
 

 

Non-Rigid Image Registration 
  

Rhoda Baggs 
Department of Computer Information Systems 

Florida Institute of Technology. 
150 West University Blvd. 
Melbourne, FL 32901-6975 

rbaggs@fit.edu 

Dan E. Tamir 
Department of Computer Science 

Texas State University 
601 University Drive 

San Marcos, TX, 78666 
dt19@txstate.edu 

 
Abstract 

 An important hypothesis of the research reported in this 
paper is that dynamic space warping (DSW), a dynamic 
programming (DP) technique (Bellman 1965, Brown 1996), 
can be effectively used for object matching and for 
inference of the image registration warping function. For 
this end, a novel, robust, and efficient method for non-rigid 
image registration using DSW in the “length–code” domain 
is developed. Length codes are affine transformation 
invariant object shape features (Baggs 1996). DSW is 
utilized to estimate linear, nonlinear, and non-rigid warping 
(Keogh 2006).  The DP algorithm maps length codes in an 
attempt to identify objects that appear in more than one 
image and uses their coordinates to register the images. 

Introduction 
 This paper shows that under reasonable constraints 

and assumptions, dynamic space warping (DSW), a 
dynamic programming (DP) technique (Bellman 1965), 
can be applied successfully to the object matching and 
image registration problem (Alajani 2006).  The DSW is 
applied to a set of affine-transform-invariant object-shape-
features referred to as length code (Foley 1990, Keogh 
2006, Shabi 2001).  
 Misalignment between images of the same scene is often 
the result of differences in image acquisition conditions or 
acquisition equipment. A typical effect of the acquisition 
differences is non linear geometric distortion (or warping). 
For example, aerial photography of the same area taken by 
two different airplanes may introduce different (non-linear) 
scaling, translation, rotation, and shearing to the obtained 
image objects. In addition, these differences may affect the 
light intensity, and image background.  
 As stated by Haralick and Shapiro (Haralick 2002), 
“Image registration is the geometric warping process by 
which two images of different geometries but of the same 
set of objects are spatially transformed so that the size, 
shape, position, and orientation of any object on one image  
are made to be the same size, shape, position, and 
orientation of that object on the other image." An overview 
of registration techniques can be found in (Zitova 2003). 
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 Hence, the goal of image registration is to identify and 
apply the transformation function that aligns the images. 
This function represents an approximation of an optimal 
mapping of pixels from one image onto the other.   
  In this paper it is assumed that the geometric distortion 
can be represented to a good degree of approximation 
using affine transformations. In other words, we are 
searching for the best affine transformation that can 
approximate the actual distortion between the images. 
Except for normalization of brightness levels, the 
algorithms do not take into account potential differences in 
light conditions and background changes.  
 Dynamic time warping (DTW) has been thoroughly 
investigated and implemented in speech recognition 
systems (Itakura 1975). Dynamic space warping is much 
less explored. Only a few papers on DSW applications are 
available  (Shabi 2001).  

Keogh extends DTW to DSW and uses it for 
matching objects in the signature domain (Keogh 2006). 
While he takes into account translation and rotation 
invariance, he is not concerned with invariance with 
respect to the entire affine transformations. The advantage 
of the features presented here is that they are more robust, 
computationally efficient, and allow for efficient 
introduction of scaling invariance. In addition, Keogh is 
not concerned with the application of DSW to image 
registration.  
 This is the first contribution in the area of image 
processing which applies DSW to signatures of images for 
the purposes of object matching within the context of the 
image registration problem. In particular, the signature 
produced for objects in an image is the length code 
algorithm developed by Baggs (Baggs 1997). 

The registration process 
 Two images are involved in the registration process the 
“reference image” and the “inspected image.” The process 
described in this paper includes identifying matches 
between objects in the inspected image and the reference 
image. Unique object points are used to estimate the 
warping transformation function. The function is used to 
map pixels of the inspected image to pixels in the reference 
image.  
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 The registration process reported in this paper involves 
the following steps: 
• Identify all the objects in the reference image, and all 

the objects in the inspected image,  
• Extract shape features (length codes) of objects.  
• Implement the DSW pattern matching algorithm to 

match objects from the reference image with objects 
from the inspected image.  

• Pick the K best object matches and store each match as 
an ordered pair of the objects centroids.  

• Using the centroids, compute and apply a 
transformation function which registers the images.  

 We add more details to these procedures in respective 
sections of the paper. The Object Matching phase is the 
primary focus of this paper. 

Experiments 
 A set of experiments has been performed in order to 
validate the utility and robustness of the proposed method.
 The results of the experiments, reported in the section 
“Experiments and Results,” show that very accurate 
matching with low error rates are achieved and produce 
high quality registration.   

The Length Code Registration Algorithm 
 The object matching phase utilizes shape features 

referred to as length codes.  In order to obtain length codes 
the image has to be segmented, objects have to be 
identified, and the pixels that reside on object contours 
have to be marked (Alajan 2006, Brown 1992). 

Object Identification 
 Image segmentation can be implemented in several 
different ways (Haralick 2002). The method chosen is the  
robust vector quantization (VQ) image segmentation 
method described in (Coleman 1979). Moreover, our 
implementation of the VQ algorithm (Tamir 2007) is about 
four times faster than the commonly used Linde, Buzo, and 
Gray (Linde 1980) LBG algorithm. This results in a 
computationally efficient segmentation method.  

One advantage of the VQ is that it is less sensitive to 
changes in the lighting of a scene between two consecutive 
image acquisitions. These changes may affect the 
brightness level of an object that appears in both images, 
distort its shape, and affect the probability of matching the 
two instances of the object. To further reduce the 
sensitivity of the segmentation to light changes we 
normalize the gray levels of the reference and the inspected 
images before applying the VQ-based segmentation 
algorithm. Following the segmentation, a connected 
component labeling (CCL) and a contour following 
algorithm are applied (Haralick 2002). 

Shape Representation Using Length Code 
 Object shape features such as chain codes, Fourier 
descriptors, and object-signature are often used for object 
matching and image registration (Brown 1992, Foley 1990, 
Haralick 2002).  A desirable characteristic of many of the 
shape features is their set of invariants which can provide 
matching robustness. For instance, chain-codes are 
invariant to translation.   
 This work uses a variant of the object signature 
referred to as the “length code”. The term object-signature 
is “overloaded.” In the context of this paper it is the set of 
distances measured from a fixed-point referred to as the 
‘center’ (generally this point is centroid of the object) to 
pixels that reside on the object boundary (contour). There 
are two ways to produce the set of distances. In a fixed 
angle length code, the distances are measured in 
increments of equal angles. A second approach is to 
measure the distance from the center to every pixel on the 
contour of the object. A problem with the fixed angle 
method occurs with concave objects. The same angle may 
yield more than one distance to points on the contour. The 
“every-pixel” method removes the requirement for 
convexity and can use an arbitrary center. Due to the 
invariance toward convexity the “every-pixel” method is 
used in this paper. 

Length coding has several advantages over other 
shape representation methods with respect to object 
matching. The main advantage is that it is less sensitive to 
“noise”. This is due to the fact that a small change in 
shape, which may be due to noise, does minimal change to 
the distance between the centroid and contour points. On 
the other hand, since chain codes are three bit numbers, 
then a small change in the boundary can result in a 
significant change (relative to the range of [0,7]) in the 
chain code. The same applies to Fourier descriptors which 
are based on the values of the tangents to the contour at the 
contour points. A small change in shape at a given 
boundary pixel can result in selecting a different member 
of the 8-neighbors of that pixel thereby producing a 
relatively large change in the sequence of tangents and 
their Fourier transform. In addition, length coding is 
invariant to the entire set of affine transformations. Finally, 
this representation converts a two-dimensional problem 
into a one-dimensional problem without loss of 
information and provides a computationally efficient 
framework.  

Length Coding 
 The cyclic auto correlation function of the signature 
sequence is rotational and translational invariant (Baggs 
1996, Haralick 2002). The first autocorrelation coefficient 
of the signature, , is the sum of squares of the values of 
signature elements. Hence, it approximates the energy of 
the signal and is proportional to the area of the object. 
Thus, in order to normalize the sequence each 
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autocorrelation coefficient  is divided by the 

coefficient . The resultant sequence is scale invariant.  It 
is referred to as the “length code” of an object. 
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The DP Object Matching Algorithm  
An image transformation is a mapping of the pixel 

locations in one image to a new location in a second image. 
The transformation is assumed to be global. That is, the 
same transformation equation is applied to all the pixels in 
the image. 
 The set of affine transformations accommodate planar 
mappings, i.e., it preserves parallel lines and equi-spaced 
points (Foley 1990). Translation, rotation, and scaling are 
the three basic affine transformations. This paper assumes 
that the warping between the reference image and the 
inspected image can be approximated by an affine 
transformation applied to the reference image. Hence, the 
goal of the inference of the image transforms stage is to 
identify the inverse transformation (the transformation that 
maps the inspected image to the reference image), and 
apply the inverse transformation to the inspected image. 

The coordinates of at least three points in the 
reference image along with the coordinates of the 
compatible three points in the inspected image are required 
in order to compute the warping transformation. If only 
three pairs of points are available, then a set of six 
equations in six unknowns is inferred and used to compute 
the transformation. Generally, more than three pairs of 
points are available producing an over determined set of 
linear equations. The least square method is used to solve 
these equations. This is further detailed in section 2.5. 
 A normalized homogeneous coordinate space is used 
(Foley 1990).  In this space, the three basic transformations 
are represented by 3x3 matrices. Arbitrary transformations, 
which are the result of a sequence of basic transformations, 
are computed through 3x3 matrix multiplications and yield 
a 3x3 matrix. The actual image transformation is computed 
by multiplying the homogeneous coordinates of pixels by 
the transformation matrix. Let  be the 
homogenous coordinates of a pixel in the reference image. 
Then,  are the coordinates of this pixel after 
applying  affine transformation to the image. See (EQ-1): 
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Shearing is not a basic transformation. It can be 
obtained through a sequence of basic transformations such 
as rotation, and scaling. Nevertheless, we dedicate special 
consideration to shearing as it is a typical warping that 
occurs in digital image processing.  

It may appear that the length code is invariant 
only with respect to affine transformations performed in a 
coordinate system where the origin is the object’s center. 

This is not the case, since an affine transformation with 
respect to arbitrary point ‘C1’ can be expressed as a 
combination of affine transformations where the origin is 
the point ‘C2’.  

Inferring the Inverse Transform 
 Consider the points P, Q and the affine 

transformation that maps P into Q  (say A ), then the 
inverse transformation exists, is itself affine, and defines P 
in terms of Q.  Given a transformation matrix , then its 
inverse is defined by: . 
The adjoint (adj) of a matrix is the transpose of the matrix 
of cofactors and ‘det’ stands for the determinant of a 
matrix (Baggs 1997). The inverse transformation is then 
defined by the equation (EQ-2): 

A
/1−A ))det((1 AadjA =− )(A
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Thus, an affine transformation has six degrees of 
freedom, relating directly to coefficients {all, a21, a31, a12, 
a22, a32}. Hence, six equations have to be formulated and 
solved in order to uniquely determine the transformation. 
This can be accomplished by identifying the location of 
three non-collinear points in both images (reference and 
inspected). Let , , and , , , and be these 
three points in the reference and inspected images, respec-
tively, EQ-2 expresses their relationship in the form of a 
matrix equation. The six unknown coefficients of the affine 
mapping are determined by solving the system of six linear 
equations contained in EQ-2 (Baggs 1997).   

1P 2P 3P 1Q 2Q 3Q

When more than three correspondence points are 
available, and when these points are known to contain 
errors, it is common practice to approximate the 
coefficients by solving an over determined system of 
equations. In that case, A is no longer a square 3x3 matrix 
and it must be inverted using any technique that solves a 
least-squares (LS) linear system problem.  The reader is 
referred to (Baggs 1997) for a discussion on this topic. 

Let K be the number of pairs of matching objects 
identified in the reference and inspected images. We 
consider four cases:  1) K=0, in this case the registration is 
deemed to be impossible.   2)  0<K< 3, in this case we use 
the obtained matches to generate three matching points. 
These points are the centroids and unique points that 
belong to the object’s contour (e.g., the points with 
maximum distance from the centroids). 3) K=3, we use the 
three pairs of centroids as the 3 points. Finally,           4) 
3<K, we solve an over-determined equation to identify the 
transformation.  We discuss the option of using more than 
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three points when (cases (2) and (3) above) in 
section 4.0. 

30 ≤< K

Experiments and Results 
 Two types of experiments are executed. The first set of 
experiments includes synthetic data and the second 
includes real data, i.e., natural images obtained through 
image acquisition devices. 
 The input to each experiment is a reference image R 
with Nr objects and an inspected image I with Ni objects. In 
most of the experiments, it is assumed that the image I 
contains the same (or very similar) scene as the image R. 
The difference between the two images is due to the fact 
that they are obtained through different acquisition devices, 
conditions, perspectives, and times. The result of these 
differences is warping. It is further assumed that the 
warping can be approximated by a set of affine 
transformation applied to the image R.  The experiments 
are all non-supervised and include the following steps: 

• Preprocessing 
 Segmentation  
 Connected component labeling (CCL)  
 Contour following 
 Length code extraction  

• DSW matching  
• Inferring and applying the inverse transformation 
• Obtaining a difference image and measuring the 

registration quality. 
 

 The pre-processing stage identifies objects in the images 
and represents these objects using length code. The DSW 
matching stage produces a dissimilarity matrix. The matrix 
element is the distance between object from the 

image R and object from the image I.  The inference 
stage uses unique points identified in pairs of 
matching objects in order to estimate the warping function 
(the inverse transformation). This function is then applied 
to the pixels of the inspected image. 
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 Experimental results are measured by the recognition 
accuracy and the recognition error rates. In addition, the 
quality of the results is evaluated using the power of the 
difference image along with the power of the reference 
image. The ratio of the powers is used to calculate the 
signal to noise ratio (SNR). High SNR demonstrates that 
the inverse transformation has accurately mapped the 
inspected image to the  reference image. 

In the case of RGB images the L2 norm used to compute 
the SNR is computed in the three dimensional RGB space. 
To further elaborate, consider the image T. That is, the 
image obtained from the image I after applying the inverse 
transformation A-1 to the image I. This is the best 
approximation of the original image R obtained through 
the proposed algorithms. The difference image D is 

constructed through pixel wise absolute-value subtraction 
of the corresponding pixels in the images R and T. The 
SNR value is computed using the following formulation: 
 
Let                           and                        , then the SNR  
 
(measured in DB) associated with the image D (and hence 
with the experiment of matching the image I to the image 

R) is given by: 2

2

10log10
D

R
DSNR

σ
σ

=  DB.  

Note that high SNR denotes better registration quality as it 
means that the difference image contains a small amount of 
information. 

Experiments Using Synthetic Data 
 For the synthetic data experiments, 27 different 
computer generated images are used in order to supply 
complete control over the nature of the input. Each image 
consists of a background which is ignored  and one set of 
pixels representing a “simple”, filled in, object. The types 
of objects created are ellipses, circles, triangles, squares, 
rectangles, and parallelograms. Different sizes and 
positioning of the objects provide suitable and careful 
testing of translation, rotation, uniform scaling, and non-
uniform scaling, and shearing.  
 A total of 351 experiments were performed.  We refer to 
an error as a ‘type-1 error’ to be the case when an object 
from one class (e.g., ellipsoids) did not match an object 
from the same class. A ‘type-2’ error occurs when an 
object from one class matches an object from a different 
class. 

Table 1 shows the match matrix for the entire set 
of experiments with synthetic data. The table is derived 
from a decision function with a distance threshold of 4.0. 
The matching score is denoted in the percentage with 
respect to the number of experiments per class. 

 
≤Th  

0.4  

Circle / 
Ellipsoid 

Triangle Rectangle 

Circle / 
Ellipsoid 

96% 0 0 

Triangle 
 

0 100% 0 

Square  / 
Rectangle 

0 8% 100% 

                      Table 1, The match matrix 
 

Table 1, presents a high recognition rate of 96% 
and above, and an 8% or below type-2 error rate. Type-1 
error rate can be deduced from the table by subtracting 
100% from each diagonal element of the table. Hence, it is 
4% or below. The total error rate (type-1 and type-2 errors) 
over the entire set of experiments is 4.2%. 
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Experiments With Natural Images 
 Two types of experiments were performed on natural 
images. First, a given image was used as the reference 
image. Different versions of this image, obtained through a 
controlled synthetic affine transformation of the image 
were used as the inspected images. The second includes 
pairs of natural images of different scenes and pairs of 
images of the same scene obtained from different camera 
positions. Each experiment yields an individual match 
matrix and an SNR value. 

Controlled Natural Images 
 All of the experiments discussed in this section involve 
the comparison of the image POKER (shown below) with 
a copy of POKER, artificially transformed. 
  Ten types of transformations are applied to the original 
POKER image including: translation, rotation, uniform and 
non-uniform scaling, uniform and non-uniform shearing, 
compositions of translation, rotation and non-uniform 
scaling / shearing. Within each group mentioned above, 4 
different images are created, each with different values for 
the transformation; i.e. each represented by a different 
transformation matrix. Thus a total of 40 images used to 
compare to POKER have been constructed.  

 
 
 
 
 
 
 
 
 

 
Figure 1, “Poker” artificially transformed 
 
The applied warping is quite severe. It includes 

translations by up to 28 pixels, rotations by up to 20o, up to 
2.25 times scaling, and up to 40

Natural Images
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0 shear. The non-uniform 
transformations use the same ranges with different values 
for the ‘x’ axis and for the ‘y’ axis. Composite 
transformations include combinations of uniform and non 
uniform rotation, translation, scaling, and shearing. 

Table 2 summarizes the average SNR obtained 
over a class of experiments with a given set of 
transformations parameters (listed in the table). 

 
 
Description 

 
Parameters 

Average 
SNR 

Translations (7, 7) 15.40 
Rotations 5o 14.31 
Scaling 1.25 14.21 
Shearing (10o, 10o) 14.26 
Non-uniform scale (1.25, 1.5) 11.76 
Non-uniform shear (10o, 15o) 13.34 
Compositions See text 11.99 
All Transformations  13.57 

Table 2, Average SNR 

  
A relatively large SNR indicates a better matching 

and a good range for SNR would be between 25 to 35 DB. 
The SNR obtained here is lower. This is partially due to the 
fact that the warping is severe and might be due to data 
rounding. The transformations yield real values which are 
rounded in order to obtain discrete pixel locations. The 
rounding is done twice. First, when I is generated from R. 
Next, when T is generated from I. As a result the 
accumulated error is relatively large. It should be noted, 
however, that visual inspection of the images shows that 
the registration is quite good. It is close to registration 
obtained via manual alignment and is sufficient in order to 
implement operations such as change detection.  

Arbitrary Natural Images 
The experiments described in this section include pairs of 
natural images. A pair of images is considered as ‘like 
images’ if they are images of the same scene obtained from 
different perspective points. ‘unlike images’ represent two 
arbitrary images.  Figure 2, shows two pairs, a pair of like 
images (Album-1 and Album-2) and a pair of unlike 
images (Poker and Wedding). The images were divided 
into three “lots” where the members of a “lot” share similar 
(but not necessarily the same) scenes. Overall, 277 pairs of 
images were processed by the length code algorithm. 
   

 
 
 
 
 
 

 
 

Figure 2, Pairs of natural images 
 
Figure 3, shows a summary of the results over the 

entire set of experiments (per lot) described in this section. 
The first 3 columns represent the average results for the 
three lots; the last column represents the overall average. It 
can be noticed that the SNR of “like” images is relatively 
high and is significantly better than the SNR of the ‘unlike 
images’. Hence, the SNR can be used to make an 
(automatic) decision whether to accept or reject the results 
of registration. 
 
 
 
 
 
 

 
 
 

                    Figure 3, Natural Image Results 
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 This also denotes that the registration is successful and 
the transformed image T (obtained from the image I after 
applying the inverse transformation A-1 to the image I) is 
very similar to the reference image R. The results of this 
phase have also been evaluated manually. It was concluded 
that the registration error is very small. Moreover, the 
registration process can enable high quality change 
detection. It should be noted that the SNR obtained in the 
current phase is better than the SNR obtained with artificial 
transformations applied to natural images. We have 
concluded that the reason is due to the severity of the 
transformations parameters applied in the set of 
experiments with artificial transformations. 

Result Evaluation 
Hundreds of experiments were performed. Due to the 

space limitations only a few of them have been presented. 
In general, when affine transformations were a 
composition of translation, rotation, and scaling, favorable 
objects matching and image registration results were 
obtained. Shearing and composite transformations are a bit 
more problematic. Overall, the DP algorithm has been 
shown to be successful for object matching.  

Other problem areas identified include the tight 
coupling of object matching to segmentation, finding 
additional useful error measure between images after the 
computed transformations are applied, and guaranteeing 
the correct matching of objects  as part of the DP process. 

Finally, we have compared our registration with other 
registration algorithms reported in the literature  and found 
that they are much better than published results (Brown 
1992, Zitova 2003).  

Conclusions  
This is the first research on using DSW in the length code 
domain for image registration. The results indicate that 
they merit further investigation including: 
• It may be possible to use the matching function 

obtained when the DSW is applied to pairs of objects 
to estimate the global transformation applied to the 
entire image.   

• Investigation of efficient ways to obtain more than 
three points with fewer than three matches.  

• Investigation of the utility of different ways to obtain 
the length code (e.g., using an equi-angle signature), as 
well as other object shape features.  

• Further investigation of the applied DSW constraints 
can improve the recognition rate of the DSW. 

• The segmentation process is tightly bound to the DP 
matching algorithm. The impact of other segmentation 
methods on the DSW based registration algorithm can 
be investigated. 

• Our experience shows that the building blocks of the 
algorithm are relatively efficient.  Nevertheless,  

further investigation into computational complexity 
can better quantify the efficiency of the algorithms. 

• Identifying additional registration quality criteria (in 
addition to SNR)  
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