ment stage. See the project webpage at hekate.ia.agh.
edu.pl for more up to date information on the project
progress, tools and technologies.

Evaluation and Refinement Issues
It is important to emphasize, that compared to some stan-
dard software engineering approaches, in HeKatE there are
no differences in semantics of design methods. Thanks to
the XTT-based logic core, the knowledge base is described
using a formal knowledge model. This allows for avoiding
some common evaluation problems. This also opens up pos-
sibilities of formal analysis, including verification and eval-
uation. Such an analysis can be provided at the design stage,
which in turn allows for gradual refinement of the designed

546

system. In HEKATE, this aspect is referred to as EVVA, that
is Evaluation, Verification, Validation and Property Check-
ing of the designed KB. This approach makes software test-
ing stage shorter and the bug squashing process becomes
mostly non-existent. Important properties of the future ap-
plication can be validated in the design stage and it is guar-
anteed that they will remain valid during execution because
of the nature of the Executable Design.

Concluding Remarks
The paper presents a concept of a hybrid design methodol-
ogy with multiparadigm approach to the software implemen-
tation. This concept is being developed within the HEKATE
project. It offers superior capabilities of formal verification,
and gradual refinement of the system from the conceptual
model phase to an executable prototype. This is possible
due to: XTT2, ARD, knowledge representation methods and
Prolog-based implementation.

The project will deliver the following software compo-
nents:

• an integrated ARD/XTT2 Design Environment,

• the Inference Engine, being a run-time environment for
applications,

• the Sequential Language Interface, providing an interface
with other (sequential) programming languages and envi-
ronments.

There are the following main features of the proposed Hy-
brid Knowledge Engineering approach regarding SE:

• consistency: the Semantic Gap in the design process is
decreased or even eliminated,

• reduced implementation time: the design becomes an ap-
plication; enabled by the Executable Design concept, the
implementation time of the business logic is almost ze-
roed,

• prone to errors: Evaluation, Verification, Validation and
Property Checking (EVVA) is provided in the design
stage by the integrated ARD/XTT2 design environment,

• prone to bugs: since the application design is validated
and the design is simultaneously implementation (thanks
to the Executable Design concept) the programming bugs
can be eliminated.

It is believed that ultimately, the proposed methodology
is going to provide an alternative for contemporary Software
Engineering approaches.

References
Burbeck, S. 1992. Applications programming in smalltalk-
80(tm): How to use model-view-controller (mvc). Techni-
cal report, Department of Computer Science, University of
Illinois, Urbana-Champaign.
de Moura, P. J. L. 2003. Logtalk. Design of an Object-
Oriented Logic Programming Language. Ph.D. Disserta-
tion, Universidade da Beira Interior, Departamento de In-
formatica, Covilha.

Jackson, P. 1999. Introduction to Expert Systems.
Addison–Wesley, 3rd edition. ISBN 0-201-87686-8.
Ligęza, A.; Wojnicki, I.; and Nalepa, G. 2001. Tab-trees: a
case tool for design of extended tabular systems. In et al.,
H. M., ed., Database and Expert Systems Applications, vol-
ume 2113 of Lecture Notes in Computer Sciences. Berlin:
Springer-Verlag. 422–431.
Ligęza, A. 2006. Logical Foundations for Rule-Based Sys-
tems. Berlin, Heidelberg: Springer-Verlag.
Maurer, F., and Ruhe, G., eds. 2004. Proceedings of the
Sixteenth International Conference on Software Engineer-
ing & Knowledge Engineering (SEKE’2004), Banff, Al-
berta, Canada, June 20-24, 2004.
Mellor, S. J., and Balcer, M. 2002. Executable UML: A
Foundation for Model-Driven Architectures. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc.
Miller, J., and Mukerji, J. 2003. MDA Guide Version 1.0.1.
OMG.
Nalepa, G. J., and Ligęza, A. 2005. Conceptual modelling
and automated implementation of rule-based systems. In
Krzysztof Zieliński, T. S., ed., Software engineering : evo-
lution and emerging technologies, volume 130 of Frontiers
in Artificial Intelligence and Applications, 330–340. Ams-
terdam: IOS Press.
Nalepa, G. J., and Zięcik, P. 2006. Integrated embed-
ded prolog platform for rule-based control systems. In
Napieralski, A., ed., MIXDES 2006 : MIXed DESign of
integrated circuits and systems : proceedings of the inter-
national conference : Gdynia, Poland 22–24 June 2006,
716–721. Ł odź: Technical University Lodz. Department
of Microelectronics and Computer Science.
Nalepa, G. J. 2004. Meta-Level Approach to Integrated
Process of Design and Implementation of Rule-Based Sys-
tems. Ph.D. Dissertation, AGH University of Science
and Technology, AGH Institute of Automatics, Cracow,
Poland.
Newell, A. 1982. The knowledge level. Artificial Intelli-
gence 18(1):87–127.
Rash, J. L.; Hinchey, M. G.; Rouff, C. A.; Gracanin, D.;
and Erickson, J. 2005. A tool for requirements-based pro-
gramming. In Integrated Design and Process Technology,
IDPT-2005. Society for Design and Process Science.
Ross, R. G. 2003. Principles of the Business Rule Ap-
proach. Addison-Wesley Professional, 1 edition.
Russell, S., and Norvig, P. 2003. Artificial Intelligence: A
Modern Approach. Prentice-Hall, 2nd edition.
Sommerville, I. 2004. Software Engineering. Interna-
tional Computer Science. Pearson Education Limited, 7th
edition.
Torsun, I. S. 1995. Foundations of Intelligent Knowledge-
Based Systems. London, San Diego, New York, Boston,
Sydney, Tokyo, Toronto: Academic Press.
von Halle, B. 2001. Business Rules Applied: Building
Better Systems Using the Business Rules Approach. Wiley.

547

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

