
Learning in the Lexical-Grammatical Interface

Tom Armstrong and Tim Oates
Department of Computer Science and Electrical Engineering

University of Maryland, Baltimore County, Baltimore, MD 21250
{arm1, oates}@umbc.edu

Abstract
Children are facile at both discovering word boundaries
and using those words to build higher-level structures
in tandem. Current research treats lexical acquisition
and grammar induction as two distinct tasks. Doing so
has led to unreasonable assumptions. Existing work in
grammar induction presupposes a perfectly segmented,
noise-free lexicon, while lexical learning approaches
largely ignore how the lexicon is used. This paper com-
bines both tasks in a novel framework for bootstrapping
lexical acquisition and grammar induction. We present
an algorithm that iteratively learns a lexicon and a gram-
mar for a class of regular languages in polynomial time,
and we report experimental results for benchmark lan-
guages.

The ease with which children learn to discover boundaries
in their environments while building grounded high-level
structures belies the complexity and computational chal-
lenges of the task. We address these two disparate problems
by proposing a bootstrap between lexical and grammatical
knowledge. We improve lexical acquisition through the ad-
dition of a new dimension of information and remove a com-
mon assumption to all grammar induction algorithms.

Learning grammars is often an intractable problem unless
concessions are made regarding the input, and having com-
plete knowledge of the language’s alphabet is a common as-
sumption. Learning lexicons from noise-free data is also a
challenge, and determining lexical items largely becomes a
problem of finding a set of structure-less substrings. It is
unrealistic from a developmental perspective to expect per-
fect information from noisy environments (e.g., child lan-
guage acquisition, robot sensor data), but state-of-the-art ap-
proaches to grammatical and lexical learning require it.

This paper explores the utility of including higher-level
structural information in the unsupervised learning of a lexi-
con and removing the requirement that grammar induction
algorithms have perfect, segmented input data. We dis-
cuss this learning task in terms of what we call the lexical-
grammatical interface where the two tasks are bootstrapped
together. In this bootstrap, lexical learning is segmenting
sequences of categorical data into an inventory of subse-
quences based upon grammatical information, and grammar
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induction is taking segmented sequences of categorical data
and building generative structures on top of the data. Learn-
ing grammars from segmented data is a hard problem, and
learning lexicons from noise-free strings is a hard problem.
An autonomous learner embedded in an environment must
be able to acquire novel words and adapt existing structures.
Our ultimate goal is to extend this work to real-valued sensor
data where methods must be robust with respect to noise.

Background and Related Work
The seminal work of Gerry Wolff that has developed into the
compression as computing paradigm (Wolff 1975) inspires
this work. Beginning with the MK10 model in the domain
of segmenting natural language text into words, Wolff ex-
plored the connection between expressivity and information
compression. Over the past thirty years, additional work ex-
panded the analysis of letter digram frequencies to gram-
matical structures (Wolff 1982; Langley & Stromsten 2000;
Wolff 2006). Here we detail some of the extensions in the
domains of lexical acquisition and grammar induction.

Lexical Acquisition
The approaches most similar to this work treat acquir-
ing a lexicon as an unsupervised learning problem with a
simplicity bias. SEQUITUR, a famous extension of the
MK10 model, is an algorithm for compressing a single
string (Nevill-Manning & Witten 1997). SEQUITUR is also
useful for discovering segment boundaries in natural lan-
guage text, but does not generalize; the algorithm returns a
grammatical representation for a single string and can only
produce that string. VOTING-EXPERTS takes a less re-
strictive approach to finding segment boundaries (Cohen,
Heeringa, & Adams 2002). Two experts, entropy and fre-
quency, vote for segment boundaries based on predictabil-
ity of the next substring and occurrences of a substring,
respectively. BOOTLEX explicitly builds and rebuilds a
lexicon in terms of itself by reparsing the input strings
(Batchelder 2002). It requires an optimal length parameter
and does not generalize or produce a hierarchy for the input
strings. Other comparable algorithms look at the problem
from a child language acquisition perspective (Brent 1999;
Hammerton 2002).

Other approaches consider higher level linguistic infor-
mation. Magerman et al. and Brill et al. consider the
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problem of segmentation while building a hierarchy using
part-of-speech (POS) tagged corpora or only the POS tags
(Magerman & Marcus 1990; Brill & Marcus 1992). Both
approaches look at natural language POS tagged corpora and
segment using the generalized mutual information (GMI)
criterion and divergence, respectively. The former finds dis-
tituents (i.e. constituent boundaries) at data n-gram positions
by computing GMI at each candidate location. Multiple it-
erations of the algorithm result in an n-ary branching hier-
archy. A constituent is denoted by two boundary distituents
and no a priori distituents between the two. The latter op-
erationalizes the concept of free variation by counting POS
tags and recording the words in the surrounding contexts.
If a tag and a pair of tags can occur in the same context,
then they construct a rule for these tags. From the counts of
words and contexts, they generate rules and compute a diver-
gence value for each rule. After searching over rule space,
the algorithm returns the set of rules that minimize overall
divergence. Both approaches produce hierarchies, but only
work on a small number of categories, with known bound-
aries, and do not generalize.
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Figure 1: Prefix-Tree Acceptor Built from the Positive Ex-
amples {aa, aca, acca, accca, bb, bcb, bccb, bcccb}

Grammar Induction
Regular Positive Negative Inference (RPNI) is an algorithm
for learning regular grammars from strings in a target lan-
guage (positive data) and strings not in a target language
(negative data) (Carrasco & Oncina 1994). If the input to
RPNI consists of a characteristic sample, then the algorithm
guarantees learning the target grammar. For the contribu-
tion of this paper, it suffices that the algorithm learns the
target grammar from data, and we can largely treat the algo-
rithm as a black box (the GI black box in Figure 3). As with
other grammar induction algorithms (e.g., ABL (van Zaanen
2000), ADIOS (Solan et al. 2005), and AMNESIA (Ron,
Singer, & Tishby 1995)), RPNI is not robust with respect to
noise (e.g., an improper segmentation of lexical items) and
can overgeneralize if the input is not characteristic. How-
ever, because RPNI has formal learnability guarantees and
is simple to implement, it is a suitable choice.

RPNI is a state-merging algorithm. Initially, it constructs

a prefix-tree acceptor (PTA) from the positive data (see Fig-
ure 1 built from the strings {a a, a c a, a c c a, a c c c a, b b,
b c b, b c c b, b c c c b}). States in the PTA are merged if the
resulting automaton does not accept any of the negative data.
When no more merges can be performed, the resulting ma-
chine is guaranteed to accept the target language. Given the
PTA from Figure 1 and a set of negative data, RPNI returns
the target automata in Figure 4.

Lexical-Grammatical Interface

The lexical-grammatical interface is the interplay between
the learning tasks of lexical acquisition and grammar induc-
tion (see Figure 3). A typical lexicon learning algorithm be-
gins with a stream of categorical data or a set of strings, and
its goal is to induce an inventory of lexical items. A typical
grammar induction algorithm begins with a set of strings,
and its goal is to learn a generative structural model like the
RPNI example above. While lexical learning is done with-
out any regard for structural information, grammar induc-
tion assumes a known lexicon and correctly segmented in-
put strings. Motivation for the lexical-grammatical interface
comes from child language development. Below, we detail
some of the developmental steps that children take that begin
with low-level segmentation and then improve the segmen-
tation using higher-level structural information.

Early on in life, children acquire linguistic proficiency in
segmenting and parsing. For example, children learn that
a prosodic hierarchy governs the structure of speech utter-
ances. The highest level in the hierarchy covers the entire
utterance and, in English, starts with high intonation and de-
creases over the course of the utterance. Inside the utterance,
the phonological level governs the structure of a phrase. To
assess the development of phonological knowledge in chil-
dren, Christophe devised a set of sentence pairs where one
contained a sequence of phonemes within a phrase and the
other crossed a phrase boundary (e.g., an example from the
article uses paper and pay per) (Christophe et al. 2003).
The experiment found that children at 13 months old pre-
ferred the phonological phrase internal presentation of the
word. In other words, children as early as 13 months old
have acquired sufficient linguistic knowledge about phono-
logical phrase boundaries that they are able to segment fluent
speech.

Work by Jusczyk found that children at 7.5 months old
that are presented with sparse amounts of data (30 seconds
of raw speech audio data) are able to build a representation
that persists until at least the following day. At 9 months of
age, children already shift their language focus to the typ-
ical (i.e., high frequency) phoneme sequences of their na-
tive, predominant tongue and spurn words that violate those
phonotactic constraints. From 9 to 10.5 months, children
demonstrate knowledge of allophonic cues and their use in
segmentation in an experiment where “nitrates” and “night
rates” are to be distinguished in fluent speech. Later, chil-
dren begin to generalize over stress patterns and on a high
level recognize that word units tend to begin with high stress
and end with weak stress (Jusczyk 1996).
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Preliminaries
In the remainder of the paper, it is important to maintain the
distinction between the alphabet for the set of strings in the
lexicon and the alphabet for the finite state automata. Let
Σ denote the alphabet for the lexicon and let Γ denote the
alphabet for the finite state automata (the lexicon) such that
Γ ⊆ Σ∗. Note that in the bootstrap, Σ stays constant in a
sample string and Γ varies depending upon the segmentation
of the string. At each iteration, Γ adds a new element uv such
that u, v ∈ Γ. Depending upon the remainder of the sample,
u and v may or may not be eliminated from Γ.

Formally, a deterministic finite automaton (DFA) is a 6-
tuple 〈Q,Σ,Γ, q0, δ, A〉where Q is a finite set of states, Σ
is a finite alphabet, Γ is a finite lexicon of elements in Σ∗,
q0 ∈ Q is the start state (denoted by 0 in this paper), δ is the
function (δ : Q× Γ→ Q), and A ⊆ Q is a set of accepting
states.

Bootstrapping in the Lexical-Grammatical
Interface

In this section, we present a novel algorithm that opera-
tionalizes the bootstrap for lexical acquisition and grammar
induction in the domain of regular grammar learning and
string segmentation.
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Figure 2: Potential Merge (1 a→ 2 and 2 b→ 2)

Figure 3 details the complete structure of the lexical-
grammatical interface. The learner receives sequences of
data from the environment in the form of phonemic tran-
scriptions. The initial lexicon is the inventory of the
phonemes received (a black box segmentation algorithm
from above can be used to create an initial segmentation of
the sequences). The segmented sequences serve as input to
the grammar induction black box and grammar component.
The grammar induction black box returns a grammar given
in terms of the current lexicon. Up until this point, the pro-
cess is a standard grammar-induction pipeline. The question
is how to use learned grammatical structures to improve the
segmentation and, in turn, improve the lexicon.

Consider the way that two rules govern how SEQUITUR
compresses its input string. Nonterminals replace pairs of
equivalent digrams (digram uniqueness), and each nonter-
minal must be used more than one time (rule utility). We
can leverage the same style of rules when taking the learned
grammar and proposing segmentation changes (lexicon re-
finement). First, we use the learned machine to parse each
input string (both positive and negative data). Next, we

count the number of strings that pass through each pair of
adjacent edges. Frequently traversed pairs of edges in an
automaton are frequently occurring digrams in the input
strings. However, since we have a higher-level grammat-
ical structure, instead of indiscriminately merging digrams
in strings, we have the condition that the same edges must
be traversed for a merge to occur.

Edge pair selection proceeds greedily and the most fre-
quent edge pair is used to resegment the positive and neg-
ative data (in the case of a tie, the algorithm uses the first
edge pair). Figure 2 shows a submachine that highlights a
potential merge of the edge labeled a from state 1 to state 2
and the edge labeled b from state 2 to itself. Any string that
exercises those two productions counts toward the frequency
count for the pair of edges. For example, the substring a b
b b a beginning at state 1 counts toward the pair frequency
once, and if the edge pair is most frequent, then the substring
would be resegmented to ab b b a.

The most frequent edge pair drives the resegmentation of
both the positive and negative data. The bootstrap continues
with the strings in terms of a new lexicon. This complete
approach to grammar learning begins with an overly gen-
eral grammar and proceeds through the space of possible
automata to an overly specific grammar (i.e., one production
for each string of positive data). The algorithm returns the
grammar with the global minimum lexicon size.

Our approach is only a constant amount of time more than
the complexity of the choice of grammar induction algo-
rithm. The constant is bounded by the number of possible
edge pairs to consider at each step, O

(
Γ2

)
. The number of

possible iterations of merges is O
(
l ∗ |S+|

)
where l is the

length of the longest string in the positive data, S+. Instead
of an exponential blowup in the search space of possible
ways to segment the input strings, the bootstrap iteratively
improves both the grammar and lexicon with little additional
cost.

Experimental Results
We evaluate the bootstrap using natural language data and
the state of the art in grammar induction. A perennial prob-
lem in both lexical and grammatical learning is proper eval-
uation. We use data from common corpora with established
lexicons and community-derived benchmarks to gauge the
success of our approach.

Lexicon Entry Phoneme Representation
orange ow r ih n jh
purple p er p ax l
raisins r ey z ih n z

Table 1: Sample Lexicon with Phoneme Representation

The alphabet for the lexical learning component is the
one and two-letter phoneme representation for word tran-
scriptions called ARPAbet. Words used for the lexicon
and the phoneme sequences drawn from the environment
are taken from data contained in both the TIMIT and
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Figure 3: Learning in the Lexical-Grammatical Interface (SA and GI are segmentation and grammar learning black boxes
selected based upon the type of sequences and class of languages, respectively)

SWITCHBOARD-1 corpora and their phonemic transcrip-
tions. For example, the word forward is transcribed into
APRAbet as the following sequence of phonemes: f ow r
w er d. More example words and transcriptions used in the
experiments are available in table 1.
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Figure 4: Target Machine Topology

The grammar induction community has a series of bench-
mark languages for comparing learning algorithms: L1
through L151 (Tomita 1982; Dupont 1994). Here we present
the results for learning lexicons and grammars for the L15
benchmark. The algorithm performs analogously on other
benchmark languages. The L15 language contains three lex-
icon entries and has a regular expression ac∗a+ bc∗b. In the
experiment, a, b, and c are replaced with random ARPAnet
phoneme sequences corresponding to words in English.

The automaton in Figure 4 has the target topology for L15.
Using the three words in the lexicon from table 1, we begin

1Canonical deterministic finite automata and data are avail-
able from http://www.irisa.fr/symbiose/people/
coste/gi_benchs.html

with Σ and Γ = {λ, ow, r, ih, n, jh, p, er, ax, l, ey, z}. RPNI
constructs a PTA with the positive data, merges states, and fi-
nally returns the machine in Figure 5. Therefore, RPNI can-
not recover the correct grammar. Also, SEQUITUR does not
recover the lexicon given an input consisting of the positive
data. While little can be gleaned directly from the learned,
overly general automaton, it is able to parse each positive
string and will not accept any negative string in table 2. The
edge pair starting with the edge labeled ow from state 0 to
itself followed by the edge labeled r from state 0 to itself
is the most frequently used to parse the data. The converse
edge pair is not counted because it is never used to parse any
of the data. The algorithm resegments the lexicon in terms
of the winning edge pair and the next iteration begins.

Positive Data
ow r ih n jh ow r ih n jh
ow r ih n jh r ey z ih n z ow r ih n jh
ow r ih n jh r ey z ih n z r ey z ih n z ow r ih n jh
ow r ih n jh r ey z ih n z r ey z ih n z r ey z ih n z ow r ih n jh
p er p ax l p er p ax l
p er p ax l r ey z ih n z p er p ax l
p er p ax l r ey z ih n z r ey z ih n z p er p ax l
p er p ax l r ey z ih n z r ey z ih n z r ey z ih n z p er p ax l
Negative Data
λ
ow r ih n jh
p er p ax l
r ey z ih n z
ow r ih n jh r ey z ih n z p er p ax l
p er p ax l r ey z ih n z ow r ih n jh

Table 2: Positive and Negative Data for L15

Figure 6 shows the size of the lexicon at each iteration in
the execution of the algorithm. The algorithm begins with a
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lexicon of size 12, merges ow and r to form a new lexicon en-
try owr, but both ow and r remain in the lexicon. At iteration
19, the algorithm returns the machine with the global mini-
mum lexicon size. Beginning with iteration 20, the learned
grammars contain edges that combine two or more correct
lexical items. The final iteration, 33, results in a grammar
with one edge per positive string. The automaton from it-
eration 19 in Figure 7 has both the correct structure and the
correct lexicon.
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Figure 5: RPNI Result Using the Initial Lexicon

Discussion
For benchmark languages other than L15 with randomly se-
lected natural language phonemic transcriptions, the algo-
rithm performs analogously. There are, however, cases of
languages that present problems. The difficulties with our
algorithm and framework result from cases that are chal-
lenges for grammar induction algorithms and MK10 and SE-
QUITUR. For example, SEQUITUR’s performance at dis-
covering correct segments increases when the there are more
diverse patterns, but degrades when the patterns are more
homogeneous.

Consider the pathological case of Σ = {a}, Γ = {a, aa,
aaa}, and the language is (a+ aa+ aaa)∗. RPNI requires a
small amount of positive and negative data to infer the cor-
rect grammar for this language. The positive set of strings is
{λ, a, aa, aaa, a a, a aa, a aaa, aa a, aa aa, aa aaa, aaa a,
aaa aa, aaa aaa} and the negative set of strings is the empty
set. There are no strings in Γ∗ that are not in the language
and there are no strings in Σ∗ that are not in the language if
we ignore proper segmentation.

For other languages, the algorithm learns a lexicon and
a grammar, but overgeneralizes in an interesting way. The
general topology of the automaton is correct, but there are
additional edges containing one or more concatenations of
true lexical items. If we ignore the spacing of strings in the
language, the learned grammars will only produce strings in
the language. That is, in these cases the overgeneralization
does not produce strings that violate the linear order of lexi-
cal items in correct strings.

If we use the strings from the positive data above, our
algorithm runs into some problems. The lexicon begins as
the singleton set {a} and the strings a aa and aa a become

indistinguishable. Moreover, strings not in the language
(e.g., aaaa) are also indistinguishable from strings in the
language. These problems are also issues for MK10, SE-
QUITUR, and VOTING-EXPERTS as they all fail to prop-
erly segment the strings.

Figure 6: Lexicon Size Over 33 Iterations

Conclusion and Future Work
In this paper, we presented a novel framework for bootstrap-
ping learning a lexicon and inducing a grammar. Prior work
on lexical acquisition has ignored valuable grammatical in-
formation, and grammar induction approaches require per-
fectly segmented alphabets to recover correct grammars. We
also introduced an efficient algorithm for segmenting strings
and learning a grammar for a class of regular languages.
Our algorithm begins with an incorrect segmentation of in-
put data and recovers a lexicon and grammar.

Future work will proceed in four directions. First, we
will focus on the theoretical boundaries of the lexical-
grammatical bootstrap. That is, we will explore the classes
of languages that are lexical- and grammatical-learnable in
the Chomsky hierarchy. As the grammar induction com-
ponent is a black box, learning algorithms for more com-
plex languages can replace RPNI. The interested reader can
consult Lee’s survey article on context-free grammar learn-
ing algorithms (Lee 1996). These results will define a new
class of learnable formal languages and will shed light on
the learnability of natural languages.
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Next, we will evaluate other measures of success to better
understand how to compare grammar and lexicon learning
approaches. For example, Büchi automata, finite-state au-
tomata for strings of infinite length, have become increas-
ingly popular in the software engineering community. They
have developed approximation and simulation techniques
that may be useful in experimenting with the generative ca-
pacity of inferred grammars (Henzinger, Kupferman, & Ra-
jamani 2002).

Third, we will harness the generative power of the gram-
mar and lexicon to create novel utterances (see Figure 3). A
learner embedded in an environment can then be used to ex-
periment with language generation. For example, from the
pathological case, the string a a a generated by a learned au-
tomaton and aaa from the target language are both surface
equivalent if the segmentation is ignored. This information
can be used during edge-merge selection. The intuition is
that while the automata’s structures are different, the surface
forms of the utterances are the same. Finally, we will extend
our current results using categorical data to time series data
and spoken natural language data.
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