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Abstract

Context-sensitive Multiple Task Learning, or csMTL, is
presented as a method of inductive transfer that uses a
single output neural network and additional contextual
inputs for learning multiple tasks. The ¢sMTL method
is tested on three task domains and shown to produce
hypotheses for a primary task that are significantly bet-
ter than standard MTL hypotheses when learning in the
presence of related and unrelated tasks. A new measure
of task relatedness, based on the context input weights,
is shown to have promise. The paper also outlines a ma-
chine lifelong learning system that uses ¢sMTL for se-
quentially learning multiple tasks. The approach satis-
fies a number of important requirements for knowledge
retention and inductive transfer including the elimina-
tion of redundant outputs, representational transfer for
rapid but effective short-term learning and functional
transfer via task rehearsal for long-term consolidation.

Introduction

Multiple task learning (MTL) neural networks are one of
the better documented methods of inductive transfer of task
knowledge (Caruana 1997; Silver & Mercer 1997). An MTL
network is a feed-forward multi-layer network with an out-
put for each task that is to be learned. The standard back-
propagation of error learning algorithm is used to train all
tasks in parallel. Consequently, MTL training examples are
composed of a set of input attributes and a target output for
each task. Figure 1 shows a simple MTL network contain-
ing a hidden layer of nodes that are common to all tasks. The
sharing of internal representation is the method by which in-
ductive bias occurs within an MTL network (Baxter 1996).
The more that tasks are related, the more they will share rep-
resentation and create positive inductive bias.

Formally, let X be a set on " (the reals), Y the set of
{0,1} and error a function that measures the difference be-
tween the expected target output and the actual output of
the network for an example. Then for single task learning
(STL), the target concept is a function f that maps the set
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Figure 1: A multiple task learning (MTL) network with an
output node for each task being learned in parallel.

XtothesetY, f : X — Y, with some probability dis-
tribution P over X x Y. An example for STL is of the
form (x, f(x)), where x is a vector containing the input val-
ues 1, Za,...,2x, and f(x) is the target output. A train-
ing set Sgry, consists of all available examples, Sgr; =
{(x, f(x))}. The objective of the STL algorithm is to find
a hypothesis i within its hypothesis space Hg7, that min-
imizes the objective function, > ¢ error [f(x), h(x)].
The assumption is that Hgry, C {f|f : X — Y} contains a
sufficiently accurate h.

MTL can be defined as learning a set of target concepts
f = {f1, f2,... fx} such that each f; : X — Y with a
probability distribution P; over X x Y. We assume that the
environment delivers each f; based on a probability distri-
bution @ over all P;. () is meant to capture some regular-
ity in the environment that constrains the number of tasks
that the learning algorithm will encounter. () therefore char-
acterizes the domain of tasks to be learned. An example
for MTL is of the form (x,f(x)), where x is the same as
defined for STL and f(x) = {f;(x)}, a set of target out-
puts. A training set Sy, consists of all available examples,
Surr = {(x,f(x))}. The objective of the MTL algorithm
is to find a set of hypothesesh = {hy, ho, ..., hy} within its
hypothesis space H ;7 that minimizes the objective func-
tion Y weSarrs Zf:.l error [fz(x), h;(x)]. The assumption
is that Hpspy, contains sufficiently accurate h; for each f;
being learned. Typically |H | > |Hsrr| in order to rep-
resent the multiple hypotheses.



Limitations of MTL for Lifelong Learning

Previously, (Silver & Mercer 2002; Silver & Poirier 2004;
O’Quinn, Silver, & Poirier 2005) have investigated the use
of MTL networks as a basis for developing a machine life-
long learning (ML3) system and have found them to have
several limitations related to the multiple outputs of the net-
work. First and foremost, MTL requires that training exam-
ples contain corresponding target values for each task; this
is impractical for lifelong learning systems as examples of
each tasks are acquired at different times and with unique
combinations of input values. We have examined methods
of generating corresponding target values but have found
weaknesses related to the differences in the distribution of
examples over the input space for various tasks.

With MTL, shared representation is limited to the hidden
node layer and is not possible at the output nodes. The the-
ory is that optimal inductive transfer occurs when related
tasks share the same hidden nodes. This perspective does not
consider the sharing of knowledge at the example level and
in the context of unrelated tasks. Consider two concept tasks
where half of the MTL training examples have identical tar-
get values. From a MTL task-level perspective, using most
statistical and information theoretic measures, these sets of
training examples would be considered unrelated and of lit-
tle value to each other for inductive transfer.

There is also the practical problem of how a MTL based
lifelong learning agent would know to associate an exam-
ple with a particular task. Clearly, the learning environment
should provide the contextual queues, however this suggests
additional inputs and not outputs. A related problem is man-
aging the redundant representation that can develop for the
same task in an ML3 system based on MTL. A lifelong
learning system should be capable of practising a task and
improving its model with new examples over time. How-
ever, because there are is no task context queue, an MTL
based ML3 system requires a separate output for each new
set of training examples. It is unclear how this build up of
redundant task outputs over time can be handled.

In response to these problems, we have developed
context-sensitive MTL, or csMTL. csMTL is based on stan-
dard MTL with two major differences; only one output is
used for all tasks and additional inputs are used to indicate
the example context, such as the task to which it is associ-
ated. The following section describes the csMTL network.
The remaining sections present a ML3 system based on a
csMTL network, discuss its theoretical benefits and limita-
tions and report on experiments that test its performance.

c¢sMTL

Figure 2 presents the csMTL network. It is a feed-forward
network architecture of input, hidden and output nodes that
uses the back-propagation of error training algorithm. The
¢csMTL network requires only one output node for learning
multiple concept tasks (more outputs could be used for pre-
dicting a vector of values for each task). Similar to standard
MTL neural networks, there is one or more layers of hidden
nodes that act as feature detectors. The input layer can be
divided into two parts: a set of primary input variables for
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Figure 2: Proposed system: csMTL

the tasks and a set of inputs that provide the network with
the context of each training example. The context inputs can
simply be a set of task identifiers that associate each training
example to a particular task. Alternatively, they can offer
more specific environmental information (such as location
and light level) and in this way index over a continuous do-
main of tasks. Related work on context-sensitive machine
learning can be found in (Turney 1996).

Formally, let C' be a set on " representing the context
of the primary inputs from X as described for MTL. Let ¢
be a particular instance of this set where ¢ is a vector con-
taining the values ¢y, ca, . . ., cx; where ¢; = 1 indicates that
the example is associated with function f;. ¢sMTL can be
defined as learning a target concept f’ : C'x X — Y; witha
probability distribution P’ on C' x X X Y where P’ is con-
strained by the probability distributions P and @) discussed
in the previous section for MTL. An example for csMTL
takes the form (¢, x, f(¢, X)), where f'(¢,x) = f;(x) when
¢; = 1 and f;(x) is the target output for task f;. A train-
ing set S.sprrr consists of all available examples for all
tasks, Scsprr = {(¢,x, f'(¢,x))}. The objective of the
¢sMTL algorithm is to find a hypothesis 4’ within its hy-
pothesis space H.sprrr that minimizes the objective func-
tion, . cs. ..., error [f'(e,x), h'(¢,x)]. The assumption
is that Hesprrr, C {f|f : C x X — Y} contains a suffi-
ciently accurate h'. Typically, |H.spsrr| = |Harr| for the
same set of tasks because the number of additional context
inputs under csMTL matches the number of additional task
outputs under MTL.

With ¢sMTL, the entire representation of the network is
used to develop hypotheses for all tasks, f’(c,x), follow-
ing the examples drawn according to P’. The focus shifts
from learning a subset of shared representation for multi-
ple tasks to learning a completely shared representation for
the same tasks. This presents a more continuous sense of
domain knowledge and the objective becomes that of learn-
ing internal representations that are helpful to predicting the
output of similar combinations of the primary and context
input values. Therefore, the important concept of related-
ness shifts from the task level to the example level. During
learning, ¢ selects an inductive bias over H.sps7 1 relative to
the secondary tasks being learned in the network. Once f” is
learned, if x is held constant, then ¢ indexes over the hypoth-
esis base H.sprrr - If ¢ is a vector of real-valued inputs and
from the environment, it provides a grounded sense of task
relatedness. If ¢ is a set of task identifiers, it differentiates



between otherwise conflicting examples and selects internal
representation used by related tasks.

In the following section we propose how ¢sMTL can be
used to overcome the limitations of standard MTL for con-
struction of a ML3 system. The proposed ML3 is described
so as to provide addition motivation for and useful charac-
teristics of csMTL.

¢sMTL and Machine Lifelong Learning

Figure 3 shows the proposed csMTL ML3 system. It has
two components; a temporary short-term learning network
and a permanent long-term consolidation csMTL network.
The long-term csMTL network is the location in which do-
main knowledge is retained over the lifetime of the learning
system. The weights of this network are updated only after a
new task has been trained to an acceptable level of accuracy
in the short-term learning network. The short-term network
can be considered a temporary extension of the long-term
network that adds representation (several hidden nodes and
a output node, fully feed-forward connected) that may be
needed to learn the new task. At the start of short-term learn-
ing the weights associated with these temporary nodes are
initialized to small random weights while the weights of the
long-term network are frozen. This allows representational
knowledge to be rapidly transferred from related tasks ex-
isting in the long-term network without fear of losing prior
task accuracies.

Once the new task has been learned, the temporary
short-term network is used to consolidate knowledge of the
task into the permanent long-term c¢sMTL network. This is
accomplished by using a form of functional transfer called
task rehearsal (Silver & Mercer 2002). The method uses the
short-term network to generate virtual examples for the new
tasks so as to slowly integrate (via back-propagation) the
task’s knowledge into the long-term network. Additionally,
virtual examples for the prior tasks are used during consoli-
dation to maintain the existing knowledge of the long-term
network. Note that it is the functional knowledge of the
prior tasks that must be retained and not their representation;
the internal representation of the long-term network will
necessarily be updated as the new task in integrated.

Benefits and Limitations

The following discusses the benefits and limitations of the
proposed csMTL method of life-long learning.

Long-term Retention of Learned Knowledge.

Knowledge retention in a MTL network is the result of
consolidation of new and prior task knowledge using task
rehearsal (Silver & Mercer 2002). Task rehearsal over-
comes the stability-plasticity problem originally posed by
(Grossberg 1987) taken to the level of learning sets of
tasks as opposed to learning sets of examples (Robins 1995;
French 1997). Consolidation of new task knowledge without
loss of existing task knowledge is possible given sufficient
number of training examples, sufficient internal representa-
tion for all tasks, slow training using a small learning rate
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Figure 3: Proposed system: csMTL

and a method of early stopping to prevent over-fitting and
therefore the growth of high magnitude weights (Silver &
Poirier 2004).

In the long-term ¢sMTL network there will be an effec-
tive and efficient sharing of internal representation between
related tasks, as in the case of an MTL network, without
the disadvantage of having duplicate representation of iden-
tical or near identical task outputs. Over time, more detailed
practice sessions for the same task will contribute to the de-
velopment of a more accurate long-term hypothesis. Learn-
ing closely related tasks will fill in useful knowledge of the
domain. In fact, the csMTL network can represent a fluid
domain of tasks where subtle differences between tasks can
be represent by small changes in the context inputs.

Our conjecture is that csMTL does not require an ex-
plicit method of indexing into domain knowledge for related
tasks. Instead, the internal representation of all tasks saved
in the long-term network is used (held fixed) as a portion
of the new hypothesis. Indexing occurs as the connection
weights between the long-term network and the temporary
short-term network are trained.

The ¢sMTL ML3 approach does have its limitations. It
suffers from the scaling problems of similar neural net-
work systems. The computational complexity of the stan-
dard back-propagation algorithm is O(W?3), where W is the
number of weights in the network. Long-term consolida-
tion will be computationally more expensive than standard
MTL because the additional contextual inputs will increase
the number of weights in the network at the same rate as
MTL and it may be necessary to add an additional layer of
hidden nodes for certain task domains. The rehearsal of each
of the existing domain knowledge tasks requires the creation
and training of m - k virtual examples, where m is the num-
ber of virtual training examples per task and & is the number
of tasks. An important benefit from consolidation is an in-
crease in the accuracy of related hypotheses existing in the
csMTL network as a new task is integrated.



Short-term Learning with Inductive Transfer

An inductive transfer system should produce a hypothesis
for the primary task that meets or exceeds the generaliza-
tion performance of hypotheses developed strictly from the
training examples. The proposed csMTL ML3 system uses
a temporary short-term learning network with representa-
tional transfer from the long-term consolidation network.
This form of transfer should be efficient and effective. If the
current task has been previously learned and retained, then
the weights between the long-term network and the short-
term network will train quickly to produce the desired out-
put. If the new task is different but related to a prior task,
the long-term to short-term network weights will select the
most appropriate features of domain knowledge and the sup-
plemental hidden nodes of the short-term network will play
only a partial role in the hypothesis. If the new task is unre-
lated to any prior learning, the supplemental internal repre-
sentation of the short-term network will play the major role
in the new hypothesis.

Although the computational cost of long-term consolida-
tion is high, the benefit is that a hypothesis for a new but
related task can be quickly developed in the short-term net-
work. The reasons for this are: the existing internal repre-
sentation of the long-term network can be used to develop
the hypothesis, only the new task training examples are re-
quired, and there are relatively few weights in the temporary
short-term network to be trained.

Experimentation

This section reports on a set of initial experiments that com-
pares the ability of csMTL to transfer knowledge with MTL
and nMTL, a variant of MTL that selects the most related
task knowledge based on correlation of the target outputs
(Silver & Mercer 2002). All experiments use a csMTL net-
work as described in the csMTL section. Empirical studies
of a lifelong learning system with short-term and long-term
components, as described in the previous section, will be re-
ported in a future article.

Three domains have been studied using csMTL. The Band
domain, described in (Silver & Mercer 2002), consists of
seven synthetic tasks. Each task has a band of positive ex-
amples across a 2-dimensional input space. The tasks were
synthesized so that the primary task 7T would vary in its re-
latedness to the other tasks based on the band orientation.
The Logic domain, described in (McCracken 2003) consists
of six synthetic tasks. Each positive example is defined by a
logical combination of 4 of the 10 real-valued inputs of the
form, Ty : (IO >05VILH > 05) AN (_[2 > 0.5V I3 > 05)
The tasks of this domain are more or less related in that they
share zero, one or two features such as (Ip > 0.5V 1; > 0.5)
with the other tasks. The Band and Logic domains have been
designed so that all tasks are non-linearly separable; each
task requires the use of at least two hidden nodes of a neural
network to form an accurate hypothesis. The fMRI domain
challenges the learning systems to develop models that can
classify 24 features extracted from fMRI images as a subject
reading a sentence or viewing a picture!. Inductive transfer

'Courtesy of the Brain Image Analysis Research Group and
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between two subject models is examined; from subject T}
for which good models could be developed to a second sub-
ject T for which only poor models could be developed.

Method

A c¢sMTL network was configured for each domain with one
output node, a layer of hidden nodes (30 for the Band, 20 for
the Logic and 10 for the fMRI domain) and a layer of input
nodes. The Band domain has 9 inputs, 2 represent the coor-
dinates of the 2-dimensional input space and the remaining
7 provide the context, that is, they indicate the task to which
each example belongs. The Logic domain has 16 inputs, 10
represent the primary values for logical expression and the
remaining 6 provide the task context. The fMRI domain has
26 inputs, where 24 are used to represent the activity level of
aregion of interest in the subjects brain and the remaining 2
indicate subject T or 7.

For all three domains, the objective is to learn task Ty
using an impoverished training set of examples (10 for the
Band, 30 for the Logic and 48 for the fMRI domain) for
which single task learning (STL) does poorly. Each of the
other tasks of the domain have 48 or more training examples
that have been demonstrated to develop models with accu-
racies greater than .75 using a STL network. A tuning set
of examples (10 for the Band, 20 for the Logic and 8 for
the fMRI domain) is used to prevent over-fitting on each do-
main. An independent test set (200 for the Band, 1000 for
the Logic and 24 for the fMRI domain) was used to deter-
mine hypothesis performance.

The mean accuracies reported are from repeated studies
(10 for the Band, 30 for the Logic domain and 5 for the
fMRI domain).

Results

Figure 4 shows the results for the three domains. It compares
the mean accuracy of the csMTL hypotheses developed for
the Tj tasks to hypothesis developed with no inductive trans-
fer under STL, with transfer under standard MTL, and se-
lective transfer under nMTL. The MTL and nMTL results
demonstrate the advantage of knowledge transfer with mean
accuracies that are significantly better for all domains of
tasks. ¢sMTL does significantly better than STL and MTL
on all domains, equal in performance to nMTL on the Band
and Logic domains and significantly better than yMTL on
the fMRI domain. The results indicate that csMTL is able to
selectively transfer knowledge from the shared internal rep-
resentation to a new task when training on examples of all
prior tasks without the aid of a measure of task relatedness.

Discussion

A brute force study of learning 7 in an ¢sMTL network
with each of the secondary tasks has shown that the most
accurate hypotheses are developed when inductive transfer
occurs from 73 or T» for the Logic domain. We therefore
consider these tasks to be the most related to the primary Tj
task.

CALD, Carnegie Mellon University.
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Figure 5: Correlation similarity of context input-to-hidden
node weights in csMTL networks developed for Logic (left)
and Band (right) domains.

In the csMTL section we conjecture that relatedness be-
tween tasks can be measured by the similarity of the input
to hidden node weights for each c¢;, if ¢ is a set of task
identifiers. To test this we examined the ¢sMTL network
weights developed for the tasks of the Logic domain. Specif-
ically, we computed the linear correlation of the weight vec-
tor associated with the T context input to the corresponding
weight vectors for the other tasks. Figure 5 shows the cor-
relation values in the form of bar graphs. The left graph of
the Logic domain shows that T and 75 weights are the only
two tasks that are positively correlated with the T weights.
This agrees with the brute force sense of relatedness.
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Conclusion

This paper has presented csMTL as a method of inductive
transfer that uses a single output neural network and addi-
tional context inputs for learning multiple tasks. The method
was developed in response to problems we had encounter in
using MTL networks for developing machine lifelong learn-
ing (ML3) systems. The question of how an example is asso-
ciated with one task versus another is solved by the context
inputs. The operator (or the environment) can provide these
contextual queues with each example. The method elimi-
nates the build-up of redundant task representation that can
frustrate the search for related prior knowledge. Lastly, and
perhaps most importantly, the csMTL approach shifts the fo-
cus from learning a subset of shared representation for mul-
tiple tasks to learning a completely shared representation for
the same tasks. The context inputs can be seen as index-
ing over that domain at the example level as opposed to the
task level. Our conjecture is that this approach avoids the
issue of having to measure the relatedness between tasks in
order to ensure a positive inductive bias. Similar examples
of the primary task will collaborate with similar examples
of related tasks to build mutually beneficial internal repre-
sentation. Dissimilar examples will work to develop unique
representations that capture the subtleties of the individual
tasks. We are currently examining the theory of Hints (Abu-
Mostafa 1995) for direction on formalizing the notion that
each separate task can be seen as a Hint that reduces the VC
dimension for learning the internal representation of related
tasks within the domain.

Experimentation on three different domains of tasks has
demonstrated that csMTL can produce hypotheses that are
significantly better than standard MTL hypotheses when
learning a primary task in the presence of related and un-
related tasks. The results indicate that csMTL is able to



selectively transfer knowledge from shared internal repre-
sentation to a new task without the aid of a measure of task
relatedness. An analysis of the context input-to-hidden node
weight vectors indicates that similarity between weight vec-
tors provides a promising measure of task relatedness should
it be needed.

The paper also describes a ML3 system based on csMTL
that is capable sequential knowledge retention and inductive
transfer. The system is meant to satisfy a number of ML3
requirements including the effective consolidation of task
knowledge into a long-term network using task rehearsal,
the accumulation of task knowledge from practice sessions,
effective and efficient inductive transfer during new learn-
ing, and the tradeoff between using inductive transfer and
the available training examples during new learning. We are
currently developing a csMTL ML3 system capable of se-
quential learning and plan to conduct experiments on infor-
mative synthetic and real-world domains so as to more fully
explore the approach.
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