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Abstract

Recent work highlights advantages in decomposing multi-
class decision problems into multiple binary problems. Sev-
eral strategies have been proposed for this decomposition.
The most frequently investigated are All-vs-All, One-vs-All
and the Error correction output codes (ECOC). ECOC are
binary words (codewords) and can be adapted to be used in
classifications problems. They must, however, comply with
some specific constraints. The codewords can have several di-
mensions for each number of classes to be represented. These
dimensions grow exponentially with the number of classes of
the multiclass problem. Two methods to choose the dimen-
sion of a ECOC, which assure a good trade-off between re-
dundancy and error correction capacity, are proposed in this
paper. The methods are evaluated in a set of benchmark
classification problems. Experimental results show that they
are competitive against conventional multiclass decomposi-
tion methods.

Introduction
Several Machine Learning (ML) techniques can only induce
classifiers for 2-class problems. However, there are many
real classification problems where the number of classes is
larger than two. These problems are known as multiclass
classification problems, here named multiclass problems.
Two approaches have been followed in the literature to deal
with multiclass problems using binary classifiers. In the first
approach, the classification algorithm is internally adapted,
by the modification of part of its internal operations. The
second and most usual approach is the decomposition of the
multiclass problem into a set of 2-class classification prob-
lems. This paper covers the second approach.

The investigation of techniques able to decompose mul-
ticlass problems into multiple binary problems is attracting
growing attention. Most of the proposed approaches consist
of two phases: a decomposition phase, which occurs before
learning, and a reconstruction phase, which takes place after
the binary predictions. These phases can be formalized as
follows. Suppose a decision problem D = {�x, y}n, where �x
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is an input instance, y is its class label and n is the number
of training instances. Assume further that y ∈ {y1, ..., yk}
where k (k > 2) is the number of classes. The decompo-
sition phase consists in obtaining multiple binary problems
in the form Bi = {�x, y′}n, where y′ ∈ {0, 1}. After the
binary problems are defined, a learning algorithm induces
a decision model for each problem Bi. Afterward, these
decision models are used to classify test examples into one
of two classes, producing a binary output value. In the re-
construction phase, the set of predictions carried out by the
models define a binary vector, which is decoded into one of
the k original classes. Many strategies have been proposed
in the literature to deal with multiclass problems through
binary classifiers. Among them, the most known are One-
vs-All (OVA), where k binary problems are generated, each
discriminating one class from the remaining classes, All-
vs-All (AVA), where k(k − 1)/2 binary problems are pro-
duced, discriminating between all pairs of classes and Error-
correcting-output codes (ECOC), where the classes are en-
coded by binary vectors. This paper will focus on ECOC.

There are many advantages in the decomposition-based
approach for dealing with multiclass problems. First, several
classification algorithms are restricted to two-class prob-
lems: e.g. Perceptron, Support Vector Machines (SVMs),
etc. Even algorithms able to process multiclass problems,
here named multiclass algorithms, contain internal proce-
dures based on two classes. (e.g.: the twoing rule and the
subset splitting of nominal attributes in CART (Breiman
et al. 1984), etc.). Second, multiclass algorithms have
difficulty incorporating misclassification costs. Different
misclassifications may have different costs. A possible
method to incorporate misclassification cost sensitivity is
the employment of stratification. However, this method
is only efficient when applied to binary problems. Third,
it is easier to implement decomposition-based methods in
parallel machines. Fourth, recent work (Furnkranz 2002)
has shown that the AVA decomposition shows accuracy
gains even when applied to a multiclass algorithm, which
is confirmed by experiments carried out in this paper. Fi-
nally, since decomposition of multiclass problems is per-
formed before learning, it can be applied to any learn-
ing algorithm. For instance, it has been applied to algo-
rithms like Ripper (Furnkranz 2002), C4.5 (Quinlan 1993),
CART (Breiman et al. 1984), and SVMs (Hsu & Lin 2002).
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The decomposition method investigated, ECOC, employs a
distributed output code to encode the k classes of a multi-
class problem (Dietterich & Bakiri 1995). For such, a code-
word of length e is assigned to each class. However, the
number of bits for each codeword is usually larger than nec-
essary to represent each class uniquely. The main contribu-
tion of this work is to propose a new strategy to define the
best ECOC dimension for a given multiclass problem. After
describing alternatives investigated in the literature, we will
show that the proposed strategy maximizes the trade-off be-
tween redundancy and error correction capacity.

The paper is organized as follows. The next Section de-
scribes ML methods previously investigated for the decom-
position of multiclass problems into multiple binary prob-
lems, including the original ECOC. The new methods pro-
posed here to select ECOC dimension are introduced in third
Section. The fourth Section presents experimental evalua-
tion of these methods for benchmark multiclass problems.
The conclusions and future works are presented in the last
section.

Related Work
We have already referred to the decomposition and recon-
struction phases employed to deal with multiclass problems
using a set of binary classifiers. In the following subsec-
tions, we summarize the methods most frequently employed
for each of these phases.

Decomposition Phase. The decomposition phase divides
a multiclass problem into several binary problems. Each bi-
nary problem defines a training set, which is employed by
a learning algorithm to induce a binary decision model. To
illustrate the methods employed for this phase, suppose a
decision problem with k classes (k > 2). The most frequent
methods in the literature are:

• AVA: This method, employed in (Hastie & Tibshirani
1998; Moreira 2000; Furnkranz 2002), generates a binary
problem for each pair of original classes. The number of
binary problems created is k(k − 1)/2. For each decision
problem, only the examples with the two corresponding
class labels are considered. Therefore, each binary prob-
lem contains fewer examples than the original problem.

• OVA: This method, described in (Cortes & Vapnik 1995;
Rifkin & Klautau 2004), produces k binary problems.
Each problem discriminates one class from all the oth-
ers. All the available training examples appear in all the
binary problems.

• Nested dichotomies: The k classes are grouped into
2 groups. Each group is recursively divided into two
smaller groups, till a group containing only one class is
obtained (Moreira 2000).

• ECOC: Studied in (Dietterich & Bakiri 1995; Klautau,
Jevti, & Orlitsky 2003), this method will be described in
detail in the next subsection.

Error Correcting Output Codes Transmission of infor-
mation through a noisy channel can involve information

loss. With the development of the digital technology, the
receiver of a message can detect and correct transmission er-
rors. The basic idea is: instead of transmitting the message
in its original form, the message is previously encoded. The
encoding involves the introduction of some redundancy. The
codified message is sent through a noisy channel that can
change the message (errors). After receiving the message,
the receiver decodes it. Due to the redundancy included,
eventual errors might be detected and corrected. This is the
context where the ECOC appeared. In 1948, Claude Shan-
non (Shannon 1948) showed how ECOC could be used to
obtain a good trade-off between redundancy and capacity to
recover from errors. Later, Hamming (Hamming 1950) pre-
sented the Hamming matrix, developed to codify 4 bits of in-

formation using 7 bits: H =

[
1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

]
.

The function employed to encode a 4 bits message into 7
bits is: C(d1, d2, d3, d4) = (d1 + d2 + d4, d1 + d3 +
d4, d1, d2 + d3 + d4, d2, d3, d4). For instance, the message
1001 would be encoded as 0011001. Suppose that the mes-
sage m = 0010001 was received. The Hamming matrix is
able to inform if there is an error and where it occurred. If
there is no error, H ⊕ m = 0. Otherwise, we can determine

where the error occurred. By rotating H ⊕ m =

[
0
0
1

]

clockwise, we get the binary number 100, indicating the
fourth bit as the error source.

In the context of classification, each class is codified into a
binary codeword of size e and all codewords must be differ-
ent. Since each column defines a binary learning problem,
the number of binary decision models is e. However, the
Hamming matrix cannot be directly used in classification
problems: the last column will not define a decision prob-
lem, the first and sixth columns are complementary (corre-
spond to the same decision problem), etc. In Section 3 we
define the desirable ECOC properties for decomposing mul-
ticlass problems and propose new methods for their decod-
ing design.

Reconstruction Phase After decomposition, a learning
algorithm generates a decision model for each binary prob-
lem. When a test example is presented, each model makes
a prediction. In the reconstruction phase, the set of predic-
tions is combined to select one of the classes. Different ap-
proaches can be followed for this combination: i) Direct-
voting. Applied to the AVA decomposition, it counts how
many times each class was predicted by the binary clas-
sifiers. The most voted class is selected. ii) Distributed-
voting. Usually applied to the OVA decomposition. If one
class is predicted, this class receives 1 vote. If more than
one class is predicted, each one of them receives 1/(k − 1)
votes, where k is the total number of classes. The most voted
class becomes the predicted class. iii) Hamming Distance.
Employed by ECOCs, it is based on the distance between
binary vectors. The Hamming distance between two code-
words cw1 and cw2 of size e is defined by: hd(cw1, cw2) =∑e

i=1(|cw1,i − cw2,i|). The predicted class has the closest
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codeword to the vector of predictions made by the binary
models.

For all these methods there are probabilistic variants,
whose details can be seen in (Hastie & Tibshirani 1998).

Discussion In this section, we discuss the main advantages
and disadvantages of each multiclass decomposition strategy
when applied to a multiclass problem (k classes, k > 2):
i) AVA: The number of decision problems is k(k − 1)/2.
When the number of classes is increased, the number of bi-
nary problems increases in quadratic order, while the num-
ber of examples per problem decreases. Moreover, most of
these binary problems are irrelevant. For instance, suppose a
problem with 10 classes. From the 45 binary problems, only
9 can correctly classify a test example (those comparing the
correct class against one of the remaining classes). The other
36 problems would certainly wrongly classify this example.
Therefore, (k−1)(k−2)/2 binary classifiers would misclas-
sify any example and only k − 1 could provide the correct
classification. ii) OVA: This decomposition employs k bi-
nary decision problems. All the available training examples
appear in all the binary problems. The number of binary
problems grows linearly with the number of classes. Since
each class has to face all the others, if one class has much
fewer examples than the others (unbalanced), the prediction
model may be weak. Therefore, we expect this method to
perform better with balanced class distribution. iii) ECOC:
An advantage of ECOC is that the number of binary decision
problems depends on the size of the codeword. The size of
the codeword is at least �log2(k)� and at most 2k−1 − 1.
Although we can control the size of the codeword, the num-
ber of possible sizes grows exponentially with the number
of classes. The number of examples in each binary problem
is the same as in the original dataset.

By requiring smaller training sets, the classification mod-
els created for the AVA method generally are, individually,
faster to train. On the other hand, by creating fewer bi-
nary problems (and consequently classifiers) than the AVA
method, the OVA method usually presents memory and test
time gains. Both these methods can be represented by
ECOC using proper codewords.

Decomposition Using ECOC
Before ECOC can be applied to classification problems, a set
of conditions should be satisfied: i) Maximize the minimum
Hamming distance (dmin) between codewords; ii) Avoid
equal (and complementary) columns, because they would
generate equivalent decision models; iii) Do not allow any
constant column (only 0 or 1), because it would not gener-
ate a decision problem.

It must be observed that compliance with these conditions
does not avoid the generation of infeasible ECOCs. The de-
sign of a feasible ECOC for classification problems is an
open issue. It is not addressed in this paper. This paper is
concerned only with the selection of the best codeword di-
mension for an ECOC in a multiclass problem. The methods
presented here for this selection independent of the strategy
used to create the ECOC. The decomposition of a k-classes
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Figure 1: Support Function for k=5.

multiclass problem by ECOC produce between �log2(k)�
and 2k−1 − 1 binary problems. Like the maximum dimen-
sion, the number of possible dimensions increases exponen-
tially with k. In this paper, we propose alternatives to reduce
this number.

The Hamming distance selection. For a given value of k,
it is possible to have several dimensions with the same Ham-
ming distance. Since a lower dimension implies a smaller
number of binary classifiers, the ECOC with the lowest di-
mension should be used. The highest possible dmin for
the minimum size ECOC (ECOCmin) and for the maxi-
mum size ECOC (ECOCmax) are 1 and 2k−2, respectively.
These values define two points, which can be used to define
a straight line y = m.e + b, where m = 2k−2−1

(2k−1−1)−�log2(k)�

and b = 1−m�log2(k)�. We name this line y a support line,
because it allows us to know the best dmin for particular val-
ues of k and e. Since the Hamming distance is always an
integer, we rounded down y(k, e) to define the support func-
tion s(k, e) = � 2k−2−1

(2k−1−1)−�log2(k)�
(e−�log2(k)�)+1�. The

support function s(k, e) for k=5 is represented in Fig 1. The
points represented by a dot should be preferred, since they
have the lowest dimension among the points with the same
Hamming distance. For instance, since the best Hamming
distance for e=11 is equal to the best Hamming distance for
e=10, one should use the lowest value (e=10). In this case
(k = 5), we reduce the number of possible dimensions from
13 to 8. This method associated with the increase of k can
reduce the number of possible dimensions for the ECOC by
nearly 50%.

Maximum error correction selection. The maximum
number of errors (me) that can be corrected for a cer-
tain Hamming distance is given by the expression: me =

�
dmin(p,wj)−1

2 �. This expression allows us to know in ad-
vance the number of errors that a certain ECOC is able to
correct. Considering that a wrong classification is an error,
the value given by me is the number of binary prediction
models that can return a wrong prediction, provided that
the final prediction will still be correct. There are several
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Figure 2: Maximum Error Correction bme for k=7.

Hamming distances with the same value for the maximum
number of errors me(dmin, ei) = me(dmin, ej), ei �= ej .
The Hamming distance depends on the value of e. At the
same time, there are many ECOC dimensions resulting on
the same number of maximum errors that can be corrected.
Therefore, we should select the lowest dimension, since it
requires the creation of a smaller number of prediction mod-
els.

Evaluation function. As stated earlier, when using
ECOC, we look for a trade-off between redundancy (to be
minimized) and error correction capacity (to be maximized).
More important than simply increasing the dimension e is to
increase the dmin and, consequently, the me. For each value
of me, there are several possible dimensions. We want the
solution that presents the lowest dimension for the same me.
Thus, we defined the function bme(k, e) = me2/e, which is
represented in Fig 2 for k=7. This function will be a contin-
uously growing function, since each local maximum has a
value higher than the previous one. In this function, the dif-
ference between the local maxima is almost constant. How-
ever, we also want to penalize the increase in the dimension
e of the ECOC. Therefore, we created an evaluation func-
tion, defined as: eval(k, e) = bme(k,e)

k
. The local maxima

of this function have a logarithm behavior, as shown in Fig 3
for k=7. This function allows the reduction of the number of
possible dimension to approximately a quarter of the initial
value. However, there are still many dimensions to choose
from. We will present two methods to select a dimension
based on the evaluation function.

Tangent selection. The evaluation function can be seen as
a function that has a benefit (eval(k, e)) with a cost (the di-
mension e of the ECOC). An increase in the benefit implies
an increase in the cost. We want to find the point that has a
good trade-off between the benefit and the cost. A possible
approach to find a suitable cost/benefit balance is to select in
the evaluation function the point whose tangent (derivative)
is equal to 1 (angle of 45◦). Since our function is discrete,
we can use this approach by selecting 3 consecutive local
maxima and creating 2 straight lines: one connecting the

Classes OVA AVA ECOCmin ECOCtang ECOCpa

5 5 10 3 10 8
10 10 45 4 64 33
15 15 105 4 360 33
20 20 190 5 2289 45

Table 1: Number of binary problems for several Decomposi-
tion Methods: OVA, AVA, and ECOCs (Minimum, Tangent,
and Pareto).
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Figure 3: Evaluation function for k = 7 and the threshold
defined by the Pareto principle.

first 2 points and another connecting the last 2 points.
The tangent we are looking for is the perpendicular to the

bisector of the angle defined by these two lines. Other angles
can be used. For example, to get a dimension more biased
toward the reduction of e, we can use a 60◦ angle between
b1 and t1. On other hand, to favor a better aval(k, e), a
30◦ angle can be used. Thus, this method is very flexible.
Table 1 (ECOCtang) presents the dimension resulting from
this method for several numbers of classes.

Pareto selection. We applied the Pareto principle 1 to our
evaluation function. Our assumption is that the first 80% val-
ues of the evaluation function are too low to generate good
prediction results. Therefore, we decided to focus on the
highest 20% (Fig 3). This will be the area where the eval-
uation function has good values, i. e., has good capacity to
correct errors. At the same time, we want to reduce the di-
mension of the ECOC to the lowest possible. For such, we
look for the local maximum with the lowest of those dimen-
sions for which the evaluation functions is in the top 20%
values. Table 1 (ECOCpa) represents the dimensions ob-
tained by this method for different values of k.

Discussion. With the increase in the number of classes k,
the number of possible binary problems using ECOC in-
creases rapidly. The tangent selection method can be used
to select a suitable dimension. However, with the increase

1This principle states that few is vital (20%) and many are trivial
(80%).
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of k, this dimension will be much higher than those of the
OVA and AVA methods (Table 1). By using the dimension
given by the Pareto method, we get less binary problems
than AVA and this difference increases with k. Thus, the
adaptation of the Pareto method to the evaluation function
for the design of ECOC allows the decomposition of a mul-
ticlass problem with a large number of classes into a reason-
able number of binary problems, being a good alternative to
the AVA method.

Experimental Evaluation
Experiments were carried out using a set of benchmark prob-
lems to compare the results obtained by a classification al-
gorithm using the original multiclass problem and the pre-
viously discussed decomposition methods: AVA, OVA and
ECOC (for several dimensions). For these comparisons, we
selected 6 datasets from the UCI repository. All datasets are
multiclass problems. The number of classes varies from 4
to 10. We employed the 10-fold cross validation evaluation
procedure. The C4.5 and SVMs learning algorithms, as im-
plemented in R, were used. We should observe that C4.5, in
opposite to SVM, can directly process multiclass problems.

We evaluated ECOCs of several dimensions. ECOCmin

is the ECOC with minimum possible size, ECOCoa is the
ECOC with the same size of the OVA method, ECOCaa

is the ECOC with the size used by the AVA strategy,
ECOCtang is the ECOC with the size given by the tangent
selection criterion defined in section and ECOCpa is the
ECOC whose size is given by the Pareto method, presented
in section . The ECOCs used in these experiments were
created using the persecution algorithm (Pimenta & J.Gama
2005).

Error rates were compared using the Wilcoxon test with a
confidence level of 95%. In the case of C4.5, the reference
for comparison is the default mode of C4.5 (multiclass).
In the case of SVMs, the reference for comparisons is the
AVA method, following the suggestion in (Rifkin & Klautau
2004) and because this is the default method in the imple-
mentation used. The experimental results are illustrated in
Tables 2 and 3. For each dataset, we present two rows of
values. The first row shows the mean of the percentage of
correct predictions and the standard deviation. The second
row has the number of binary problems created 2. A pos-
itive (negative) sign before the accuracy value implies that
the decomposition method was significantly better (worse)
than the reference algorithm (Multiclass in Table 2 and AVA
in Table 3) . For each dataset, the best results are presented
in bold 3. Table 2 shows the correct classification rates using
the C4.5 algorithm.

The main conclusions derived from these results are:

• The ECOCs (except ECOCmin) and AVA decomposi-
tion methods usually improved the results obtained by the

2For the Multiclass column, it has the number of classes in the
original problem.

3There are no results in ECOCtang for the Car and Cleveland
datasets and in ECOCpa for the Cleveland dataset because there
are too few local maxima in the evaluation function.

multiclass approach. The superiority of the AVA decom-
position regarding the multiclass C4.5 confirm the results
presented in (Furnkranz 2002);

• ECOCtang outperformed AVA, at the cost of producing
a larger number of binary problems for larger values of k;

• ECOCtang outperformed the other ECOC variations (ex-
cept for the ECOCoa in the Cleveland dataset), at the cost
of requiring a larger number of classifiers for higher val-
ues of k;

• ECOCpa outperformed AVA in 3 of 4 datasets (those
with the highest number of classes), requiring, at the same
time, fewer binary problems.

• In the same 4 datasets, ECOCtang was significantly bet-
ter than the multiclass approach (C4.5);

• The ECOCoa method exhibited better classification re-
sults than the OVA decomposition, using the same num-
ber of classifiers;

• Usually, the best accuracy rates were obtained by the
ECOCtang decomposition. This method used the largest
number of classifiers.
The results of the car dataset for the OVA method are

very poor when compared with all other methods. We can
attribute them to the distribution of the car dataset. This
dataset has 4 classes with unbalanced distribution. This is
a weakness of the OVA method, already referred to in the
related work section. Table 3 presents the classification
results obtained by the SVM algorithm.

The main conclusions from these results are:
• The OVA method presented the worst performance for all

datasets, contradicting the results of (Rifkin & Klautau
2004);

• Overall, the ECOCs and AVA methods shown similar re-
sults. The ECOCs presented the best results in 3 datasets
(only one statistically significant). AVA also presented the
best results in 3 datasets (two statistically significant);

• Results produced by ECOCpa are competitive with those
produced by AVA in 3 of 4 datasets (the datasets with the
largest number of classes), while requiring fewer binary
classifiers. The results using the OVA method for the car
dataset were, again, very poor.

Conclusions and Future Work
This paper investigates the decomposition of multiclass clas-
sification problems into multiple binary problems using
ECOC’s. One of the main issues related to the use of ECOC
is the definition of the codeword dimension. We introduced
a new approach to reduce the number of possible dimensions
for a problem with k classes to a quarter of the initial value
- the evaluation function. Moreover, we presented two new
solutions to select one from a set of possible dimensions: the
tangent selection and the Pareto method. Experimental re-
sults using 6 UCI datasets and two learning algorithms (C4.5
and SVM) show that the proposed methods are very compet-
itive when compared with standard decomposition methods
(AVA, OVA) and with the direct multiclass approach (C4.5),
which is a good indication of their potential.
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Dataset Multiclass OVA AVA ECOCmin ECOCoa ECOCaa ECOCtang ECOCpa

Car 93.1±2.0 −20.5±2.6 +94.3±1.3 −90.6±2.1 −90.4±2.9−92.1±2.3 NA NA
4 4 6 2 4 6

Cleveland 52.5±6.3 54.1±9.6 51.1±6.8 54.8±9.0 55.1±8.2 54.8±9.9 54.8±9.9 NA
5 5 10 3 5 10 10

Glass 55.3±13.3 49.5±11.6 +63.1±11.4 57.1±11.3 50.4±8.9 58.8±13.1 +70.6±4.6 52.7±12.9
6 6 15 3 6 15 18 13

Satimage 86.7±1.6 −83.0±1.8 87.4±1.6 −82.7±1.1 85.5±1.3 +89.7±1.4 +90.2±1.5 +88.9±1.1
6 6 15 3 6 15 18 13

Pendigits 96.3±0.7 −94.2±1.0 +96.5±0.6 −93.3±0.6 +97.4±0.7 +99.1±0.1 +99.2±0.2 +99.1±0.2
10 10 45 4 10 45 64 33

Optidigits 90.1±1.2 −88.6±1.2 +94.8±0.9 −85.5±1.7 +92.3±1.4 +97.7±0.8 +98.2±0.5 +97.4±0.5
10 10 45 4 10 45 64 33

Table 2: Comparison between multiclass, OVA, AVA and ECOCs with several dimensions using C4.5.

Dataset OVA AVA ECOCmin ECOCoa ECOCaa ECOCtang ECOCpa

Car −21.8±2.0 83.3±22.7 86.1±3.4 −21.2±2.0 84.4±3.7 NA NA
4 6 2 4 6

Cleveland 54.1±9.6 59.4±11.9 56.8±7.9 58.4±9.8 57.8±9.0 57.8±9.0 NA
5 10 3 5 10 10

Glass 48.2±9.5 51.4±8.8 55.2±13.7 48.6±9.9 50.4±9.8 54.2±10.5 50.4±9.2
6 15 3 6 15 18 13

Satimage −86.5±1.1 90.9±1.2 −87.5±1.3 −88.8±1.4−88.1±1.0 −89.0±1.3 88.1±0,9
6 15 3 6 15 18 13

Pendigits −99.1±0.4 99.6±0.3 −98.9±0.5 −99.3±0.3−99.3±0.3 −99.4±0.3 99.3±0,4
10 45 4 10 45 64 33

Optidigits −97.0±0.5 98.5±0.5 −97.4±0.9 −98.0±0.6 +99.3±0.3 +98.5±0.3 98.5±0.5
10 45 4 10 45 64 33

Table 3: Comparison between OVA, AVA and ECOCs with several dimensions using SVM.
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