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Abstract

Using information from failures to guide subsequent search
is an important technique for solving combinatorial prob-
lems in domains such as boolean satisfiability (SAT) and con-
straint satisfaction problems (CSPs). The information learnt
can take various forms such as fine-grained information in
the form of no-goods and explanations in CSPs and clause
learning in SAT, or coarse-grained information in the form of
constraint weighting in CSPs and clause weighting in SAT.

In this paper we focus on CSPs, using constraint weighting
with restarts in order to identify global bottlenecks in a prob-
lem. This information is then used by a “weighted-degree”
heuristic to guide complete search, with the belief that in-
stantiating these elements first will reduce the overall search
effort required to either find a solution or prove the problem
insoluble.

We introduce two restarting strategies. ln WTDI (WeighTeD
Information gathering) the weighted-degree heuristic itself is
used with restarts; in RNDI (RaNDom Information gather-
ing) random variable selection is combined with constraint
weighting and restarts. For problems with clearly defined
sources of global contention both approaches were superior
to complete search with the original weighted degree heuris-
tic. However when these “globally” difficult elements be-
came more subtle, RNDI outperformed WTDI.

Introduction
Adaptive algorithms that use information gathered during
search represent a relatively new approach to solving hard
combinatorial problems such as the constraint satisfaction
problem (CSP), in which a set of variables must be assigned
values that satisfy constraints among subsets of variables in
the problem.

These adaptive methods usually gather information about
failure, which occurs when a partial solution cannot be ex-
tended. The most straightforward method is to store this par-
tial solution as a no-good; then if search encounters this set
of assignments again it can backtrack without further testing.
A subtler method is to record evidence about the context of

∗This work was supported by Science Foundation Ireland under
Grants 00/PI.1/C075 and 05/IN/I886.
Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

failure, usually in the form of constraint weights; this infor-
mation is used to refine subsequent heuristic decisions. Ex-
amples of the latter strategy are the weighted degree heuris-
tic proposed by (Boussemart et al. 2004) and the breakout
preprocessing strategy of (Eisenberg & Faltings 2003).

Constraint- or edge-weight learning follows the logic of
the Fail-First Principle of (Haralick & Elliott 1980). This
principle states that, “In order to succeed, try first where
you are most likely to fail.” That is, in solving CSPs it is
generally best to deal with variables that cause difficulty as
early as possible. This is because there is no point in making
assignments to easy parts of the problem and then undoing
them repeatedly when it proves impossible to find consistent
assignments for the remaining, difficult variables. Although
we know that variable ordering heuristics are affected by
factors other than fail-firstness (Smith & Grant 1998) (Beck,
Prosser, & Wallace 2003), it is clear that this has a major im-
pact on search efficiency (Beck, Prosser, & Wallace 2005).
Under this interpretation, weighting strategies work by flag-
ging variables that may be part of difficult subproblems, as
indicated by failures in these or neighboring variables.

The present work is based on the weighted degree heuris-
tic (Boussemart et al. 2004). This heuristic uses a strategy
of associating weights in the form of integers with each con-
straint. Weights are initially set to 1, and each time a con-
straint removes the final value(s) from a domain (causing a
domain wipeout), its weight is incremented. Variables are
then selected on the basis of the total weight associated with
their constraints. This is, therefore, an adaptive heuristic that
works to enhance any heuristic that takes into account a vari-
able’s degree. This strategy has been shown to outperform
one of the most widely used heuristics (min-domain/degree)
on a variety of difficult problems (Boussemart et al. 2004),
(Hulubei & O’Sullivan 2006).

However, using weighted degree in this way has poten-
tial limitations. The most obvious is that the heuristic uses
the least amount of data when making its most important
choices, i.e. the first few variable selections. Improvements
in search are likely to be restricted to lower levels of the
search tree; in particular, search may never return to those
first few variables.

In this paper, we show that this heuristic can be improved
by gathering information from different parts of the search
space prior to solving. Restarting search is a widely used
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technique for problem solving that has proven to be effec-
tive in a number of domains. In SAT, the solver Chaff
(Moskewicz, Madigan, & Malik 2001) uses restarts with
clause weighting and clause learning to provide a chance to
change early decisions in view of the current problem state.
Here we use two approaches with CSPs that combine restart-
ing with edge-weight learning in order to direct search more
intelligently. The first approach (WTDI) is similar to that of
Chaff, while the second approach could be viewed more as
“random probing” of the search space for information, sim-
ilar to (Refalo 2004).

Our approach assumes that elements representing sources
of global difficulty exist. Using the terminology of (Joslin
& Clements 1998), globally difficult elements are elements
which are difficult across large parts of the search space
while locally difficult elements are difficult only in the con-
text of their current state of search. These authors point out
that identification of difficult elements through static anal-
ysis of the problem is sometimes possible but interactions
between constraints can be quite complex. Often it is only
through search that these intricate relations come to the fore.

The next section provides background and definitions.
The following section describes the basic algorithms used
in this paper. The next two sections give the results of ex-
periments with our approaches, the first section deals with
problems with insoluble cores, the other deals with problems
where the sources of contention are less clearly defined. The
following section gives an analysis of weight changes using
these approaches, to provide a more in-depth understanding
of these methods, The last section discusses issues involved
in this type of learning and outlines our conclusions.

Background
A constraint satisfaction problem (CSP) is defined in the
usual way, as a tuple (V, D, C) where: V = {V1, ....., Vn}
is a set of variables which must be assigned values; D =
{D1, ....., Dn} is the set of domains for those variables con-
sisting of possible values which may be assigned to the vari-
ables; and C = {C1, ....., Cm} is the set of constraints. Con-
straints express relations Rel(Cj) among domain values that
that can be assigned to the variables in the scope of the con-
straint, (V ars(Cj)). In this paper we are concerned with
binary constraint problems, so a constraint has at most two
variables in its scope. Two variables are said to be neighbors
if there is a constraint between them, i.e. if ∃ Cj s.t. (Xa,
Xb) ∈ (V ars(Cj)), then Xa and Xb are neighbors.

An assignment is a set of tuples A =
{(V1, a), (V2, b), ....., (Vk, h)}, each tuple consisting of
a different instantiated variable and the value that is
assigned to it in search. A solution to a problem is an
assignment A = {(V1, a), (V2, b), ....., (Vn, x)} that includes
all variables and that does not violate any constraint.

A binary constraint satisfaction problem has an associated
constraint graph, where a variable is represented by a node in
the graph and a constraint Cj is represented by an edge be-
tween the two nodes in (V ars(Cj)). CSPs are also charac-
terized by certain basic parameters. Thus, the domain size of
a variable is simply the number of values in its domain. The
degree of a variable is the number of edges connected to it.

A constraint satisfaction problem is said to be arc-consistent
when every value in every domain has at least one support
in the domain of every neighboring variable (all other values
are removed), and every variable has at least one consistent
value in its domain.

The work described in this paper is concerned with com-
plete search. It is based on depth-first backtracking search,
where a value is assigned to each variable until either a com-
plete consistent assignment has been found or a dead-end
(in the form of an inconsistent assignment) has occurred.
All of our work employs a hybrid version of backtracking
and propagation or look-ahead techniques, termed MAC (for
maintaining arc-consistency), where the problem is made
arc-consistent after every assignment, i.e. all values which
are arc-inconsistent given that assignment are removed from
the current domain of their variable. If during this process
a domain wipeout occurs then the last value selected is re-
moved from the current domain of its variable and a new
value is assigned to the variable. If no new value exists then
search backtracks.

Description of the Algorithms
The basic weighted-degree heuristic was described in the In-
troduction. It should be noted that when selecting a vari-
able, the edge-weight-sum for each variable is based only
on edges connecting it to uninstantiated variables. These
sums are compared, and the variable with the largest sum is
selected as the next variable for instantiation. In this work,
we use a variant of the heuristic in which the weight infor-
mation is incorporated into the minimum domain/forward-
degree heuristic to produce a minimum domain/weighted-
degree heuristic (dom/wdeg for short).

We propose two main methods for combining dom/wdeg
with restart. In both methods, restarts occur after a fixed
number of nodes have been explored in the search tree (fixed
cutoff C). The reason that we do not use a restarting ap-
proach such as (Luby, Sinclair, & Zuckerman 1993) which
varies the cutoff, is that we do not want to bias the infor-
mation learnt in favour of runs where the cutoff was large.
If one were to vary the cutoff then more weight would be
assigned to the variables that were sources of contention in
the larger runs, which would localize the information learnt.
In addition, there is a fixed maximum number of runs, R,
which gives a maximum number of restarts = R − 1. If a
solution is found or the problem is proven insoluble before
the Rth run, the process terminates at that point. Otherwise,
it continues until the final run, at which point the cutoff is re-
moved (increased to ∞). This makes the method complete.

The reasoning behind the two methods represent fun-
damentally different strategies for learning. In the first
method, WTDI, the dom/wdeg heuristic is used to guide
search throughout, and edge-weights are carried along from
restart to restart. Since weights are constantly being updated
the heuristic ensures that search is unlikely to visit the same
part of the search space twice.

This algorithm was tested with the expectation that:

• for the easier problems in the set, a solution may be found
without restarting or after a small number of restarts (un-
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less the cutoff is too low).

• for harder problems, this approach, which learns from
each search attempt, may begin to solve problems within
the cutoff once it has enough information to make good
variable selections early in search.

• for the hardest problems, it will most likely reach the fi-
nal run where complete search is used. Here we expect
that the weights learnt from all the previous runs should
provide the heuristic with a better basis for making ini-
tial selections, and thus the problem will be solved more
quickly.

In the second method, RNDI, a variable is selected ran-
domly at each variable selection point during search for the
first R − 1 runs. Weights are incremented in the usual way
(i.e. when a constraint causes a domain wipeout). On the
final restart dom/wdeg is used in the normal way, but with
weight information learnt from these random probes of the
search space to enable it to make better early decisions. This
method was tried with the expectation that random orderings
would allow information to be gathered from more diverse
areas of the search space, thus providing a better sample
from which to identify global bottlenecks in the problem.
The disadvantage of this method is that for many problem
sets it is unlikely to solve even easy problem instances be-
fore the Rth run.

It should be noted that the use of restarts in the RNDI ap-
proach is mainly for information gathering purposes. Unlike
WTDI we are not expecting to solve the problem before the
cutoff. In this sense it differs from most other work which
use restarts as a method to avoid thrashing (Gomes, Selman,
& Kautz 1998), (Guddeti & Choueiry 2005).

Finding good parameters for C and R is an important as-
pect of our work. Currently our approach depends on trial
and error; however automating the process is the subject of
ongoing research. In (Grimes & Wallace 2006) we analyzed
various values of C and R in combination and found that a
good value for R was much more important than the value
for C, provided C was large enough to ensure learning (i.e.
C > the number of variables). “Good” values for C and R
can be different for the two approaches on a problem set.
WTDI benefits more from a larger cutoff, as it increases the
likelihood of solving the problem within the cutoff. RNDI
benefits from larger R with smaller C, since this provides a
more diverse sample of the search space.

In the following experiments values were chosen lexically
on all problem sets reported except on the soluble 200 vari-
able set for which a promise value ordering heuristic was
used (based on (Geelen 1992)). This heuristic calculates, for
each value in the domain of the current variable, the prod-
uct of the supporting values in the domains of neighboring
uninstantiated variables, and chooses as the next value the
one with the largest product. This has been shown to be ef-
fective in boosting search when solving soluble problems.

Note: For all RNDI experiments reported in the following
sections, each cutoff and restart pair were tested ten times
and the averages of the ten experiments are reported. This
was done to obtain adequate samples under randomization
and to avoid spuriously good (or bad) effects due to random

selections.

Problems with Insoluble Cores
Firstly we will provide results for some obvious cases where
these two methods are appropriate, namely on problems with
embedded insoluble subproblems. (It should be noted that
(Hemery et al. 2006) have independently proposed using the
weighted-degree heuristic with restarts as part of a process
for extracting minimal unsatisfiable cores from constraint
networks).

For these types of problems the smallest proof of insolu-
bility occurs when the variables in the insoluble subproblem
are selected first in search. However identifying an insoluble
subproblem is NP-complete in itself. By restarting and col-
lating information regarding failures in search we hope to
identify these globally difficult elements to provide search
with the best variable ordering from the outset.

The first two types of problems come from a CP solver
competition 1 (queens-knights problems and random 3-Sat
instances); the last problem set we generated ourselves. In
the queens-knights problem one must place n queens and
k knights on an n x n chessboard so that no two queens
can attack each other, and the knights form a cycle (when
considering knight moves). The problem is insoluble when
the number of knights is odd. There are two different ways
in which this problem can be formulated: in the first a queen
and a knight can share a square on the board (qk-n-k-add),
in the second they cannot share a square (qk-n-k-mul).

For the insoluble case (odd k), the min-domain/degree
(dom/deg) heuristic performs badly because it assigns the
n queens first (as their domains are of size n whereas the
knights’ domains are of size n2), and then tries to assign
the first knight at which point search backtracks. Normal
backtracking search will then try all combinations of values
for the n queens selected (backtracking when it reaches the
knights’ variables), without realizing that it is the knights
that are the source of difficulty.

Table 1. Results For Unsatisfiable Embedded Problems
Average Search Nodes

dom dom
− − WTDI RNDI

fdeg wdeg
(2.625K) (2.625K)

qk-25-5-add > 2M 116.9K 625 625
(3.625K) (2.625K)

qk-25-5-mul > 2M 112.6K 625 625
(61 > 100K) (224.2) (176.2)

ehi-85-297 63521 1160.3 14.2 21.1
(58 > 100K) (252.0) (174.2)

ehi-90-315 58012 1008.6 30.0 23.5
(100 > 100K) (425.96) (2075.0)

composed - 13953 45.96 75.0

Notes: In this and later tables, numbers in brackets for WTDI
and RNDI represent total search nodes including preprocessing.

1http://cpai.ucc.ie/06/Competition.html

594



The dom/wdeg heuristic starts off identically to dom/deg
until enough weight has been added to one of the knight’s
constraints to make up for its larger domain. This knight
is then consistently selected after each backtrack (it can be
thought of as incrementally moving up the ordering) until
search has backtracked to the first variable. The problem is
then proven insoluble when all values for the first (queen)
variable have been tried with all values for the knight vari-
able. Clearly if search had started by selecting one of the
knights first it would have proven the problem insoluble in
n2 nodes (i.e. tried every value for that knight).

The second type of problem from the solver competition
was originally proposed in CSP format in (Bacchus 2000).
It is the dual encoding of 2 classes of easy random 3-Sat
instances with an embedded unsatisfiable subproblem. The
first class, ehi-85, has 100 problems, each containing 297
variables (85 in the original sat problems), the second class,
ehi-90, also has 100 problems, each containing 315 variables
(90 in the original sat problems).

The last problem set reported in Table 1 is a set of 100
“composed” random problems, consisting of a main under-
constrained component in the form < n, d, m, t > where
n is the number of variables, d the uniform domain size,
m the graph density of the component and t the constraint
tightness, and k satellite components also in this form at-
tached by links < m, t >. For our problems, the main com-
ponent was <100,10,0.15,0.05>, there were 5 satellites, all
<20,10,0.25,0.5> and links were <0.012,0.05>.

For WTDI, if the cutoff is so low that no wipeouts occur
on the first run it will repeatedly explore the same part of the
search space. Thus it needed a larger cutoff than RNDI. For
example on the qk-25-5 instances, when WTDI had a cutoff
of 1000, it solved the problem in 2 restarts on qk-add and
3 restarts on qk-mul. For the same problems RNDI had 20
restarts with a cutoff of 100, and identified the knights as the
source of contention.

Further Experiments
The experiments in this section were carried out on random
binary CSPs which take the form < n, d, m, t > as defined
before. The problem parameters are based on the problem
sets used by (Boussemart et al. 2004) in their study of the
weighted degree heuristic; the only difference is that each of
the present problems consisted of a single connected com-
ponent. This was done by first connecting the nodes of the
constraint graph by a spanning tree and then adding edges at
random until the required number had been chosen.

The parameters are <200,10,0.0153,0.45> and
<80,10,0.1042,0.65>. In one case (the 200 variable
problem set), soluble and insoluble problems were selected
from the original set so that they could be tested separately.

The main results are shown in Table 2. Somewhat surpris-
ingly, WTDI never improved on the original weighted de-
gree heuristic, and in fact was sometimes appreciably worse.
It only solved 14 problems in the Random-200 soluble set
and 2 problems in the Random-80 set before the final run.
RNDI, on the other hand, always led to improved perfor-
mance although the differences were not large.

Table 2. Results For Random Binary Problems
Average Search Nodes Over 100 Problems

dom dom
− − WTDI RNDI

fdeg wdeg
Random-200 (46.5K) (36.2K)

Soluble 107K 37.9K 42.0K 31.2K
Random-200 (47.1K) (39.3K)

Insoluble 115.5K 41.2K 42.1K 34.3K
Random-80 (229.3K) (183K)
(54/100 sol) 242.6K 186.9K 221.3K 175K

Notes: For Random-200 problem sets, R = 10 and C = 500.
For Random-80 problem set, R = 40 and C = 200.

For purposes of analysis, we also ran a further set of ex-
periments on the random binary problems where the weights
were “frozen” after the R − 1th run, i.e. there was no learn-
ing on the final run, (cf. Table 3). This was done to obtain
information about the effectiveness of weight increments
during the initial runs without contamination from updates
during the final run of search. As can be seen the weights
learnt by WTDI made the heuristic perform worse; the op-
posite was true for RNDI since it performed equally well on
the Random-200 problem sets and actually improved perfor-
mance on the Random-80 set.

Table 3. Results with Frozen Weights
Average Search Nodes Over 100 Problems

Random-200 Random-200 Random-80
Soluble Insoluble (54/100 insoluble)

Frozen (74.0K) (59.1K) (276.3K)
WTDI 69.4K 54.1K 268.4K
Frozen (37.1K) (38.8K) (146.8K)
RNDI 32.1K 33.8K 138.8K

Notes: For Random-200 problem sets R = 10 and C = 500.
For Random-80 problem set R = 40 and C = 200.

This provides more compelling evidence concerning the
quality of information learnt by both approaches. A puz-
zling aspect of these results is that learning during the fi-
nal run can actually hinder search in the RNDI approach
(results for Random-80 problems). This could be ascribed
to the interaction between the weights learnt during prepro-
cessing and the weights learnt on the final run. Since we are
learning from a relatively small sample in our preprocess-
ing (only 8000 nodes in this case), the weights learnt from
it can be overcome by the weights learnt on the final run,
thereby changing the order of the variables (except for the
first variable selected).

It should be noted that, in these procedures, the extra work
done before solving is simply heuristic search using either
weighted-degree or random variable ordering. Furthermore,
the total constraint checks for the RNDI approach averaged
100K to 100M better than dom/wdeg depending on the prob-
lem set.
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Figure 1: Variable weights with R = 100 and C = 500 using
random variable ordering for weight learning.

Analysis of Weight Changes Produced by Each
Strategy
In order to better understand the differences between WTDI
and RNDI we ran both with 100 restarts and a cutoff of 500
nodes on selected problems of the 200-soluble problem set.
The five problems chosen for these tests were sufficiently
difficult that they would not be solved within the specified
cutoff before the final run. Each variable’s cumulated edge-
weight was saved after every restart.

After 100 restarts the sum of weights across all vari-
ables was 50% to 100% greater for RNDI than for WTDI.
This means that when using random variable ordering there
were 50% to 100% more domain wipeouts than when using
dom/wdeg for information gathering.

One explanation for the greater effectiveness of RNDI is
that it provides better discrimination among variables, espe-
cially those with the largest weights. Figure 1 shows typical
weight plots for a WTDI experiment and for two RNDI ex-
periments on the same problem after 100 restarts with a 500
node cutoff. In all three cases the variables were ranked ac-
cording to their weight after the 100th run.

The slope of the line indicates the level of discrimination
between successive variables. Note that for both random
orderings the slope is very steep for the top 50 variables
and maintains a better level of discrimination over the next
50 variables than WTDI. The slope for WTDI has a much
more gradual inclination, which indicates that even after 100
restarts there are no variables with a clearly larger weight
than their predecessor.

WTDI suffers from something that we call variable con-
vection, where different variables get weighted on each run,
changing the order each time. This effect occurs because
failures don’t normally occur until at least 4 or 5 variables
have been assigned; thus the first few variables chosen rarely
receive any weight in a given run. This is beneficial in the
context of restarting, however it does affect the method’s
ability to identify globally difficult elements.

As a result, although WTDI can identify a subset of vari-
ables which are the sources of contention, it does not of-
fer good discrimination between them. This is quite similar
to “squeaky wheel optimization” (Joslin & Clements 1998)
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Figure 2: Weight Increase per restart for last 10 restarts,
500C.

where difficult elements get handled earlier upon restart, and
because they are handled earlier they cause less “trouble”,
eventually falling back down the ordering to the point where
they are sources of difficulty again.

Figure 2 illustrates the notion of variable convection on
two highly ranked variables. The weight increase per restart
for two variables over the final 11 restarts out of the 100 is
shown. The two variables were selected because they were
chosen first by the heuristic on 8 out of the last 11 runs,
var-90 was chosen first on restart 90, 93, 94, 96; var-28 was
selected first on restart 95, 98, 99 and on the final run (which
isn’t included since there was no cutoff). Note that their
weight increases were 0 on the runs when they were chosen
first. Then when other variables achieved a weight larger
than theirs they fell back down the ordering and their weight
increased again.

These results show that RNDI results in more stable pat-
terns of edge-weights among variables across restarts. This,
in turn, implies that variables that are truly ‘critical’, i.e.
those associated with global difficulties in the sense used
above, can be found reliably in the sequence of repeated runs
with this strategy of probing for failure.

Discussion
Domain/weighted-degree is a powerful heuristic that already
demonstrates the benefits of learning from failure. Nonethe-
less, we have shown that further information can be ex-
tracted and utilised to improve search even more. Both
of our approaches improved on the original heuristic when
tested on problems with clearly defined sources of global
difficulty, in some cases by two orders of magnitude.

When the sources of global difficulty were not as clear
cut, e.g. on the random binary problems, RNDI consis-
tently outperformed both dom/wdeg and WTDI, although
the magnitude of the improvement was not appreciable on
some problem sets if one considers the preprocessing.

WTDI performed poorly on these sets as it struggled to
provide clear discrimination in weights between variables.
In our analysis of weight change we have demonstrated why
this is the case. However the WTDI approach might be bet-
ter suited to a geometric restarting strategy which would still

596



guarantee completeness. Although this approach would bias
towards weights learnt in the previous run, it is a strategy
that we are currently testing.

As in most learning from search approaches (Sleeman,
Langley, & Mitchell 1982), there are important blame as-
signment issues. When a wipeout is found during arc consis-
tency maintenance, one doesn’t know that a given constraint
is solely to blame for a variable’s domain going empty even
if it removed its last value. It could be that the constraint of
a neighboring variable had removed most of the values and
thus it should be this which is weighted. In this context, a
significant advantage of the weighted degree heuristic is that
the weight it gives for each individual wipeout is small. It
is the cumulative effect of a variable’s constraints directly
causing domain wipeouts on a number of occasions that de-
termines whether that variable will be selected over another.

The means to be able to distinguish between local and
global difficulty is an important aspect of this work. (Tomp-
kins & Hoos 2004) presented experimental data in the
SAT domain which suggested that clause weighting local
search algorithms do not benefit from their weights on a
global scale and that all learning is local. That is, they
found that restarting with these weights performed no better
than restarting with weights assigned randomly to clauses.
We contend that the method for search used in generating
weights highly influences the ‘globality’ of the weight. In
particular, deterministic approaches such as our WTDI ap-
proach, or a min-conflicts local search approach biases the
weights learnt. Therefore the ‘warped landscape’ generated
by these weights may not be a true reflection of the difficulty
of the problem as a whole.

RNDI learnt from more diverse parts of the search space
and thus gave a better approximation to areas of global con-
tention. Although this strategy is not suitable for solving
easy problem instances (the cost of probing the search space
is likely to outweigh the benefit of the information learnt)
we have shown that on hard problem sets, information gath-
ering prior to solving can be beneficial. Furthermore, the
RNDI process could be augmented by using a heuristic such
as dom/wdeg for the first restart, with a cutoff large enough
to allow it to solve easy instances of the problem set. This
would avoid biasing the overall information learnt for the
harder problems.
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