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Abstract

In this paper, we extend Moss and Parikh’s approach to rea-
soning about topological properties of knowledge. We turn
that system in a spatio-temporal direction by successively
adding various modalities having on the one hand an epis-
temic interpretation and facilitating on the other hand spa-
tial or spatio-temporal specifications up to a certain degree.
The first of these operators is related to disjointness regard-
ing space and ignorance regarding knowledge, and the second
one to overlapping and, respectively, quantifying across all
possible agents. The third one turns up along with increase of
sets and no learning of agents, respectively. A fourth opera-
tor is already present in the basic system. Apart from the first
case we establish the soundness, completeness and decidabil-
ity of the accompanying logics. In the first case, however,
we up to now could only prove that a certain naturally arising
sublogic is decidable.

Introduction

The logic of knowledge and time as well as spatial logics
are amongst the frequently used formal tools for coping with
the appropriate modeling and reasoning tasks. However, it
has hardly been recognized that both notions in a sense live
under the same roof. But the bi-modal logic of knowledge
and effort invented by Moss and Parikh in the papers (Moss
& Parikh 1992; Dabrowski, Moss, & Parikh 1996) really
makes possible a qualitative description of procedures gain-
ing knowledge and offers some expressive power concern-
ing spatial features, too. The latter is true since a certain
topological component of knowledge is revealed by Moss
and Parikh’s system. In fact, as an agent’s knowledge is rep-
resented by the space of all knowledge states of the agent,
knowledge acquisition appears as a shrinking procedure re-
garding this space of sets. Thus concepts from topology like
closeness or neighbourhood turn up together with knowl-
edge in a natural way. This aspect will be reinforced in the
present paper.

Moss and Parikh suggestively called their system topo-
logic, and we adopt this naming here. In the following, we
briefly recall the basics of the language underlying topo-
logic. As it has just been indicated, formulas may contain

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

two one-place operators: a modality K describing the knowl-
edge of the agent and another one, �, describing (computa-
tional) effort. The domains for evaluating formulas are sub-
set spaces (X,O, V ) consisting of a non-empty set X of
states, a set O of subsets of X representing the knowledge
states of the agent, and a valuation V determining the states
where the atomic propositions are true. The operator K then
quantifies across any knowledge state U ∈ O, whereas �
quantifies ‘downward’ across O. That is, more knowledge,
i.e., closer proximity to states of ‘complete’ knowledge can
be achieved by descending (with respect to the set inclusion
relation in O), and just this is modeled by �.

Several classes of subset spaces, including the ordinary
topological ones, could be characterized by means of topo-
logic; cf (Georgatos 1994; 1997; Weiss & Parikh 2002). Ac-
tually, the language of topologic proved to be quite suitable
for dealing with ‘locally describeable’ properties of points
and sets. However, more expressiveness is needed to capture
non-local notions like disjointness or overlapping as well.

The just mentioned spatial relations remind one of the Re-
gion Connection Calculus, RCC, which is ubiquitous in AI;
see (Randell, Cui, & Cohn 1992). But while that system for-
malizes ‘externally’ the relations any two sets may satisfy
we take the ‘internal’, modal point of view here. That is,
starting at some situation we regard as relevant all sets from
O such that the respective property is satisfied. In this way,
already the effort modality � appears as a spatio-temporal
one. The temporal component of � is rather implicit, ac-
tually, whereas the spatial one corresponds to the relation
‘contains-as-a-subset’. In the paper, we consider connec-
tives for disjointness, overlapping and ‘is-part-of’ besides.

Obviously, our approach is not in competition with RCC
because the underlying idea of space is quite different. One
might say at most that both frameworks are complementary
to each other. Nevertheless, the present paper shows that
the Moss-Parikh formalism in fact can be taken as a basis
for a certain kind of spatio-temporal reasoning which may
be called ‘epistemic’. This alternative view may yield some
new insights into the logical nature of spatial concepts.

The rest of this paper is organized as follows. In the
next section we recapitulate the modal logic of subset spaces
from (Dabrowski, Moss, & Parikh 1996). This gives us the
necessary presuppositions for the matters developed after-
wards. In Section 3, we integrate an operator describing dis-
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jointness into the language of topologic. We give some ex-
amples of valid formulas of the extended language, and we
touch on the question of expressive power there. We then
present a list of axioms suggesting themselves and show that
the set of all derivable formulas is decidable. Unfortunately,
we could not prove completeness in this case up to now. In
Section 4, we report some of the results known for the over-
lap operator. Section 5 deals with the ‘is-part-of’ relation,
which temporal-epistemically corresponds to no learning in
the course of time, but represents implicitly the past in our
context. This section contains the main technical issues of
the paper, aside from the second part of Section 3. The head-
ing of all these sections is to indicate the spatial or spatio-
temporal idea formalized each time. Finally, we give a brief
summary and point to further aspects and future research.

Shrinking

At the beginning of the technical part of this paper we
briefly recall the language and the logic of subset spaces
from (Dabrowski, Moss, & Parikh 1996). Let PROP =
{A,B, . . .} be a denumerable set of symbols. The ele-
ments of PROP are called proposition letters. We define
the set WFF of well-formed formulas over PROP by the
rule α ::= A | ¬α | α ∧ β | Kα | �α. The operators
K and � represent knowledge and effort, respectively, as it
is common for topologic. The missing boolean connectives
�,⊥,∨,→,↔ are treated as abbreviations, as needed. The
duals of K and � are denoted L and �, respectively.

We now turn to the relevant semantics. First, we define
the domains for interpreting formulas. Given a set X , let
P(X) be the powerset of X .

Definition 1 (Subset frames; subset spaces) 1. Let a
set X 	= ∅ be given, and suppose that O ⊆ P(X) is
a set of subsets of X . Then, F := (X,O) is called a
subset frame.

2. Let F = (X,O) be a subset frame. The set NF
of neighbourhood situations of F then is defined by
NF := {(x,U) | x ∈ U and U ∈ O} . (Neighbour-
hood situations are often written without brackets
later on.)

3. Let F be as above. A mapping V : PROP −→
P(X) is called an F–valuation.

4. A subset space is a triple M := (X,O, V ) , where
F := (X,O) is a subset frame and V an F–
valuation; M is called based on F .

The relation of satisfaction, which is now defined with
regard to subset spaces, holds between neighbourhood situ-
ations and formulas. The obvious boolean cases are omitted.

Definition 2 (Satisfaction; validity) Let M = (X,O, V )
be a subset space.

1. Let x, U be a neighbourhood situation of F =
(X,O) . Then

x, U |=M A : ⇐⇒ x ∈ V (A)
x, U |=M Kα : ⇐⇒ ∀ y ∈ U : y, U |=M α

x, U |=M �α : ⇐⇒
{∀U ′ ∈ O : x ∈ U ′ ⊆ U

implies x,U ′ |=M α,

where A ∈ PROP and α, β ∈ WFF. In case
x,U |=M α is true we say that α holds in M at
the neighbourhood situation x,U .

2. A formula α is called valid in M (written ‘M |= α’),
iff it holds in M at every neighbourhood situation of
the frame M is based on.

Note that the meaning of proposition letters is indepen-
dent of neighbourhoods by definition, thus ‘stable’ with re-
spect to �. This fact is reflected by the axiom schema
(A → �A) ∧ (�A → A), where A ∈ PROP.

We now look for further validities in subset spaces. Actu-
ally, the formula schema K�α → �Kα is typical of topo-
logic. This schema was called the Cross Axiom in the paper
(Dabrowski, Moss, & Parikh 1996) and plays a key role in
the proofs of the completeness and the decidability of that
logic. The Cross Axiom describes the basic interaction be-
tween knowledge and effort. The temporal-epistemic notion
of perfect recall, cf (Fagin et al. 1995), Sec. 4.4.4, is closely
related to this axiom, which spatially describes shrinking.

The complete list of axioms for topologic guarantees that,
for every Kripke model validating all those axioms,

• the accessibility relation K−→ belonging to the knowledge
operator is an equivalence,

• the accessibility relation �−→ belonging to the effort op-
erator is reflexive and transitive, and

• the composite relation �−→◦ K−→ is contained in the com-

posite relation K−→◦ �−→.
We obtain a logical system by adding the standard proof

rules of modal logic, i.e., modus ponens and necessitation
with respect to each modality. We call this system T, indi-
cating topologic.
Theorem 3 (Soundness and completeness I) A formula α
is valid in all subset spaces, iff α is T–derivable.

In (Dabrowski, Moss, & Parikh 1996), Sec. 2.2, complete-
ness is proved by a non-trivial step-by-step construction.
Unfortunately, topologic does not satisfy the finite model
property with respect to the class of all subset spaces; cf
(Dabrowski, Moss, & Parikh 1996), Sec. 1.3. Thus one has
to make a little detour via a suitable class of auxiliary Kripke
models. In this way, decidability is obtained nevertheless; cf
(Dabrowski, Moss, & Parikh 1996), Sec. 2.3.
Theorem 4 (Decidability I) The logic T is decidable.

The just indicated proof methods will be appropriately
modified and supplemented in the subsequent sections of
this paper.

Disjointness
In this section, we add a unary operator D, describing dis-
jointness from the actual neighbourhood, to the language of
topologic. We first define the semantics of D precisely and
then give some examples and comments related to expres-
siveness. After that we ask for an axiomatization of the ac-
companying logic, TD. The main part of this section is de-
voted to the proof of the decidability of a natural sublogic of
TD. Among other things, a scarce filtration is used for that.
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Let WFFD be the set of formulas which results when we
take α ::= Dα as an additional generative rule. Further-
more, let D̂ denote the dual of D. The semantics of D is
defined as follows.

Definition 5 (Semantics of D) Let F = (X,O) be a subset
frame, M = (X,O, V ) a subset space based on F , and
(x,U) ∈ NF a neighbourhood situation. Then, for all α ∈
WFFD,

x,U |=M Dα : ⇐⇒
{ ∀ (y, U ′) ∈ NF : if U ′ ∩ U = ∅,

then y, U ′ |=M α.

It is natural to ask in which way D, K and � interact.
Some answers are given by the following proposition.

Proposition 6 Let M be any subset space and α ∈ WFFD

a formula. Then

M |= (Dα → KDα) ∧ (Dα → DKα) ∧ (�Dα → Dα) .

The proof of Proposition 6 is straightforward from Defi-
nition 2 and Definition 5 and, therefore, omitted.

Now we search for interesting properties of spaces which
can be formalized with the aid of the new operator. As it
turns out, D develops its abilities only in connection with
a certain additional means of expression, viz basic hybrid
logic. The special feature of hybrid logic is the use of
names of worlds (called nominals) in formulas; cf (Black-
burn, de Rijke, & Venema 2001), Sec. 7.3. Due to the
two-component semantics of topologic we have nominals
for both states and subsets here. (A corresponding system,
called hybrid topologic, was initially developed in (Heine-
mann 2003).) With that, we now show as an example that a
certain higher separation condition related to regularity can
be captured; cf (Bourbaki 1966), § 8.4, Proposition 11.

Definition 7 Let F = (X,O) be a subset frame. F is called
pseudo (T 3), iff for all x, y ∈ X and U,U ′ ∈ O such that
x ∈ U ′ ⊂ U and y ∈ U \ U ′ there exists some Ũ ∈ O
satisfying y ∈ Ũ and U ′ ∩ Ũ = ∅.

Note that hybrid topologic without D is able to cope with
lower separation axioms only; cf (Heinemann 2003).

Proposition 8 Let F = (X,O) be a subset frame. Then, F
is pseudo (T 3) iff for all (hybrid) subset spaces M based on
F the formula schema

i ∧ � (I ∧ K¬j) ∧ Lj → �
(
i ∧ I → D̂Lj

)
is valid in M, where i, j are names of states and I is any
name of a subset.

The easy proof of Proposition 8 is omitted here. – Our
final remark on expressiveness concerns the relevance of the
disjointness operator to the logic of knowledge. First let us
stress once again that D quantifies across subsets which do
not intersect with any future knowledge state of the agent.
Thus certain states of ignorance are accessed by this oper-
ator. Since the language of knowledge describes ‘external’
knowledge of the agent anyway,1 it is legitimate and useful

1For a discussion of this point cf (Fagin et al. 1995), in partic-
ular, Sec. 4.2.

also from the epistemic point of view to extend the formal-
ism as suggested.

We now propose several axioms for D. Apart from the
first and the third formula schema listed in Proposition 62

we take, for all α, β ∈ WFFD :
1. D(α → β) → (Dα → Dβ)

2. α → DD̂α.

Note that the symmetry of the accessibility relation, D−→, be-
longing to the disjointness operator is expressed by Axiom
2.

In the remaining part of this section we prove that the set
TD of all formulas that are derivable from the axioms of
topologic and the just stated schemata by means of the stan-
dard modal proof rules is decidable. Note that TD is a subset
of the set of all validities, TD.

The reader should connect R and K, S and �, and T and
D, respectively, in the next definition.

Definition 9 (TD–model) Let M := (W, {R,S, T}, V ) be
a trimodal Kripke model. Then M is called an TD–model,
iff the following conditions are satisfied:

1. R is an equivalence relations, S is reflexive and tran-
sitive, and T is symmetric,

2. R ◦ T ⊆ T and S ◦ R ⊆ R ◦ S,
3. for all w,w′, w′′ ∈ W such that w T w′ and w S w′′

it holds that w′ T w′′,
4. for all w,w′ ∈ W and A ∈ PROP : if w S w′, then

(w ∈ V (A) ⇐⇒ w′ ∈ V (A)).

It is easy to see that all the above mentioned axioms of
TD are sound for TD–models. Furthermore, the canonical
model of TD itself is in fact a TD–model. This gives us the
next theorem.

Theorem 10 (Kripke completeness) The sublogic TD of
TD is sound and complete with respect to the class of all
TD–models.

We now use the method of filtration in order to establish
the finite model property of TD with respect to TD–models.
Given a TD–consistent formula α ∈ WFFD, we first have
to define an approprite filter set Σ ⊆ WFFD for that. To this
end, we let

Σ0 := sf(α) ∪ {¬β | β ∈ sf(α)} ∪ {�D̂Dγ | Dγ ∈ sf(α)},
where sf(α) denotes the set of all subformulas of α. We then
form the closure of Σ0 under finite conjunctions of pairwise
distinct elements of Σ0, and we close under single applica-
tions of the operator L afterwards. Finally, we form the set
of all subformulas of elements of the set obtained last. Let
Σ denote the resulting set of formulas.

Secondly, we consider the respective smallest filtrations
of the accessibility relations K−→ and �−→ of the canonical

model, and the symmetric filtration of the relation D−→ ; cf
(Goldblatt 1992), p 33. Let M := (W, {R,S, T}, V ) be the
corresponding filtration of a suitably generated submodel of

2The second one turns out to be a logical consequence, actually.
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the canonical model; the valuation V is to assign the empty
set to all proposition letters not in Σ there. Then we have the
following lemma.

Lemma 11 The structure M is a finite TD–model of which
the size depends computably on the length of α.

Proof. The items of Definition 9 which do not concern the
relation T are clear from the proof of (Dabrowski, Moss,
& Parikh 1996), Theorem 2.11. Since the symmetry of T
follows from (Goldblatt 1992), Exercise 4.5, and the proof
of the first part of item 2 is similar to the one of item 3, only
the latter will be given here.

Let Γ, Θ, Ξ be points of the canonical model such that
[Γ] T [Θ] and [Γ] S [Ξ], where the brackets [. . .] indicate
the respective classes. Take any Dγ ∈ sf(α), and assume
that M , [Θ] |= Dγ. We must show that M , [Ξ] |= D̂Dγ.
Since [Γ] T [Θ] is valid, we first obtain that M , [Γ] |= D̂Dγ.
As the latter formula is contained in Σ, we infer �D̂Dγ ∈
Γ from that with the aid of the (dual of the) third formula
schema from Proposition 6. But �D̂Dγ is contained in Σ,
too. Thus M , [Γ] |= �D̂Dγ. Consequently, M , [Ξ] |= D̂Dγ,
as desired. �

Since the model M from Lemma 11 realizes α, the
claimed decidability result follows readily.

Theorem 12 (Decidability II) The set of all TD–theorems
is decidable.

Overlapping

Instead of D we now add an overlap operator to the lan-
guage of topologic. Such a modality, O, was investigated in
the paper (Heinemann 2006) for the first time. To complete
the picture, we state the relevant definitions and results here.
Mentioning a certain relation between D and O merely goes
beyond that.

This is the semantics of the overlap operator in subset
spaces M = (X,O, V ) at neighbourhood situations:

x, U |=M Oα : ⇐⇒
{ ∀U ′ ∈ O : x ∈ U ′

implies x, U ′ |=M α.

Compared to the effort operator, the condition U ′ ⊆ U obvi-
ously was left out; cf Definition 2. Thus it can be seen from
the formal definition as well that shrinking is a special case
of overlapping.

As to knowledge, note that O quantifies across all sets that
are fixed in the same point. Since those sets may represent
knowledge states of agents we have, therefore, an operator
to hand by means of which the actual knowledge state of
every possible agent is addressed.

The overlap modality turned out to be quite nice. In fact,
O satisfies all the S5 laws. The following two theorems be-
long to the main results of the paper (Heinemann 2006).

Theorem 13 (Soundness and completeness II) The set of
all theorems that are derivable from the axioms for overlap-
ping is sound and complete for subset spaces.

Theorem 14 (Decidability III) The logic of overlapping is
decidable.

Like D the overlap operator is particularly expressive
within the framework of hybrid topologic; cf (Heinemann
2006), Sec. 5. Even more, the (dual of the) disjointness oper-
ator then will be definable in a sense: D̂α can be ‘expressed’
by the schema

I → ÔL� (KO¬I ∧ α) ,

where I is any set name and Ô denotes the dual of O. But
this is only true with regard to so-called named models (cf
(Blackburn, de Rijke, & Venema 2001), Sec. 7.3) based on
subset frames (X,O) for which X ∈ O is valid. – This is
all that we wanted to say about the overlap operator here.

Increase

The remaining spatio-temporal modality to be discussed, P,
captures the ‘is-part-of’ relation. Thus P is complementary
to the effort operator. Again, we first define the seman-
tics and then comment on expressive power. For the aris-
ing logic, TP, we propose a corresponding axiomatization.
The completeness proof for TP following after that makes
up the core of this section. Finally, we obtain that TP too is
decidable.

Like in Section 3 we introduce the relevant set of formu-
las, WFFP. And we let analogously P̂ denote the dual of
P. The semantics of P in subset spaces M = (X,O, V ) at
neighbourhood situations is then defined as follows:

x,U |=M Pα : ⇐⇒
{ ∀U ′ ∈ O : U ⊆ U ′

implies x,U ′ |=M α.

As it turns out, the increase operator P is the ‘strongest’
one among the spatial modalities considered in this paper.
In fact, even the (dual of the) overlap operator is definable,
at least in models based on subset frames (X,O) satisfying
X ∈ O; the defining term actually reads

Ôα :≡ P̂�α,

where α ∈ WFFP.
As an example of a spatial property which can be ex-

pressed using P we mention the closure of O under super-
sets. However, we need nominals for that as well so that we
do not carry out this here.

We have chosen the denotation ‘P’ for the increase oper-
ator since it temporally corresponds to the past. This is true
simply because the effort operator concerns the future.3

The epistemic relevance of the increase operator (in case
this operator is considered independent of �) is worth men-
tioning. While the effort operator is associated with no for-
getting, the increase operator comes along with no learning;
cf (Halpern, van der Meyden, & Vardi 2004).

The following list contains the axioms involving P :
1. P(α → β) → (Pα → Pβ)

2. α → �P̂α

3For certain systems of linear time, a related modality was ex-
amined in (Heinemann 2002). However, the motivation and the
technical details for the more general case considered in the present
paper are completely different from those there.
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3. α → P�α
4. PKα → KPα,

where A ∈ PROP and α, β ∈ WFFP. – Some comments
on these axioms seem to be appropriate. The schemata 2 and
3 express that the accessibility relations belonging to � and
P, respectively, are inverse to each other. Note that the latter
relation is reflexive and transitive, which follows logically
from the axioms (including those of topologic). Finally, the
schema 4 is obviously ‘dual’ to the Cross Axiom and will be
called the Reverse Cross Axiom therefore.4

By adding the P–necessitation rule we obtain the logical
system TP, which is sound and complete for subset spaces.
Theorem 15 (Soundness and completeness III) Let α ∈
WFFP. Then α is valid in all subset spaces, iff α is TP–
derivable.
Proof. (Sketch.) The soundness part of Theorem 15 is easy
to prove. Thus we need not go into that in more detail. The
proof of completeness is both an adaption to the new sys-
tem and a suitable extension of the corresponding proof for
topologic; cf (Dabrowski, Moss, & Parikh 1996), Sec. 2.2.
Only the part concerning the modifications is given more ore
less detailedly here.

Let α ∈ WFFP be not TP–derivable. We attain a subset
space falsifying α by an infinite ‘three-dimensional’ step-
by-step construction. In each step, an approximation to the
final model is defined. In order to ensure that this ‘limit
structure’ behaves as desired, several requirements on the
intermediate models have to be kept under control.

Let C be the set of all maximal TP–consistent sets of for-
mulas and K−→ , �−→, and P−→ the accessibility relations on
C induced by the modalities K, � and P, respectively. Sup-
pose that Γ0 ∈ C contains ¬α and is to be realized thus.
We choose a denumerably infinite set of points, Y , fix an
element x0 ∈ Y , and construct inductively a sequence of
quadruples (Xn, Pn, in, tn) such that, for every n ∈ N,

1. Xn ⊆ Y is a finite set containing x0,
2. (Pn,≤) is a finite partial order containing p0,
3. in : Pn −→ P (Xn) is an injective function from Pn

into the set of all non-empty subsets of Xn such that
p ≤ q ⇐⇒ in(p) ⊇ in(q) holds for all p, q ∈ Pn,

4. tn : Xn ×Pn −→ C is a partial function assigning a
maximal TP–consistent set to certain pairs contained
in Xn × Pn such that, for all x, y ∈ Xn and p, q ∈
Pn,

(a) tn(x, p) exists iff x ∈ in(p); in this case it holds
that

i. if y ∈ in(p), then tn(x, p) K−→tn(y, p),

ii. if p ≤ q, then tn(x, q) �−→tn(x, p),

iii. if q ≤ p, then tn(x, p) P−→tn(x, q),
(b) tn(x0, p0) = Γ0.

We now explain to what extent the intermediate structures
(Xn, Pn, in, tn) approximate the desired model. Actually, it
can be guaranteed that, for all n ∈ N,

4One can prove that the schema 4 is derivable, too. However,
since this schema is used below we keep it in the above list.

5. Xn ⊆ Xn+1,
6. Pn+1 is a faithful extension of Pn, i.e., a sup-

structure of Pn such that no element of Pn+1 \ Pn

lies between any two elements of Pn,
7. in+1(p) ∩ Xn = in(p) for all p ∈ Pn,
8. tn+1 |Xn×Pn= tn.

Furthermore, the construction complies with the following
requirements on existential formulas. For all n ∈ N,

9. if Lβ ∈ tn(x, p), then there are k ∈ N, n < k, and
y ∈ ik(p) such that β ∈ tk(y, p),

10. if �β ∈ tn(x, p), then there are k ∈ N, n < k, and
q ∈ Pk such that p ≤ q and β ∈ tk(x, q),

11. if P̂β ∈ tn(x, p), then there are k ∈ N, n < k, and
q ∈ Pk such that q ≤ p and β ∈ tk(x, q).

Let us assume for the moment that the construction has
been carried out successfully so that all these requirements
are met. Let (X, P, i, t) be the union of the structures
(Xn, Pn, in, tn), i.e.,
• X =

⋃
n∈N

Xn and P =
⋃

n∈N

Pn,

• i is given by i(p) =
⋃

m≥n

im(p), where n is the smallest

number l such that p ∈ Pl, and
• t is given by t(x, p) := tn(x, p), where n is the smallest

number l such that tl(x, p) is defined.
Moreover, let O := Im(i) and F := (X,O). Finally, we de-
fine a suitable F–valuation. This definition is a bit involved.
Let V (A) be the set of all x ∈ X such that there exist y ∈ X
and q ∈ P satisfying

(t(y, p0), t(x, q)) ∈ ( �−→◦ P−→)∗ and A ∈ t(y, p0),

for all A ∈ PROP. Then M := (X,O, V ) is a subset space,
for which the subsequent Truth Lemma can be proved by
structural induction.

Lemma 16 (Truth Lemma) For all formulas β ∈ WFFP

and neighbourhood situations (x, i(p)) ∈ NF , we have that
x, i(p) |=M β iff β ∈ t(x, p).

Letting now x := x0, p := p0 and β := ¬α (where x0, p0

and α are as above), then Theorem 15 follows immediately
from Lemma 16.

It remains to define (Xn, Pn, in, tn), for all n ∈ N.
The case n = 0 is straightforward. In the induction step,
some existential formula contained in some maximal TP–
consistent set tn(x, p), where x ∈ Xn and p ∈ Pn, must be
realized in a way meeting all the above requirements. We
confine ourselves to the case of the operator P.

Let P̂β ∈ tn(x, p). We choose some element y ∈ Y
not yet processed, and we take some q /∈ Pn. Then we let
Xn+1 := Xn ∪ {y}, Pn+1 := Pn ∪ {q}, and

in+1 (p′) :=
{

in (p′) if p′ ∈ Pn

in(p) ∪ {y} if p′ = q,

for all p′ ∈ Pn+1; furthermore, we let q ≤ p, but be in-
comparable with any other element of Pn. Finally, we de-
fine tn+1 as follows. Let Γ be a maximal TP–consistent
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set such that tn(x, p) P−→ Γ and β ∈ Γ. Due to the Re-
verse Cross Axiom, there are elements Γz

q ∈ C such that

tn(z, p) P−→Γz
q

K−→Γ, for all z ∈ in(x, p). Now, let

tn+1 (x′, p′) :=

⎧⎪⎨
⎪⎩

tn (x′, p′) if x′ ∈ Xn and p′ ∈ Pn

Γz
q if x′ ∈ in(p) and p′ = q

Γ if x′ = y and p′ = q
undefined otherwise,

for all x′ ∈ Xn+1 and p′ ∈ Pn+1. This completes the defini-
tion of the approximating structure in the induction step, and
we must now check that the properties 1 – 8 and 11 remain
valid (9 and 10 are irrelevant to the present case). Apart from
4 all items are more or less obvious from the construction.
Thus only the verification of property 4 is left. As 4 (b) too
is obvious we concentrate on 4 (a). First, it follows from the
definition of tn+1 that the requirement on the domain of this
function is satisfied. Then, (i) is clear from the definition of
tn+1 and the validity of this condition for n. (Note that K−→
is an equivalence relation.) For (iii) we argue as follows.
Assume that x′ ∈ in+1 (p′), and let q′ ∈ Pn+1 be such that
q′ ≤ p′. We must show that tn+1 (x′, p′) P−→tn+1 (x′, q′) is
valid then. If p′, q′ ∈ Pn, then this follows from the induc-
tion hypothesis. If p′, q′ /∈ Pn, then (iii) is true since P−→
is reflexive. The case q′ ∈ Pn and p′ /∈ Pn is not possible.
It remains to consider the case p′ ∈ Pn and q′ /∈ Pn. But
then we have that p′ = p, q′ = q and x′ 	= y, where p, q
and y are from the construction in the induction step. Thus
tn+1 (x′, p′) P−→tn+1 (x′, q′) follows from the definition of
tn+1. Finally, (ii) follows in a similar manner, but we must

additionally use in this case that P−→ and �−→ are inverse to
each other. In this way, property 4 is proved for tn+1.

In order to ensure that all possible cases are eventually
exhausted, processing has to be suitably scheduled with re-
gard to each of the modalities involved. This can be done by
means of appropriate enumerations. Concerning this and the
construction in case of a modality of topologic, the reader
is referred to the paper (Dabrowski, Moss, & Parikh 1996)
for further details. – With that the proof sketch of Theorem
15 is finished. �

By applying similar techniques as in the case of the dis-
jointness operator (see the second part of Section 3), we ob-
tain that TP is decidable.5

Theorem 17 (Decidability IV) The logic TP is decidable.

Concluding remarks

Several spatial modalities derived from the topo-logical
view of knowledge were presented in this paper. In a sense,
these operators are hierarchically ordered with regard to ex-
pressiveness. Except for inequality, the given list seems to
be complete for the framework of topologic. Apart from
the case of the disjointness operator we obtained the desired
meta-theorems for the resulting logics, viz soundness, com-
pleteness, and decidability.

5Unfortunately, we cannot go into details regarding this here. –
The paper (Heinemann 2007) contains more about the operator P.

It remains to solve the completeness problem for TD.
Moreover, the complexity of the logics must be determined
each time. Afterwards, the approach should be revisited
from an overall point of view, encompassing all those op-
erators simultaneously.
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