
Fuzzy Temporal Relations for Fault Management

Hanna Bauerdick and Björn Gottfried
Artificial Intelligence Group

Center for Computing Technologies
Universität Bremen

{hbauerdick|bg}@tzi.de

Abstract

In this paper we shall introduce an approach that forms a basis
for temporal data mining. A relation algebra is applied for the
purpose of representing simultaneously dependencies among
instants, dependencies between instants and intervals, and de-
pendencies between intervals. This enables one to specify
and recognise complex interrelationships among point events
in data streams. An example is set for the case of thrown
alarms in communication networks. This domain, however,
suffers from uncertainties in temporal patterns. Therefore a
fuzzification is applied to the proposed relational system1.

Introduction
The representation of relationships in temporal data mining
approaches is a big issue and has great impact on the expres-
siveness of patterns (Laxman & Sastry 2006). In several do-
mains such expressive patterns are of great use, e. g. for the
discovery of alarm patterns in the context of fault manage-
ment, namely to improve the understanding of the network
and in order to generate fault prediction rules; but also for
such diverse purposes as for the identification of proteins on
the basis of amino acids and for the prediction of financial
and stock markets. Commonly, a temporal order is imposed
on these data streams and we are normally concerned with
long sequences of events. In particular, in a number of do-
mains (e. g. in fault management) it makes sense to analyse
sequences of events in relation to certain calendar events,
such as days, weeks, months, or public holidays. These cal-
endar events, then, can considerably increase the diversity
of detected patterns, even if nothing else is known about the
events.

Related Work
Both sorts of objects instants and intervals are found in the
related work on temporal data mining (Laxman & Sastry
2006). Several approaches deal with sequences of point-like
events, which have to be analysed in order to find temporal
patterns in the data. (Mannila, Toivonen, & Verkamo 1997)
look for frequent temporal patterns in alarm sequences of

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Funded by the European Commission, through IST project
MDS, contract no. 26459.

networks. Here, an event refers to a point in time and to
a given event type. Their goal is to find temporal relations
between events. However, they only define two possible re-
lations between events: serial and parallel. If two events
persist in a serial relation, there exists a total order between
them (like event A happened before event B). In a parallel
relation the events have no order at all. These two temporal
relations are also used in several other approaches, e. g. in
(Casas-Garriga 2003).

Bettini et al. 1998, incorporate what they refer to as mul-
tiple time granularities: months, weeks, and business days;
they model them as intervals in the event correlation pro-
cess. Occurred events are in turn be related to these granu-
larities. For this purpose, a contains relation is defined be-
tween instants and such intervals. This same relation is used
to define a hierarchical structure between time granularities.
Consequently, patterns like ’A and B occurred on the same
business day’ can be detected. Other relations are not con-
sidered in their approach. Further methods exist, however;
those which are particular closely related to our own one are
referenced below when we introduce our representation.

Aim

By contrast to existing methods, our approach aims at in-
tegrating on the level of ordering information all possible
temporal relations between instants and intervals; though
they will then be restricted to what is relevant regarding the
fault management domain. Interval-interval relations, for in-
stance, are of interest in this domain insofar containment re-
lations among different types of calendar events can be con-
sidered. For this purpose, we introduce a relational system
which allows relations systematically to be dealt with. For
this purpose, a number of jointly exhaustive and pairwise
disjoint point-point, point-interval, and interval-interval re-
lations are used. By this means, problems arising about un-
defined relations are avoided (Bettini et al. 1998). More im-
portant, these relations form the basis of a relation algebra
that can be employed by using standard constraint satisfac-
tion algorithms; this enables one to solve recognition and
relaxation problems as well as consistency checking tasks.
Furthermore, a method for the fuzzification of such a rela-
tional system can be applied in order to deal with uncer-
tainty.

647

Overview
The remaining paper is structured as follows: A short de-
scription of the general problem situation and an introduc-
tion to fault management, as an example domain, is given in
the following section. Then, our own approach is introduced
and fuzzified afterwards. The applicability of the new rep-
resentation is demonstrated and explained on the basis of an
example scenario from the fault management domain.

Problem Description
In this section the general problem situation is described and
subsequently motivated by an example domain: the fault
management domain. It shows that there are two sorts of ob-
jects which are of interest for us: point-like events (alarms
of devices) and events having a duration (the days of the
week). Reconciling instants and intervals, so as to allow re-
lations among both kinds of objects to be defined, is what
we will aim at.

Instants: In quite a few application domains, like fraud
detection, supermarket sales information and fault manage-
ment, long sequences of time point events have to be anal-
ysed and checked for temporal patterns. Such events nor-
mally consist of an attribute vector which further describes
and specifies the occurred event. Here, however, we are only
interested in the temporal dimension. We describe, for in-
stance, that

event B follows event A

Intervals: In order to include how point-like events relate
to events having a duration, an additional level is required
that incorporates intervals. Then, patterns arise which re-
late instants to intervals. The main example for this kind
of relations is how an event relates to the calendar. Differ-
ent granularities like days of the week, weekends, months,
or forenoon versus afternoon can then be described, as can
concepts like holiday time or bank holidays. Due to this
layer of intervals, more complex patterns can be specified:

event B is always followed by event A on Mondays

In summary, we deal with instants and intervals, i. e. with
point-like events and those having a duration, and we are
interested in how they relate:

• instants relative to each other,

• instants relative to intervals, and

• intervals relative to each other.

The Fault Management Domain
After having outlined the situation we are faced with, we
motivate this approach on the basis of the fault management
area. Generally, fault management is divided into three dif-
ferent tasks: fault detection, fault localisation and fault cor-
rection (cp. (ITU 1992)). While fault detection is concerned
with the recognition of failures, fault localisation approaches
aim at identifying root causes of failures. The latter are elim-
inated by the failure correction component of the fault man-
agement system. The required input for most fault manage-
ment components are (point-like) alarm events, which are

generated by a network resource if its behaviour deviates
from normality (i. e. the network is event-driven). These
events are collected in a central component and then anal-
ysed in order to detect and localise the root cause.

Fault localisation alone, is already a challenging issue.
One aspect of fault localisation is the recognition of alarm
patterns which frequently occur together in time; it is as-
sumed that they result from the same root cause. To sup-
port the localisation of a fault the grouping of alarms ac-
cording to their probable root cause and the generation of
”high level alarms” would be of much use to the network
operator (Fessant, Clérot, & Dousson 2004). In addition,
one further step might be the generation of alarm predic-
tion rules, which could be used to identify faults earlier and
thus take early precautions to prevent severe effects of these
faults from happening. In any case, temporal patterns of
events are to be described. For the purpose of finding ade-
quate ways for describing these patterns, we apply tempo-
ral relationships introduced in the previous paragraph to the
fault management domain:

Time Points: From the temporal point of view, a network
event is regarded as an instant. Relations among network
events are consequently relations between instants.

Time Intervals: Network events are to be related to spe-
cific calendar events, because they sometimes determine the
traffic in a network: on a Sunday there could be less traf-
fic than on a Monday; and in the morning there is a traffic
burst, while at noontide the traffic calms down. From what
follows, network events are to be related to calendar events;
in other words, instants are to be related to intervals in time.

By default every computer network contains a certain de-
gree of uncertainty resulting from lost alarm events and non-
synchronised clocks of the network resources. In addition,
frequently occurring situations may have slightly different
constellations of events, but still should be detected as the
same pattern. Pattern discovery and recognition algorithms
should therefore be capable of dealing with such kinds of un-
certainties; so has the underlying representation itself. Dis-
tinguishing whether a specific relation holds or not is insuf-
ficient. We have to distinguish whether the relation holds,
whether it is at least probable that it holds, and that it is im-
possible.

The Representation
The previous section introduced the fault management do-
main as an application example in which specific temporal
patterns occur. This section introduces a new representation
that represents those patterns in a relational system. In or-
der to be able to deal with network uncertainties, this system
will be fuzzified afterwards according to (Guesgen 2003).

Temporal Patterns as Relations
We are faced with two kinds of objects, points (point-like
events) and intervals (events with a duration). For two points
in time, three relations exist: before (<), equal (=), and after
(>) (Vilain & Kautz 1986). In the case of intervals, we dis-
tinguish thirteen relations (Allen 1983). We want to consider

648

Table 1: Eleven relations exist which relate single points (Pi)
to other points or to intervals (Ik).

Name Symbol Converse Relation
before < > {Pi, Ik} < {Pj , Il}
meets m mi {Pi, Ik} m {Ik}
starts s si {Pi} s {Ik}
started by si s {Ik} si {Pi}
equal = = {Pi} = {Pj}
during d c {Pi} d {Ik}
contains c d {Ik} c {Pi}
finishes f fi {Pi} f {Ik}
finished by fi f {Ik} fi {Pi}
met by mi m {Pi, Ik} mi {Ik}
after > < {Pi, Ik} > {Pj , Il}

both point-point relations as well as point-interval (and con-
versely interval-point) relations. Interval-interval relations
are only of interest in a rather restricted way: the week is
fragmentised into days, and single days into phases such as
morning, noon, afternoon, and evening — overlap relations
are in their explicit existence of no interest for us; they will
later on be implicity dealt with by using fuzzification tech-
niques. I denotes the set of possible intervals, and E denotes
the set of possible instants. Together they form the set of
possible objects O (i. e. O = E ∪ I).

The following relations can occur between instants and
intervals: before (<), meets (m), starts (s), during (d), and
finishes (f). Considering two points, it might also be pos-
sible that they coincide, in which case they are in relation
equal (=). Additionally, we have to consider the converse
relations which are listed in Table 1. By contrast to Allen’s
approach we have no overlap relation, since two points ei-
ther coincide or they are disjoint; similarly, a point either
meets an interval, or it coincides with its start-point. An
overlap relation between a point and an interval is not real-
isable, because the point either meets the interval, starts it,
finishes it or occurs during it.

Other authors have been suggested to consider fewer
point-interval relations (Han & Lavie 2004; Coenen et al.
1996), namely <, s, si, d, c, f, fi, and >, i. e. they go with-
out meets-relations. Since we will partition the time domain
into discrete slices, it makes absolutely sense to distinguish
a meets relation from the before relation. Also, point-point
and point-interval relations are generally dealt with sepa-
rately. Here, we need to integrate these systems and consider
in particular < and > as to be equal regardless of whether
their arguments are points, intervals, or a mix of both.

However, in the context of our domain it makes sense to
reduce the proposed relations by assigning m and mi to <
and >, respectively. Furthermore, we assign both s and f to
d and arrive at a number of five condensed relations. Note
that concerning the domain at hand, the relations are jointly
exhaustive and pairwise disjoint. They are depicted in Table
2 and as a neighbourhood graph in Fig. 1. The neighbour-
hood graph depicts on the one hand how an instant can be
related either to an interval (cf. leftmost graph of Fig. 1) or
to an instant (cf. centred graph of Fig. 1) and on the other
hand how intervals themselves can be related (cf. the right-

Table 2: After assigning m to < and the starts and finishes
relations to d, five relations finally remain.

Name Symbol Converse Relation
before < > {Pi, Ik} < {Pj , Il}
equal = = {Pi} = {Pj}
during d c {Pi} d {Ik}
contains c d {Ik} c {Pi}
after > < {Pi, Ik} > {Pj , Il}

most graph of Fig. 1). Consequently, the graph can be used
for reasoning about temporal patterns of all kinds. As can be
seen, the set of possible, condensed relations R is composed
of point-point relations RE = {<, =, >}, point-interval re-
lations RI = {<, d, >, c} and interval-interval relations RC

= {<, d, >, c, =}.

= >

d

c

<

>

d

c

< = >< >

d

c

< =

Figure 1: Conceptual neighbourhood graph of possible, con-
densed point-point & point-interval & interval-interval rela-
tions

Reasoning about Temporal Patterns
For the purpose of reasoning about the relations just intro-
duced, i. e. reasoning about temporal patterns, we define a
relation algebra according to (Ladkin & Maddux 1994). It
consists of nine elements:

• the universe, M, which consists of the atomic pat-
terns (the five basic relations);

• the identity relation, =, shows the temporal identity
of two events;

• the ∅ designates the impossible pattern;
• the universal relation, U, designates the pattern

which holds in any case (a set of all possibilities);
• the unary operation,¯, is the complement;
• the unary operation converseness, ˘, shows what

arises when the ordering of objects is exchanged;

< c = d >

< < < < < d < d = c >

c < c c c d = c c >

= < c = d >

d < < d = c > d d >

> < d = c > > > d > >

Figure 2: The composition table.

649

• the binary operation composition, ◦, computes the
transitivity for a binary pattern;

• the binary operation intersection, ∩, extracts com-
mon parts of two patterns;

• the binary operation union, ∪, merges them together;

Assuming that o1, o2 and o3 are of type O, the five opera-
tions are defined in the following way. In doing so, for the
converse operation Table 1 is used and for the composition
operation the composition table in Fig. 2 is employed.

mi = {(o1, o2)|(o1, o2) /∈ mi} (1)

m̆i = {(o1, o2)|(o2, o1) ∈ mi} (2)

mi ◦ mj =

{(o1, o3)|∃o2 : (o1, o2) ∈ mi ∧ (o2, o3) ∈ mj}
(3)

mi ∩ mj = {(o1, o2)|(o1, o2) ∈ mi ∧ (o1, o2) ∈ mj} (4)

mi ∪ mj = {(o1, o2)|(o1, o2) ∈ mi ∨ (o1, o2) ∈ mj} (5)

Fuzzifying Temporal Patterns
In many domains the data used for pattern discovery inhere
a certain degree of uncertainty, for example in fault manage-
ment the actual time of different network resources may vary
and consequently the date of generated events. Thus, the
arising uncertainty relates to fuzzy changes among neigh-
bouring relations according to their conceptual neighbour-
hood relation (cf. Fig. 1). Therefore, we extend the formu-
lation of temporal relations using fuzzy relations.

Fuzzifying Temporal Relations For clarity we proceed
similar as (Guesgen 2003) and introduce fuzziness step by
step. For this purpose we start by representing the crisp case
alternatively. This representation will base on a character-
istic function μrwhich specifies a given temporal relation r
as a function. Such a function has to be defined for each
possible relation, r, as follows:

μr : R −→ {0, 1} (6)

The characteristic function μr yields 1 iff the argument r′

is identical with the relation r specified by the characteristic
function:

μr(r
′) =

{
1, if r’ = r
0, else

(7)

Using this characteristic function the crisp relations in-
troduced above can be described as sets of tuples. That is,
for a relation r each tuple consists of one of the five rela-
tions and its value regarding the characteristic function of
r. Consequently, each relation is represented as a set of five
tuples. For example the relation < between the two objects
o1, o2 ∈ O is represented as follows:

o1{(r, μ<(r))|r ∈ R}o2

= o1{(<, 1), (c, 0), (=, 0), (d, 0), (>, 0)}o2
(8)

By now, only the crisp case is covered, i. e. two cases are
distinguished: relations are either accepted (i. e. μr(r

′) = 1)
or rejected (i. e. μr(r

′) = 0). Fuzziness is introduced by

assigning membership grades μr̃ to relations. For this pur-
pose the conceptual neighbourhood structure is used which
reflects the conceptual similarity between relations. In case
of < we assign 1 to the membership grade if the given re-
lation is <, α1 if the relation is a neighbour of <, α2 if the
relation is a neighbour of a neighbour of < and so on (with
0 ≤ . . . ≤ α2 ≤ α1 < 1). Then, the fuzzy relation r̃ can be
defined w. r. t. a given object o1 (which is either an instant
or an interval) by the following set of tuples:

r̃o1
(o2) = {(r′, μr̃,o1

(r′, o2))|r
′ ∈ R} (9)

with

μr̃,o1
: R×O −→ [0, 1] (10)

and

μr̃,o1
(r′, o2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1, if r′ = r̃

0, if (o1, o2 ∈ E ∧ r′ /∈ RE)∨

((o1 ∈ I ∨ o2 ∈ I) ∧ r′ /∈ RI)

αi, else
with 0 ≤ αi < 1, i = 1, 2, ..

(11)
αi refers to the membership grade of r′ w. r. t. r̃ (derived

from the conceptual neighbourhood graph). At this i corre-
sponds to the length of the shortest path between r̃ and r′

in the neighbourhood graph. Using this representation the
crisp relations can also be covered when α1 = α2 = ... = 0.
Fig. 3 depicts the neighbourhood graph composed of the five
basic relations and their corresponding membership grades
w. r. t. the point-interval relation >. Note that in compari-
son to (Guesgen 2003) we have to distinguish whether we
have to deal with two instants, one instant and an interval or
two intervals, explaining the necessity to include o1 in the
expression μr̃,o1

(r′, o2).

= >

d

c

<

α

1

1

0

α1

α2

Figure 3: Possible point-point & point-interval relations and
the membership grades w. r. t. the point-interval relation >

Including point-point, point-interval and interval-interval
relations in a single neighbourhood graph will enable us
to propagate constraints across all sorts of objects: Given
that specific relations between point-point, point-interval
and interval-interval relations hold. Then, as soon as some
point-object is changed along the timeline we want to prop-
agate the consequences across all kinds of relations, i. e. for
all point-point and point-interval as well as for all interval-
interval relations we want to derive the consequences —
in particular how changes along point-point relations entail
changes along point-interval relations.

650

Fuzzifying Temporal Reasoning In this section fuzzy
compositions are discussed. Starting again with the crisp
case, the composition of the two relations r1 and r2 is rep-
resented as follows when using the characteristic function:

μr1◦r2
: R −→ {0, 1} (12)

with

μr1◦r2
(r′) =

{
1, if r′ ∈ r1 ◦ r2

0, else
(13)

Similar as above the characteristic function is exchanged
by a membership function in order to consider fuzziness.
Consequently, the composition of two fuzzy relations r̃1 and
r̃2 is based on membership grades. For the definition of
μr̃1◦r̃2

the min/max combination scheme from fuzzy set the-
ory is used:

μr̃1◦r̃2,o1,o2
: R ×O −→ {0, 1} (14)

with

μr̃1◦r̃2,o1,o2
(r′, o3) =⎧⎨

⎩
0, if (o1, o3 ∈ E ∧ r′ /∈ RE)∨

((o1 ∈ I ∨ o3 ∈ I) ∧ r′ /∈ RI)

νr̃1◦r̃2,o1,o2
(r′, o3), else

(15)
and

νr̃1◦r̃2,o1,o2
(r′, o3) =

max
∀r3,r4∈R:μr3◦r4

(r′)=1
{min{μr̃1

(r3), μr̃2
(r4)}} (16)

Each composition which results in r′ is evaluated using
the membership functions of r̃1 and r̃2 respectively. For
each composition which results in r′ the lowest membership
grade of the composed relations is taken (the consequence
can only be as strong as its weakest antecedent). This is done
for every composition table entry which contains r′ and the
maximum of all these minimums is used (which is the high-
est membership value of the compositions). For example let
us assume that r̃1 is set to >, r̃2 to c and r′ is assigned with
<. One possible composition which yields in < is the com-
position < ◦ c. In this case the weakest antecedent is the
relation < which has a membership value μ>̃ of α2. How-
ever, the best of all these compositions (i. e. the one with the
best composed membership grade) is taken as the result. In
our example, the membership value μ>̃◦c̃(<) is α1, because
the best composition yields at that value. Fig. 4 depicts the
membership graph of >, c and > ◦ c.

Example Scenario
This section explains the pattern representation by means
of an example scenario in the context of fault management.
The problem situation is described and it is argued why a
fuzzy set representation of patterns is of great use within
this domain. Subsequently, an example pattern is shown to
demonstrate how our approach can be applied in the fault
management domain.

α 12 0

α1

α1

(a) Relation >

1

α1α1 0

α2

(b) Relation c

α 11 α1

0

0

(c) Composi-
tion > ◦ c

Figure 4: Membership grades for composition >◦c between
an interval and an instant

Customer Complaints in Fault Management

Customer complaints are common when dealing with fault
management issues. They occur, if not all faults can be
found at an early stage and if they have been overlooked
by the network operator or the fault management compo-
nent. In such cases, the customers of the network discover
a deviation in the network’s behaviour and call the network
operator to report the failure. These reports normally have
to be processed by humans directly due to imprecise failure
descriptions. However, customer satisfaction is the greatest
need of the network operator. Consequently, such situations
should be avoided if possible. If the root cause of the failure
is identified by the operator, one solution is to extract a pat-
tern from the failure situation. This would help identifying
the fault earlier next time.

The scenario for our approach will be exactly this situ-
ation. After receiving a customer complaint, the network
operator identifies its root cause in the network and an event
pattern for the situation is extracted. This pattern is saved in
the pattern knowledge base of the fault management com-
ponent. Now the temporal input data can be scanned for
this pattern to inform the network operator much earlier in
the case of a fault; thus, many customer complaints will be
avoided in the future.

Every computer network inheres a certain degree of un-
certainty, which results from variations of the system time of
the network resources and thus from the varying generation
time of events. Also, similar situations in which patterns al-
most match should be captured, i. e. the temporal occurrence
of events may also differ to a certain degree. Consequently,
representing patterns using fuzzy temporal relations is quite
reasonable in the fault management domain.

Representation of Patterns

Possible temporal relations within patterns and their fuzzi-
fication are described in the previous section. These fuzzy
relations form a powerful language to specify temporal pat-
terns. Here, a pattern is extracted from the problem situation
depicted in Fig. 5 to show how to employ the fuzzy rela-
tions for pattern specification. It is also demonstrated how
to reduce the complexity of the pattern recognition by only
detecting a small set of relations and inferring the remaining
ones.

651

e

c

e

time
c

1 2

1

2

Figure 5: Scenario scheme for the example pattern

Let us assume that the network operator detects a situa-
tion similar to Fig. 5 and extracts the pattern described in
Fig. 6(a). The letters of the time points represent the event
types (in our case the types of alarms, e. g. signal loss, server
is down, etc.). Due to simplicity reasons, the event types and
calendar intervals are abbreviated in the following example.

{(<,α),(d,1),(>,α),

(c,α),(=,0)}

e1 e2

c1 c2

1 1

2

{(<,α),(d,1),(>,α),

 (c,α),(=,0)}
1 1

2

{(<,α),(d,1),(>,α),

 (c,α),(=,0)}
1 1

2

{(<,α),(d,α),(>,1),

 (c,α),(=,0)}
1

1

2

(a)

e1 e2

c1 c2

{(<,α),(d,0),(>,1),

 (c,0),(=,α)}

1

1

{(<,1),(d,1),(>,α),

 (c,α),(=,α)}
1

1

1

(c)

{(<,α),(d,α),(>,α),

(c,1),(=,0)}

e1 e2

c1 c2

1 12

{(<,1),(d,α),(>,α),

 (c,α),(=,0)}
1

1

2

{(<,α),(d,α),(>,α),

 (c,1),(=,0)}
1 12

{(<,α),(d,α),(>,α),

 (c,1),(=,0)}
1 12

(b)

e1 e2

c1 c2

{(<,1),(d,0),(>,α),

 (c,0),(=,α)}
1

1

{(<,α),(d,α),(>,1),

 (c,1),(=,α)}
1 1

1

(d)

Figure 6: Constraint graph of an example pattern

In the situation depicted in Fig. 5 we are concerned with
two instants (e1 and e2) and two intervals (c1 and c2). A
number of four relations are specified among them. In the
crisp case they would be represented as follows: M =
{e1dc1, e1dc2, e2>c1, e2dc2}. When fuzzifying the rela-
tions, the representation of them would change as can be
seen in Fig. 6(a). Here, the graphical representation of the
pattern is shown as a constraint network. Some relations are
not constrained, e. g. between e1 and e2 which is indicated
by arrows without labels; consequently, the universal rela-
tion holds between those events. Furthermore, the identity
relation holds for each event and itself.

When defining a pattern not every relation has to be spec-
ified. Most of them can be inferred from others employing
the composition operation. Even though some relations in
the example pattern are not assigned to a fuzzy relation yet,
all of them are indirectly constrained by already specified

relations. Fig. 6 shows the constriction step-by-step. For
simplicity reasons only the modified relations are depicted.
As can be seen, it is inferred that instant e1 is most likely
followed by instant e2. A general fuzzified CSP-algorithm
can be found in (Guesgen 2003).

Conclusion and Outlook
The algorithmic recognition of temporal patterns is a chal-
lenging problem. Many domains like fraud detection and
fault management have to rely on such algorithms due to
huge amounts of data. Additionally these domains inhere a
certain degree of uncertainty (e. g. in fault management due
to lost alarms and unsynchronised clocks). We proposed a
representation for temporal patterns which incorporates two
different kinds of objects: instants and intervals. The fuzzi-
fication of the representation allows uncertain relations to be
dealt with. The applicability of the fuzzy representation has
been demonstrated using an example from the fault manage-
ment domain.

Some open problems, however, remain. Our future work
will address the introduction of an efficient approach for
the discovery of patterns with our fuzzy temporal relations
based on the consideration of frequency distributions. In ad-
dition, we shall analyse how knowledge about the network
topology will aid in improving results.

References

652

Allen, J. F. 1983. Maintaining knowledge about temporal intervals. Communications

of the ACM 26:832–843.

Bettini, C.; Wang, X. S.; Jajodia, S.; and Lin, J.-L. 1998. Discovering frequent

event patterns with multiple granularities in time sequences. IEEE Transactions on

Knowledge and Data Engineering 10(2):222–237.

Casas-Garriga, G. 2003. Discovering unbounded episodes in sequential data. In

PKDD, 83–94.

Coenen, F.; Beattie, B.; Diaz, B. M.; Bench-Capon, T. J. M.; and Shave, M. J. R.

1996. Temporal reasoning using tesseral addressing: towards an intelligent environ-

mental impact assessment system. Knowl.-Based Syst. 9(5):287–300.

Fessant, F.; Clérot, F.; and Dousson, C. 2004. Mining of an alarm log to improve the

discovery of frequent patterns. In Industrial Conference on Data Mining, 144–152.

Guesgen, H. W. 2003. When regions start to move. In Proc. FLAIRS-03, 465–469.

Han, B., and Lavie, A. 2004. A framework for resolution of time in natural language.

ACM Trans. Asian Lang. Inf. Process. 3(1):11–32.

ITU. 1992. Management framework for Open Systems Interconnection (OSI) for

CCITT applications, recommendation X.700.

Ladkin, P., and Maddux, R. 1994. On binary constraint problems. Journal of the

Association for Computing Machinery 41(3):435–469.

Laxman, S., and Sastry, P. S. 2006. A survey of temporal data mining. Academy

Proceedings in Engineering Sciences 31(2):173–198.

Mannila, H.; Toivonen, H.; and Verkamo, A. I. 1997. Discovery of frequent episodes

in event sequences. Data Min. Knowl. Discov. 1(3):259–289.

Vilain, M., and Kautz, H. 1986. Constraint propagation algorithms for temporal

reasoning. 377–382.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

