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Abstract  

 In machine learning, decision trees are employed extensively 
in solving classification problems. In order to design a decision 
tree classifier two main phases are employed. The first phase is 
to grow the tree using a set of data, called training data, quite 
often to its maximum size. The second phase is to prune the 
tree. The pruning phase produces a smaller tree with better 
generalization (smaller error on unseen data). One of the most 
popular decision tree classifiers introduced in the literature is 
the C4.5 decision tree classifier. In this paper, we introduce an 
additional phase, called adjustment phase, interjected between 
the growing and pruning phases of the C4.5 decision tree 
classifier. The intent of this adjustment phase is to reduce the 
C4.5 error rate by making adjustments to the non-optimal splits 
created in the growing phase of the C4.5 classifier, thus 
eventually improving generalization (accuracy of the tree on 
unseen data). In most of the simulations conducted with the 
C4.5 decision tree classifier, its parameters, confidence factor, 
CF, and minimum number of split-off cases, MS, are chosen to 
be equal 25% and 2, their default values, recommended by 
Quinlan, the inventor of C4.5. The overall value of this work is 
that it provides the C4.5 user with a quantitative and qualitative 
assessment of the benefits of the proposed adjust phase, as well 
as the benefits of optimizing the C4.5 parameters, CF and MS.  

Introduction 
Decision tree is a methodology used for classification and 

regression. Some of its advantages include the fact that it is 
easy to understand, and it can be used to predict labels of 
patterns with numerical as well as categorical attribute 
values, of which some might be missing. This work deals 
only with classification problems. A popular decision tree 
classifier,  is the C4.5 decision tree classifier [1]. Typically, 
in order to design a decision tree classifier, two phases are 
employed: In the first phase, the tree has to be grown. In this 
phase a collection of training data is utilized to grow the tree 
by discovering (using some criterion of merit) a series of 
splits that divide the training data into progressively smaller 
subsets that have purer class labels than their predecessor 
data. In most instances, the growing of the tree stops when 
we end up with datasets that are pure (i.e., contain data from 
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the same class). At the end of the growing phase, usually an 
over-trained tree has been produced. In the second phase, the 
objective is to prune the overgrown (over-trained) tree. 
Pruning produces less complex and more accurate (on 
unseen data) decision tree classifiers. Pruning removes parts 
of the tree that do not contribute to the tree’s classification 
accuracy.   

Quinlan, the inventor of C4.5, suggested default values for 
the C4.5 parameters, CF (confidence factor), and MS 
(minimum numbers of split-off cases), equal to 25% and 2, 
respectively. The CF parameter affects the confidence with 
which error rate at the tree nodes is estimated, with smaller 
values of CF resulting in more aggressive pruning of the tree 
nodes. The MS parameter affects the size of the grown tree 
by disallowing the formation of tree nodes whose number of 
cases is smaller than the chosen MS parameter; thus higher 
MS parameter values lead to grown trees that are of smaller 
size. A number of simulations with C4.5 are using the 
default parameter values for the CF and MS. In a recent 
paper  ([2]) it was demonstrated that other than the default 
CF values might be more appropriate for designing a higher 
performing tree (i.e., a better accuracy or smaller size, or 
better accuracy and smaller size tree). In this work, we also 
demonstrate, through appropriate experimentation, that 
changing the default value of the MS parameter has the same 
beneficial effects on the performance of the decision tree 
classifier. Note that modifying the MS parameter to improve 
C4.5’s performance has not been addressed before in the 
literature. 

During the growing phase of a decision tree classifier, like 
C4.5, if minimum error rate splitting is employed to grow 
the tree there will be many “optimal” splits and it is unlikely 
that the true boundaries will be selected; even worse, in 
many cases none of these “optimal” splits finds the real 
boundary between the classes. Therefore, it is widely 
accepted, that another measure of merit, usually referred to 
as gain (decrease) of impurity, should be used to evaluate the 
splits during the growing phase. During the pruning phase 
the estimated error rate is used in order to decide if a branch 
must be pruned or not. The problem encountered, if a tree is 
simply grown and pruned, is that the estimated error rate 
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may not be optimized because the splits decided during the 
growing phase use as criterion of merit the maximal gain 
ratio and not the minimal error rate. For this reason, in this 
paper, we propose adding a third phase in the design of a 
C4.5 decision tree classifier, called the backward adjustment 
phase with the intent of further improving the performance 
of the classifier. In the backward adjustment phase the 
grown tree is used. A re-evaluation and adjustment of the 
possible splits is done bottom-up, minimizing the estimated 
error rate. Then, the pruning phase is employed. The tree 
that is grown and pruned is obviously referred to as C4.5, 
while the tree that is grown, adjusted, and then pruned is 
referred to as C4.5A.  

In review, this paper presents experimental results that 
compare C4.5 and C4.5A for the default MS and CF 
parameter values, as well as for a variety of other choices of 
the CF and MS parameter values. Note that in our 
experiments we only modify one of the CF and MS 
parameter values, at a time, keeping the other parameter 
value at its default level. These experimental results lead us 
into a number of conclusions that provide the C4.5 user with 
a good level of understanding of whether, and how the C4.5 
parameter values affect the performance of C4.5 and C4.5A, 
and furthermore, how C4.5 and C4.5A compare with each 
other for the same set of parameter settings.  

The organization of the paper is as follows: In the 
Literature Review section we discuss pertinent prior work. In 
the Backward Adjustment Algorithm section, we justify the 
motivation for the backward adjust phase, and we explain in 
detail the backward adjustment algorithm. In the 
Experiments section, we discuss the type of experimentation 
conducted, the datasets used in this experimentation, and the 
results produced. In this section, the important observations 
from this study are delineated, as an immediate consequence 
of the results. Finally, in the Summary and Conclusions 
section we summarize our efforts and reiterate the important 
conclusions of our work.  

Literature Review 
A number of pruning algorithms have been proposed for 

decision tree classifiers, to reduce the tree’s size. These are:  
the Minimal Cost-Complexity Pruning (CCP) in CART 
(Classification and Regression Trees; see [3], page 66), 
Error Based Pruning (EBP) in C4.5 (see [1], page 37), 
Minimum Error Pruning (MEP) [4, 5], Reduced Error 
Pruning (REP), Pessimistic Error Pruning (PEP) (see [6] for 
both REP and PEP), among others. Some of the pruning 
algorithms are briefly analyzed and empirically compared in 
[7]. 

In this paper we focus on three approaches to improve the 
performance of an induced tree that is produced by an 
existing, popular decision tree algorithm, the C4.5 algorithm. 
In addition to introducing, justifying, and implementing an 

adjust phase, to improve C4.5’s performance, we argue for 
the usefulness of changing the default parameters (MS and 
CF) of the C4.5 algorithm. The important message that this 
paper delivers is that the adjust phase, and the modification 
of the C4.5 parameters allows for the creation of a 
population of trees that have different degrees of merit 
(accuracy on unseen data, and tree sizes). Furthermore, in 
the databases tested, there were many cases of non-default 
C4.5 parameter values that the produced C4.5 and C4.5A 
trees were not only of much smaller size, than the default 
C4.5 and C4.5A trees, but they achieved this feat without 
sacrificing the default tree’s accuracy.   

Backward Adjustment Algorithm 
Motivation 

During the growing process the splits that were chosen 
may not have been the error optimal splits. This happens 
because during the growing process the data is separated 
using the maximized gain ratio measure (see [1] for a 
definition of the maximized gain ratio). This split finds a 
good boundary and future splits may further separate these 
classes. For example, consider , which shows two 
class distributions (Gaussian distributions) that overlap. 
When C4.5 makes the first split, the maximized gain ratio 
split is chosen to separate part of class 1 from class 2. 
Nevertheless, if there is no future split under this node or all 
future splits are pruned, it is clear that this split is not the 
Bayes optimal split (the one minimizing the probability of 
error; see   for an illustration of this fact).  

Figure 1

Figure 1

Figure 1:  The point that minimizes the error rate of two overlapping 
Gaussian populations may not maximize  the gain ratio. 
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Adjustment of a Tree 

For the decision node pertaining to Figure 1 it is clear that 
it is beneficial to adjust the split. In general, after a decision 
node is adjusted, its ancestor nodes may also be improved by 
the same adjusting method. Therefore, this adjusting process 
attempts to improve the accuracy of the decision nodes in a 
bottom-up order. The algorithm for this backwards adjusting 
phase is shown in Figure 2. There are two options to adjust 
the tree: before the pruning phase or after the pruning phase. 
In this paper, we chose to adjust the tree before the pruning 
phase.  

Strictly speaking, after one pass of the adjusting 
algorithm, the leaves may cover different training examples 
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because the splits in their ancestor nodes may have changed. 
We could repeat the same adjusting process again from the 
bottom decision nodes, based on the updated leaf coverage. 
Nevertheless, our experiments showed that a second run of 
the adjusting process does not offer significant 
improvements compared to the first pass, and therefore in 
our experiments we apply only one pass of the adjusting 
algorithm to the tree nodes.  

 

 
 

Figure 2: The pseudo code for the backwards adjusting algorithm. 
 
 

Experiments  
In this section we describe the experimental design, the 

databases used for the experimentation, as well as the results 
of these experiments. 

Experimental Design 
The experimentation aims at comparing two measures of 

tree performance: (a) the accuracy of the tree on the test set, 
and (b) the size of the tree created. Quite often, these 
measures of merit are contradictory, in the sense that the 
highest accuracy tree is not necessarily the smallest size tree, 
and vice versa. Our experiments compare the tree produced 
through the growing and pruning phase of C4.5, simply 
referred to as C4.5, and the tree produced through the 
growing, adjust and pruning phase, referred to as C4.5A. 
Furthermore, our experiments allow modification of the 
default C4.5 parameters, the confidence factor, CF (default 
value of 25%) and the minimum numbers of split-off cases, 
MS (default value of 2). Note that modifying the MS 
parameter to improve C4.5’s performance has not been 
addressed before in the literature. In our experiments the CF 
parameter assumes values of 75%, 50%, 25%, 10%, 5%, 1%, 
.1%, .01%, and .001% . Also, in our experiments, the MS 
parameter ranges from the default number of 2 and 

increases, at steps of 10, up to a number equal to 15% of the 
number of cases. In our experiments we only modified one 
of the CF and MS parameter values, at a time, keeping the 
other parameter value at its default level.  

In order to perform our experiments each database is 
separated in two groups; a training set and a test set. To 
reduce the randomness in our reported tree accuracy and size 
results, the data are partitioned in twenty different ways in a 
training set and a test set. Then, the reported tree accuracies 
and sizes are the average accuracies and sizes. The 
partitioning of the data in  training and  test sets was 
accomplished as follows:  We divided each database into 20 
subsets of equal size. In the ith (i = 0,1,2,…,19) partitioning, 
we use subsets i mod 20, (i + 1) mod 20,…, ( i+ m -1) mod 
20 for training and the others for testing, where m is 
predefined (for example, if m=1, the training ratio is 5%; if 
m=10 the training ratio is 50%). This approach guarantees 
that each example appears exactly m times in the training set 
and exactly (20 - m) times in the test set.  In our experiments 
the training ratio was chosen equal to 50%. 

a  lgorithm AdjustTree (t, S) 
input: a tree rooted at node t, training set S  
output: the adjusted tree (modified from the input) 

 
if t is a decision node then 

  Divide S into subsets {Si} using the current split;
  foreach child node ti of t do 
   Recursively call AdjustTree (ti,Si); 
    end 

foreach possible split sk in t do 
Set the split of t to sk;  
Ek = EstimateError (t,S); 

end 
Set the split of t to sk, k = arg min Ek; 
RemoveEmptyNodes(t,S). 

end 

 
algorithm EstimateError (t, S)

input: a tree rooted at node t, training set S  
output: estimated error 

 
 leafError = error if node was made a leaf using binomial 
estimate; 

 
if t is a leaf node then 
 return leafError; 

 else  
  Divide S into subsets {Si} using the current split;
  foreach child node ti of t do 
   sumError += EstimateError (ti,Si);  
  end 

 
Figure  3:. The pseudo code for the estimate error function. 

 
if sumError < leafError then 
 return sumError; 
else 
 return leafError; 

end

 
In our experiments, we used a combination of artificial 

and real datasets. The real datasets are available from the 
Univ. of California at Irvine’s (UCI) machine learning 
repository [8], and they are: Abalone (4177 data-points), 
Satellite (6435 data-points), Segment (2310 data-points), and 
Waveform (5,000 data-points). The artificial datasets are 
Gaussianly generated data, of dimensionality 2, belonging to 
six different classes. The centers of the Gaussians are 
located at the edges of a hexagon, centered at (0, 0), with 
one of the edges located on the positive x-axis. The standard 
deviations of these Gaussians are chosen to be such that the 
Bayesian classifier’s optimal performance on these datasets 
is 15% (this dataset is referred to as g6c15), and 25% (this 
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dataset is referred to as g6c25). The number of data-points 
generated for these artificial datasets was chosen equal to 
5000.  

Results and Observations 
As emphasized above, we experimented with C4.5 and 

C4.5A, for many different CF and MS parameter values, and 
for six datasets. The volume of the results is significant and 
consequently they cannot all be presented here. In the  
following we provide a list of important observations from 
these experiments and a collection of appropriately selected 
tables and graphs that verify the validity of these 
observations.  
Observation 1: The accuracy of C4.5A is always better than 
the accuracy of C4.5 for the same set of parameter values 
(MS and CF). The improvement in accuracy attained by 
C4.5A is database dependent and parameter dependent, and 
in most instances it is small. There are cases though, where 
improvement in accuracy for C4.5A can be as high as 6% 
(observed for the g6c15 dataset). 
Observation 2: The size of the trees created by C4.5A and 
C4.5, for the same set of parameter values (MS, CF), is 
approximately the same. 
Observation 3:  Keeping the MS parameter at its default 
level (MS = 2), and modifying the CF parameter from its 
default value of 25% creates C4.5 and C4.5A decision trees 
that are quite often of much smaller size than the default 
C4.5 and C4.5A trees (MS = 2, and CF = 25%), without 
reducing the tree’s accuracy. In the experiments conducted, 
decreasing the CF value decreased monotonically the size of 
the C4.5 and C4.5A produced trees. 
Observation 4:  Keeping the CF parameter at its default 
level (CF=25%), and modifying the MS  parameter, from its 
default value of 2 creates C4.5 and C4.5A decision trees that 
are quite often of much smaller size than the default C4.5 
and C4.5A trees (MS=2, and CF= 25%), without reducing 
the tree’s accuracy. In the experiments conducted, increasing 
the MS value decreased monotonically the size of the C4.5 
and C4.5A produced trees. 

 
Database Best CF Error Rate Num Nodes 

g6c15 5% 17.3 (17.3) 44.8 (63.3) 
g6c25 5% 26.5 (26.9) 47.5  (94.8) 

Abalone 1% 36.7 (39.1) 52.6 (376.7) 
Satellite 1% 14.2 (15.0) 161.6 (328.5) 
Segment 25% 4.9 (4.9) 59.5 (59.5) 

Waveform 1% 23.5 (24.5) 165.3 (323.6) 
Table 1: Error Rates and sizes of C.4.5A for the best found CF 
value and the default CF value (the default CF error rates and 
sizes are in parentheses); MS =2.  

  
Database Best MS Error Rate Num Nodes 

g6c15 42 18.4 (17.3) 18.8 (63.3) 

g6c25 22 26.5 (26.9) 32.1  (94.8) 
Abalone 32 36.5 (39.1) 29.7 (376.7) 
Satellite 12 14.5 (15.0) 105.3 (328.5) 
Segment 22 8.3 (4.9) 17.9 (59.5) 

Waveform 22 23.6 (24.5) 54.6 (323.6) 
Table 2: Error Rates and sizes of C.4.5A for the best found MS 
value and the default MS value (the default MS error rates and 
sizes are in parentheses); CF=25%.  
Table 1 above, compares the error rate and size of C4.5A 

for the default CF and the best found CF value, while Table 
2, above, does the same for the default MS and the best 
found MS value found.  

 
Observation 5 (Overall Observation): From Tables 1 and 
2, it is clear that non-default CF and MS values produce 
much smaller network sizes, while occasionally they 
improve the error rate as well. If one’s objective is to create 
a population of C4.5 trees that have different accuracies and 
sizes, and quite often better accuracies and sizes, than the 
default C4.5 tree (i.e., the one using the default MS=2, and 
CF=2 parameter values), it is worth experimenting with 
different MS and CF values, as well as with the adjust 
version of C4.5 (C4.5A).  
 
Figure 4 shows the performance of the C4.5 and C4.5A for 
the Abalone dataset as the MS parameter value changes 
(ranges from the default number of 2 and increases, at steps 
of 10, up to a number equal to 15% of the number of cases). 
Furthermore, Figure 5 shows the performance of C4.5 and 
C4.5A for the Abalone dataset as the CF parameter changes 
(75%, 50%, 25%, 10%, 5%, 1%, .1%, .01%), while MS is 
kept at its default setting of 2.  Figure 4, verifies the validity 
of Observations 1, 2, 3, and 5. In particular, at the knee of 
both curves (C4.5 and C4.5A) we observe that by choosing 
an MS parameter value equal to 52, the size of the tree is 
reduced from approximately 400 nodes to approximately 25 
nodes (more than order of magnitude reduction in size), 
while the accuracy of the tree on the test set is improved by 
at least 2 percentage points. Furthermore, Figure 5 verifies 
the validity of Observations 1, 2, 4, and 5. In particular, at 
the knee of both curves (C4.5 and C4.5A) we observe that 
by choosing the CF parameter value equal to 1% the size of 
the tree is reduced from approximately 400 nodes to 
approximately 50 nodes (an order of magnitude reduction 
in size), while the accuracy of the tree is improved by 
approximately 2 percentage points. In a similar fashion, 
Figures 6 and 7, corresponding to the satellite dataset, justify 
observations 1, 2, 3, 5, and 1, 2, 4, 5, respectively. Finally, 
Figure 8 (g6c15 results for different MS parameter values) 
also verifies Observations 1 and 5 (we see in Figure 8 an 
improvement in accuracy of the C4.5A tree compared to the 
accuracy of the C4.5 tree of approximately 6 percentage 
points).  

38



Summary and Conclusions 
In this work we have focused on C4.5, one of the classical 
and most often used decision tree classifiers. We introduced 
an innovative adjustment of tree splits strategy that led to a 
C4.5 algorithm modification, called C4.5A, involving a 
growing, adjust and pruning phases. We explained the 
motivation of this adjustment phase through an example and 
qualitative arguments. The quantitative justification of the 
adjustment phase was provided through experimentation 
with a number of datasets. In our experiments we also 
compared the performance (accuracy on unseen data and 
tree size) of C4.5 and C4.5A for various values of the C4.5 
parameters (MS, and CF), beyond their default values of 
CF=25% and MS=2. The major observations are: (a) C4.5A 
improves C4.5’s accuracy for all parameter values, slightly 
in most cases, but significantly in a few cases, (b) Using MS 
parameter values different than the default value (=2) 
produces C4.5 and C4.5A trees that are of smaller size (quite 
often much smaller size), while at the same time improves 
the tree’s accuracy; for the databases tested, results showed 
that MS values equal to a small factor times 10 produce good 
trees,  (c) Using CF parameter values different than the 
default value (=25%) produces  C4.5 and C4.5A trees that 
are of smaller size (quite often much smaller size), while at 
the same time improves the tree’s accuracy; for the 
databases tested, results showed that CF values around 5% 
produce good trees, (d) The C4.5 adjustment phase, and the 
C4.5 parameter modification allows the user to obtain 
decision trees with different merits (accuracy and size), and 
quite often of higher merits (accuracy and size) than the 
default C4.5.    
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Figure 4: Number of tree nodes versus tree error rate for the abalone 
dataset, when modifying the minimum number of cases split-off (MS) 
during C4.5 growing. When the value of MS increases, the number of nodes 

in the tree drops significantly along with the error rate.  At the knees of the 
curves, corresponding to an MS parameter value of 52, the number of tree 
nodes produced is significantly reduced (from around 400, when the default 
MS parameter is used, to less than 50, when MS equals 52), while the error 
rate is reduced by at least two percentage points. 
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Figure 5: Number of tree nodes versus tree error rate, when modifying the 
confidence factor (CF) during C4.5 pruning for the abalone dataset. When 
the value of CF decreases, the number of nodes in the tree drops 
significantly along with the error rate. At the knees of the curves, 
corresponding to the CF parameter value of 1%, we see a significant 
reduction of tree sizes (from around 400, when the default CF parameter is 
used, to around 50, when CF=1% is used), while the error rate is also 
decreased by at least 2 percentage points.  
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Figure 6: Number of tree nodes versus tree error rate for the satellite 
dataset, when modifying the minimum number of cases split-off (MS) 
during C4.5 growing. The difference in error is not easily seen because of 
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the complete range of MS plotted for. What is evident in this graph is the 
knee in the curve at approximately 100 nodes.  The significant reduction in 
tree size from the default value is caused by increasing MS from 2 to 12.  A 
size reduction of approximately 225 nodes is achieved with no apparent 
penalties in error rate. 
 
 

 
Figure 7: Number of tree nodes versus tree error rate, when modifying the 
confidence factor (CF) during C4.5 pruning for the satellite dataset. 
Modifying the confidence factor from the default of 25% to 5% produces a 
tree on the blue (solid) curve (shown at the knee of the curve) with 
approximately 225 nodes.  On the red (dotted curve) curve the knee is for a 
CF value of 1% and has approximately 150 nodes at the knee. Interestingly, 
CF values of 10%, 5%, 1%, .1% and .01% all provide error rates and tree 
sizes less that the ones observed for the default parameter value. 
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Figure 8: Number of tree nodes versus tree error rate for the g6c15 dataset 
(only a portion of the produced curves is shown in this figure to accentuate 

the point that C4.5A improves accuracy for some datasets and C4.5 
parameter values).  In the Figure, the C4.5A_MS points (red dotted curve) 
are highly concentrated at the knee of the C4.5A MS plot.  On the contrary, 
their corresponding C4.5_MS points on the C4.5 MS plot (blue solid curve) 
show a consistent increase in error rate.  It is along this section of the plot 
where the greatest differences in error rate between C4.5_MS and 
C4.5A_MS are seen. 
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