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Abstract

Current studies have demonstrated that the representational
power of predictive state representations (PSRs) is at least
equal to the one of partially observable Markov decision
processes (POMDPs). This is while early steps in planning
and generalization with PSRs suggest substantial improve-
ments compared to POMDPs. However, lack of practical al-
gorithms for learning these representations severely restricts
their applicability. The computational inefficiency of exact
PSR learning methods naturally leads to the exploration of
various approximation methods that can provide a good set
of core tests through less computational effort. In this paper,
we address this problem in an optimization framework. In
particular, our approach aims to minimize the potential error
that may be caused by missing a number of core tests. We
provide analysis of the error caused by this compression and
present an empirical evaluation illustrating the performance
of this approach.

Introduction
A number of representations for dynamical systems have
been proposed during the past two decades beside POMDPs.
However, they either impose restrictions to the underlying
environment (i.e., they are not as general as POMDPs), or
they do not seem to provide any advantages over POMDPs.
Among these representations, PSRs (6) seem appealing and
more powerful for several main reasons. First, PSRs are
grounded in the sequence of actions and observations of the
agent, and hence relate the state representation directly to
the agent’s experience. Second, PSRs offer a representation
for dynamical systems which is as general as POMDPs, and
can be potentially more compact than POMDPs (5). Third
reason is related to the generalization problem. Indeed, the
predictive representation does not rely on a specific physi-
cal layout of an unobservable environment, so it has the po-
tential of being useful for fast adaptation to a new similar
environment.

An important issue for automated agents concerns learn-
ing the model. Learning models of dynamical systems under
uncertainty has been the focus of huge research effort for dif-
ferent frameworks. There are two major parts to PSR model
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learning: finding the set of core testsQ (known as the dis-
covery problem), and learning the weight vectors, or projec-
tion vectorsmao andmaoqi (known as the parameter learning
problem). The setQ of core tests can be found by searching
for the maximum number of linearly independent tests. The
system dynamics matrix (SDM) is a mathematical construct
that explains the predictive state representation purely based
on observable data. The system dynamics matrix forms the
basis for PSR learning algorithms presented in (4; 7; 9; 10;
5). Solving the discovery problem together with learning
parameters has been attempted by James and Singh (4). The
core tests are found by searching for the linearly independent
columns of the SDM. Wolfe et al. (10) presented a modified
algorithm for learning and discovery for PSRs in systems
without reset, called the suffix-history method. In this ap-
proach, the histories with identical suffixes are grouped to-
gether for counting. All PSR discovery methods suffer from
the fact that generating core tests is very much related to
computing the SDM. Estimating the prediction probabilities
for each entry of the SDM usually requires a large number
of test/history samples. Moreover, computing SDM entries
approximately makes the computation of the rank of this ma-
trix numerically unstable.

The method presented in (6), incrementally finds all core
tests, given the POMDP model of the environment. Al-
though this method is not data driven, it still requires rank
computations for huge matrixes in order to find the exact
PSR model (complete set of core tests) and is practical only
for small domains. From the perspective of planning and
generalizing across tasks, learning and using PSRs can be
quite advantageous even when the POMDP model is already
available. In light of the difficulty of the learning problem
for PSRs, it is natural to look for approximation algorithms
which generate a subset of core tests more appropriate for
planning purposes. The intractability of planning in partially
observable systems is due in part to the size of the domain.
The number of variables needed to represent the state space,
action space, and observation space has a great impact on
the efficiency of planning. A typical means of overcoming
such situations is to make a smaller and more efficient ap-
proximate models. On the other hand, we are interested in
reducing the error in these approximations as much as pos-
sible. These two goals involve a trade-off between the size
of the model and the accuracy of the solution that can be
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obtained. The reduced PSR model, which contains only a
subset of core-tests, conveys this trade-off. In this paper,
we address the issue of dynamically generating approximate
PSR models. We follow the underlying assumption in (6)
to have access to the POMDP model. However, we are in-
terested in a lossy compressed PSR withk number of core
tests (fewer than the number of POMDP states). We for-
mulate this problem as an optimization problem that mini-
mizes the loss function related to prediction of observations
and rewards and show that the approximation errors with re-
spect to the value function solution and belief estimation are
bounded. Our experimental results with this approach are
encouraging. In particular, our method can take advantage
of the POMDP domains which contain structures in the un-
derlying states, transitions, and observations to represent a
very compact model.

Background
In this section we briefly describe POMDPs and PSRs.

Formally, a POMDP is defined by the following com-
ponents: a finite set of hidden statesS; a finite set of ac-
tionsA; a finite set of observationsZ; a transition function
T : S×A×S→ [0,1], such thatT(s,a,s′) is the probabil-
ity that the agent will end up in states′ after taking action
a in states; an observation functionO : A×S×Z → [0,1],
such thatO(a,s′,z) gives the probability that the agent re-
ceives observationzafter taking actiona and getting to state
s′; an initial belief stateb0, which is a probability distribu-
tion over the set of hidden statesS; and a reward function
R : A×S→ ℜ, such thatR(a,s) is the immediate reward
received when the agent takes actiona in hidden states. Ad-
ditionally, there can be a discount factor,γ ∈ (0,1), which is
used to weigh less rewards received farther into the future.

The sufficient statistic in a POMDP is the belief stateb,
which is a vector of length|S| specifying a probability distri-
bution over hidden states. The elements of this vector,b(i),
specify the conditional probability of the agent being in state
si , given the initial beliefb0 and the history (sequence of ac-
tions and observations) experienced so far.

After taking actiona and receiving observationz, the
agent updates its belief state using Bayes’ Rule:

b′bao(s
′) = P(s′|b,a,o) =

O(a,s′,o)∑s∈Sb(s)T(s,a,s′)
P(o|a,b)

(1)

where denominator is a normalizing constant and is given
by the sum of the numerator over all values ofs′ ∈ S. The
real value reward for taking actiona at a belief stateb is
computed by:

R(b,a) = bTRa (2)

Predictive state representations, as an alternative to
POMDPs, are based on testable experiences. The notion
of test, used in the definition of PSRs, carries the central
idea of relating states of the model to verifiable and observ-
able quantities. A test is an ordered sequence of action-
observation pairsq = a1o1...akok. Thepredictionfor a test
q, is the probability of the sequence of observationso1, ...,ok
being generated, given that the sequence of actionsa1, ...,ak
was taken. If this observation sequence is generated, we say

that the test succeeds. The conditional probability of a testq
being successful given that the test is performed after history
h is: P(q|h) = P(hq)

P(h) . A set of testsQ is a PSR of a dynamical
system if its prediction, which is called theprediction vec-
tor, P(Q|h), forms a sufficient statistic for the system after
any historyh, i.e., if a prediction for any testq at any history
h can be computed based onP(Q|h): P(q|h) = fq(P(Q|h)),
wherefq : [0,1]|Q| → [0,1]. The state update operator can be

written as:P(q|hao) =
faoq(P(Q|h))
fao(P(Q|h)) .

The size of the model, or the number of extension tests,
is proportional to the size of the setQ. The number of core
tests,|Q|, is called thedimensionof the model. The PSR
representation of a dynamical system has at most a num-
ber of core test equal to the number of hidden states in the
POMDP representation (6). In fact, the PSR model is po-
tentially more compact than the corresponding POMDP. A
linear-PSRis a PSR in which there exists a projection vector
mq for any testq such that:P(q|h) = P(Q|h)Tmq. A linear
PSR model consists of:

• A : finite set of actions;

• O : finite set of observations including rewards;

• Q : finite set of selected tests{q1,q2, ...,qk} (core tests);

• mao : weight vectors for projections of one-step tests, de-
fined for each actiona∈ A and each observationo∈ O;

• maoqi : weight vectors for projections of one-step exten-
sions of core tests, defined for each actiona ∈ A, each
observationo∈ Z and each core testqi ∈ Q.

The matrix containing the predictions of all core tests given
the underlying states is called theU-matrix (|S|× |Q|). The
exactU can be found by searching for the maximum num-
ber of linearly independent tests through rank computation
given the POMDP model of the environment (6). Predic-
tive states in PSRs are mapped to belief states in POMDPs
through the definition ofU :

P(Q|h) = bTU (3)

Reward in PSRs is considered as part of the observation. In
this paper, we assume that exists a finite set of real value
rewards,θ . The observable feedback,o = rz, contains the
discrete reward valuer ∈ θ and the observationz∈ Z, as
defined in POMDPs. We can associate a scalar reward for
each actiona at each prediction vectorP(Q|h):

R(P(Q|h),a) = ∑
r

rp(r|P(Q|h),a) = ∑
r

∑
o∈Z

rP(Q|h)Tmao

(4)
To simplify the notations, we letmar = r ∑o∈Z mao. There-
fore, the above equation is:

R(P(Q|h),a) = ∑
r

P(Q|h)Tmar (5)

Linear PSRs as lossless representations for
compressed POMDPs

Linear PSRs are able to find special type of structure called
linear dependency(1) in dynamical systems and discover the
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reduced model for given input POMDPs. This structure is in
fact a property of the underlying states of the MDP model.
A linearly dependent state in an MDP is defined to be the
one whose transitions are expressible by a linear combina-
tion of the ones from other states. Linear state dependency
is a sufficient condition for the linear PSR to have smaller
dimensionality without losing any information. Considering
the reward as a part of observation, the compression pro-
vided by PSRs will preserve the dynamics together with the
values (1).

While lossless compressions preserve the dynamics of
a system in the reduced model, there are other types of
compressions which are more relaxed and only preserve
properties useful for decision making. The value-directed
compression (VDC) algorithm (8) is an example of this
type. VDC computes a low dimensional representation of
a POMDP directly from the model parameters:R,T, and
O by finding aKrylov subspace for the reward function un-
der propagating beliefs. The Krylov subspace for a vector
and a matrix is the smallest subspace that contains the vec-
tor and is closed under multiplication by the matrix. VDC
uses a transformation matrixF = {R,TR,T2R, ....} to cre-
ate a reduced model and preserves the optimal state-action
value function.

The value-directed compression method has differences
as well as similarities to predictive state representations.
Both PSRs and VDC provide linear compression and they
are both considered as lossless compression methods. Their
approach for recursively growing a set of sufficient variables
for prediction is identical. However, they focus on preserv-
ing slightly different properties in their compression. In
VDC, belief states in the original model might not be cor-
rectly recovered but PSRs ensure the accurate prediction of
all future observations. Therefore, a next belief state in the
original POMDP can be correctly recovered, as described
in Equation 3. If reward is considered as part of observa-
tion, then PSRs focus on the accurate prediction of observa-
tions and rewards. The transformation matrix for VDC,F ,
can be thought of as a change of basis for the value func-
tion, whereas the transformation matrixF =UT for the PSR
model can be viewed as change of basis for the belief space.

Lossy compression with Predictive State
Representations

Exact PSRs do not seem to provide more than linear dimen-
sionality reduction. Linear lossless compression is still con-
sidered insufficient in practice. This is a motivation to fur-
ther investigate predictive models that can answer more task-
specific questions, but perhaps scale better. Building on the
lossy compression version of VDC, we develop an algorithm
for learning compact PSRs. Algorithm 1 illustrates this idea.
Given a POMDP model and the required dimension for the
corresponding PSR approximate model, the algorithm finds
the best parameters of an approximate PSR model that mini-
mize the loss in rewards and in observation probabilities. We
use the following LPs to find parameters of the approximate
PSR:

minimize: c1∑
ao

εao+c2 ∑
aoq

εaoq (6)

subject to:

∀a∈ A,∀o∈ Z :

‖TaOaoe−Umao‖∞ ≤ εao

∀a∈ A,∀o∈ Z,∀q∈ Q :

‖TaOaoU(.,q)−Umaoq‖∞ ≤ εaoq

minimize: c3εar (7)

subject to:

∀a∈ A,∀r ∈ θ‖Ra−Umar‖∞ ≤ εar

wheree is the unite vector transpose. Hereq is a column
of the approximateU , corresponding to an approximate out-
come of a core test. But the actual test representation, as an
ordered sequence of action-observation pairs, is not impor-
tant and is not computed here. We alternate between solving
the LPs presented in Equations 6 and 7, which adjust the pa-
rametersmao, mar, andmaoq while keeping theU fixed, and
solving these LPs which adjustsU while keeping the para-
metersmao, mar, andmaoq fixed. Convergence of the algo-
rithm is guaranteed just as argued in (8) since the objective
function decreases at each iteration. However, the resulting
fixed point may not be a global or a local optimum.

Algorithm 1 PSRs Approximate Constructing

Require: POMDP model (S,A,Z,T,O,R); dimension
|Q| ≤ |S|; the number of iterationsI .
InitializeU with random values.
i = 0.
repeat
1. Solve the LP in 6 for variablesmao and maoq, and

constantU .
2. Solve the LP in 6 for variableU and constantsmao,

andmaoq.
3. i = i +1
until i = I
i = 0.
repeat
1. Solve the LP in 7 for variablesmar and constantU .
2. Solve the LP in 7 for variableU and constantsmar.
3. i = i +1
until i = I
RETURN: The parameters of the compressed PSR
model.

We need to try several random initializations before set-
tling for a solution. In practice, we may initialize the ma-
trix U with first set of linearly independent vectors found
by search as in (6). This algorithm avoids rank computation
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which is the main drawback in learning PSRs. The algo-
rithm proposed by McCracken and Bowling (7) also avoids
the rank estimation and instead uses a gradient descent ap-
proach to estimate predictions of tests in an online fashion.

Analysis of the approximation error
Value function error Let ε∗ar = maxa∈Aεar. We define er-
ror in the value function for a given belief pointb ∈ B in
horizoni, εvi (b), to be the difference between value ofb ac-
cording to the optimal POMDP value function of horizoni,
V∗

i (b), and value of the corresponding state in approximate
PSR value function of horizoni, V̂∗

i (ÛTb). Also, letε∗vi
be

the worst such error over the entire belief space.

ε∗vi
= maxb∈Bεvi (b) = maxb∈B|b

T(α∗
i −Ûβ ∗

i )| (8)

We need to show this error is bounded. We denote value
function of the POMDP model by a set ofα vectors, value
function of the approximate PSR by a set ofβ vectors, ac-
tion correspond to the bestα vector atb by a∗, and action
correspond to the bestβ vector atÛTb by a∗β .

ε∗vi
= |bT(α∗

i −Ûβ ∗
i )|

= |bTRa∗ −bTÛ ˆma∗β r + γ ∑
o

P(o|a∗,b)bT
a∗oα∗

i−1

− P(o|a∗β ,ÛTb)Ûβ ∗
i−1|

≤ |bTRa∗ −bTÛ ˆma∗r + γ ∑
o

P(o|a∗,b)bT
a∗o(α

∗
i−1−Ûβ ∗

i−1)|

= |bTRa∗ −bTÛ ˆma∗r + γ ∑
o∈O

P(o|a∗,b)εvi−1|

≤ |ε∗ar + γεvi−1 ∑
o∈O

P(o|a∗,b)| = ε∗ar + γεvi−1

It is anticipated that the error forv0 is bounded:

εv0 = |bT(α∗
0 −Ûβ ∗

0 )|

≤ ‖b‖1 ‖α∗
0 −Ûβ ∗

0‖∞ (Holder inequality)

= ‖α∗
0 −Ûβ ∗

0‖∞ (b is a probability vector)

≤ max
a∈A

‖Ra−Ûm̂ar‖∞

≤ max
a∈A

εar = ε∗ar

Therefore:

ε∗vi
≤ ε∗ar

1− γn

1− γ
(9)

Belief estimation error We show a bound on the maxi-
mum divergence between a belief statebt and belief statẽbt

inferred from the approximate PSRs:εt
b = ‖b̃t −btU‖∞. Let

b0 be the initial belief state, the corresponding approximate
belief by the reduced PSR be:b̃0 = b0Ũ , maximum error
on predicting an observationo be:εt

ao = |b̃tmao−btTaOao|,
and maximum error on predicting an observationo and a
core testq be:εt

aoq = |b̃tmaoq−btTaOaoU(.,q)|.
At time t = 0, ε0

b = ‖b̃0−b0U‖∞ = 0 since the initial be-
liefs are identical. Also,ε0

ao = |b̃0mao − b0TaOaoe| =
|b0Umao − b0TaOaoe| ≤ εao and ε0

aoq = |b̃0maoq −

b0TaOaoU(.,q)| = |b0Umaoq−b0TaOaoU(.,q)| ≤ εaoq.

Let x be the probability to observeo followed by the test
q after executing the actiona, x = btTaOaoU(.,q), andy
be the probability to observeo after executing the actiona,
y = btTaOaoe. Thereforex≤ y. At time t +1 we have:

εt+1
b = ‖b̃t+1−bt+1U‖∞

= max
q∈Q

|b̃t+1(q)−bt+1U(.,q)|

= max
q∈Q

|
b̃tmaoq

b̃tmao
−

btTaOaoU(.,q)

btTaOaoe
|

≤ max
q∈Q

{
btTaOaoU(.,q)+ εt

aoq

btTaOaoe− εt
ao

−
btTaOaoU(.,q)

btTaOaoe

,
btTaOaoU(.,q)

btTaOaoe
−

btTaOaoU(.,q)− εt
aoq

btTaOaoe+ εt
ao

}

≤ max
x,y∈[0,1]

x≤y,x≥εt
aoq,y>εt

ao

max{
x+ εt

aoq

y− εt
ao

−
x
y
,
x
y
−

x− εt
aoq

y+ εt
ao

}

The first inequality is because: b̃tmaoq ∈
[btTaOaoU(.,q) − εt

aoq,b
tTaOaoU(.,q) + εt

aoq] and
b̃tmao ∈ [btTaOaoe− εt

ao,b
tTaOaoe+ εt

ao].
We can use partial derivation to prove that, under the

constraintsx,y∈ [0,1],x≤ y,x≥ εt
aoq andy > εt

ao, we have:

x+εt
aoq

y−εt
ao

− x
y ≤

εt
ao+εt

aoq
1−εt

ao
and x

y −
x−εt

aoq
y+εt

ao
≤

εt
ao+εt

aoq
1−εt

ao

Therefore:

εt+1
b ≤

εt
ao+ εt

aoq

1− εt
ao

Let us definesgn(mao) as the vector indicating the sign of
every entry ofmao (i.e. sgn(mao)(q) = 1 if mao(q) ≥ 0 and
sgn(mao)(q) = −1 if mao(q) < 0).

εt+1
ao = |b̃t+1mao−bt+1TaOaoe|

≤ max{|(bt+1U +sgn(mao)εt+1
b )mao−bt+1TaOaoe|

, |(bt+1U −sgn(mao)εt+1
b )mao−bt+1TaOaoe|}

≤ max{|(bt+1Umao−bt+1TaOaoe)+sgn(mao)εt+1
b mao|

, |(bt+1Umao−bt+1TaOaoe)−sgn(mao)εt+1
b mao|}

≤ max{εao+ |sgn(mao)εt+1
b mao|

,εao+ |−sgn(mao)εt+1
b mao|}

≤ εao+ |sgn(mao)εt+1
b mao|

≤ εao+m∗
aoεt+1

b wherem∗
ao = max

a∈A,o∈O
sgn(mao)mao

We can also follow the same steps to prove
that: εt+1

aoq ≤ εaoq + m∗
aoqεt+1

b wherem∗
aoq =

maxa∈A,o∈O,q∈Qsgn(maoq)maoq, which means:εt+1
ao ≤ εao+

m∗
ao

εt
ao+εt

aoq
1−εt

ao
, εt+1

aoq ≤ εaoq+m∗
aoq

εt
ao+εt

aoq
1−εt

ao
, εt+1

b ≤
εt
ao+εt

aoq
1−εt

ao
�.
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Figure 1:The average error on predicting observations as a func-
tion of the number of core tests in: (a) shuttle, (b) network, (c) 4x4
grid, (d) robot coffee problems.

Empirical evaluation

A complete model of a system should be able to pre-
dict the probability of an arbitrary observationo, after
a history h. The POMDP model can make such pre-
dictions using its internal state update function, given by
Equation 1, and the observation prediction:P(o|a,b) =
∑s∈Sb(s)∑s′∈ST(s,a,s′)O(a,s′,o). The approximate PSR
calculates the probability of the future observationo by:
P̂(o|a,h) = P̂(Q|h)Tm̂ao. We use these equations as the
baseline to evaluate the accuracy of predictions using the
approximate PSR model and compare it to the predictions
of the POMDP. The initial belief stateb0 of the POMDP
is generated randomly, and the initial core test probabilities
P̂(Q) of the approximate PSR are given byP̂(Q) = bT

0U .
We choose a random actiona, and calculate the predictions
P(o|a,h) and P̂(o|a,h), ∀o ∈ O. We sample also the next

Domain Coffee Hall Hall2 SD
dim(time) 1(0.36) 5(20.59) 5(20.46) 2(350.93)

2(0.56) 10(35.42) 10(41.92) 3(557.09)
3(0.68) 15(60.87) 15(69.46) 5(759.2)
4(0.98) 20(74.47) 20(107.28) 8(1166.04)
5(1.15) 25(94.93) 25(157.73) 10(1459.56)
6(1.18) 30(114.9) 30(184.23)

Table 1:The runtime of algorithm 2 in seconds for the coffee do-
main (rewards and observations), the hallway and the hallways2
problems (observations only). For the coffee domain, 2 is the max-
imum number of core tests that we can find.

underlaying state and generate an observationo according
to T andO matrixes. The observationo and the actiona are
used by both the POMDP and the approximate PSR to up-
date their internal states. The average prediction error com-

puted by:E2 = 1
t×|Z| ∑t

i=1 ∑|Z|
o=1(P̂i(o)−Pi(o))2.

In our experiments, we have consideredt = 100. The er-
ror on the predictions become more important as the hori-
zon grows, this is due to the fact that the update of state for
the PSR uses approximate values, therefore, after long train
the cumulated error makes that the PSR state far from the
POMDP belief state. The parametersc1 andc2 are set to
1, as we found there is no significant difference in the av-
erage error when we consider different values ofc1 andc2.
The maximum number of iterations of Algorithm 1 is set to
20. In practice, the parametersmao, maoq andU converge
often to a fixed point before 10 iterations. We repeated the
algorithm 5 times for every problem.

We tested our discovery and learning algorithm on sev-
eral standard POMDP problems used in (8; 3): the shut-
tle( 8 states, 3 actions, 5 observations), network( 7 states,
4 actions, 2 observations), 4x4 grid( 16 states, 4 actions, 2
observations), robot coffee domain( 32 states, 2 actions, 3
observations), the spoken dialogue domain (SD)( 433 states,
37 actions, 16 observations), and hallways( with 60 and 90
states respectively). Figures 1 and 2 present the average er-
ror E as function of the number of core tests used for every
problem. The errorE is contained in the interval[0,1] be-
cause it measures a difference between two probabilities.

In all the experiments, the compression of the POMDP
was successful, as we needed only a few core tests to con-
struct an approximate PSR model with low prediction error.
For the SD problem for example, we can use only 8 core
tests instead of 433 to make predictions on future observa-
tions with an average error of 0.08 over the 100 time steps.
This is very promising. Of course this domain contains a lot
of structure (see (8)).

The random prediction makes an average error of 0.55
in most of the other problems. In the shuttle problem, the
average error become null when the number of core tests
used is 7, which is a gain itself, even not considerable. The
results for the network are very promising, we can predict
the future observations of the system by using only 3 tests,
while the prediction error is nearly null (0.0159). For the
coffee domain, we have included the rewards in the set of
observations, because this problem contains lot of terminal
and equivalent states, and can be represented with only 2
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core tests, if rewards are not taken in consideration. So, we
tested the performance of the compressed model on the pre-
diction of observations and immediate reward at the same
time. With only 7 core tests, the PSR model is able to make
predictions with an average error of 0.0333.

We remark also that in general, the average error de-
creases when the number of core tests grows. This is nat-
ural, because with more variables the LP has higher free-
dom degree, and can adjust the values in order to minimize
the objective function better. The error become null when
|Q| = |S|. In some special cases, the average errorE in-
creases slightly when we increase the number of core tests,
this is due to the factE depends on the random initialization
of U , andE correspond to a local minima in these particular
cases.
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Figure 2:The average error on predicting observations as a func-
tion of the number of core tests in: (a) hallway, (b) hallway2, (c)
spoken dialogue problems.

Conclusions and future work
The existing works on exact learning methods for PSRs
demonstrate that the intractability of finding an exact model
for POMDPs remains the same for the case of PSRs. In this
paper, we investigated the possibility of finding an approxi-
mate PSR model. We formulated this problem in linear pro-
gramming frameworks. Using approximate model learning
seems to have a definite advantage in PSRs as confirmed by
our experimental results. Our results illustrates that the re-

duced model can predict the observations and rewards prob-
abilities with high precision compared to the exact model.
The impact of this method is more pronounced for prob-
lems with special structure. The approximate PSR represen-
tation provides similar compression as lossy value-directed
compression for POMDPs. However, there are more poten-
tial advantageous in applying PSRs instead of POMDPs for
planning and plan generalization. The immediate next step
to this research is to use the approximate models resulted
from the algorithm in planning to target the curse of dimen-
sionality in decision making under uncertainty. In this paper,
we illustrated the theoretical bound for value function error
using the approximate PSR model. However, we were not
able to measure this error empirically, as PSR planning is
still an open problem and there exist only attempts to extend
POMDP solution methods to PSRs (2).
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