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Abstract

Current studies have demonstrated that the representational
power of predictive state representations (PSRs) is at least
equal to the one of partially observable Markov decision
processes (POMDPs). This is while early steps in planning
and generalization with PSRs suggest substantial improve-
ments compared to POMDPs. However, lack of practical al-
gorithms for learning these representations severely restricts
their applicability. The computational inefficiency of exact
PSR learning methods naturally leads to the exploration of
various approximation methods that can provide a good set
of core tests through less computational effort. In this paper,
we address this problem in an optimization framework. In
particular, our approach aims to minimize the potential error
that may be caused by missing a number of core tests. We
provide analysis of the error caused by this compression and
present an empirical evaluation illustrating the performance
of this approach.

I ntroduction

A number of representations for dynamical systems have
been proposed during the past two decades beside POMDPs
However, they either impose restrictions to the underlying

environment (i.e., they are not as general as POMDPs), or
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learning: finding the set of core tesfs(known as the dis-
covery problem), and learning the weight vectors, or projec-
tion vectoramye andmyeq (known as the parameter learning
problem). The se® of core tests can be found by searching
for the maximum number of linearly independent tests. The
system dynamics matrix (SDM) is a mathematical construct
that explains the predictive state representation purely based
on observable data. The system dynamics matrix forms the
basis for PSR learning algorithms presented in (4; 7; 9; 10;
5). Solving the discovery problem together with learning
parameters has been attempted by James and Singh (4). The
coretests are found by searching for the linearly independent
columns of the SDM. Wolfe et al. (10) presented a modified
algorithm for learning and discovery for PSRs in systems
without reset, called the suffix-history method. In this ap-
proach, the histories with identical suffixes are grouped to-
gether for counting. All PSR discovery methods suffer from
the fact that generating core tests is very much related to
computing the SDM. Estimating the prediction probabilities
for each entry of the SDM usually requires a large number
of test/history samples. Moreover, computing SDM entries
approximately makes the computation of the rank of this ma-

trix numerically unstable.

The method presented in (6), incrementally finds all core

they do not seem to provide any advantages over POMDPs. tests, given the POMDP model of the environment. Al-
Among these representations, PSRs (6) seem appealing andhough th_ls method is not da_lta d(lven, it still requires rank
more powerful for several main reasons. First, PSRs are computations for huge matrixes in order to find the exact
grounded in the sequence of actions and observations of the PSR model (complete set of core tests) and is practical only
agent, and hence relate the state representation directly tofor small domains. From the perspective of planning and
the agent’s experience. Second, PSRs offer a representatiorgeneralizing across tasks, learning and using PSRs can be
for dynamical systems which is as general as POMDPs, and quite advantageous even when the POMDP model is already
can be potentially more compact than POMDPs (5). Third available. In light of the difficulty of the learning problem
reason is related to the generalization problem. Indeed, the for PSRs, it is natural to look for approximation algorithms

predictive representation does not rely on a specific physi-
cal layout of an unobservable environment, so it has the po-
tential of being useful for fast adaptation to a new similar
environment.

An important issue for automated agents concerns learn-
ing the model. Learning models of dynamical systems under
uncertainty has been the focus of huge research effort for dif-
ferent frameworks. There are two major parts to PSR model
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which generate a subset of core tests more appropriate for
planning purposes. The intractability of planning in partially
observable systems is due in part to the size of the domain.
The number of variables needed to represent the state space,
action space, and observation space has a great impact on
the efficiency of planning. A typical means of overcoming
such situations is to make a smaller and more efficient ap-
proximate models. On the other hand, we are interested in
reducing the error in these approximations as much as pos-
sible. These two goals involve a trade-off between the size
of the model and the accuracy of the solution that can be



obtained. The reduced PSR model, which contains only a
subset of core-tests, conveys this trade-off. In this paper,

we address the issue of dynamically generating approximate p, js: p(q|h)

PSR models. We follow the underlying assumption in (6)
to have access to the POMDP model. However, we are in-
terested in a lossy compressed PSR withumber of core
tests (fewer than the number of POMDP states). We for-
mulate this problem as an optimization problem that mini-
mizes the loss function related to prediction of observations
and rewards and show that the approximation errors with re-
spect to the value function solution and belief estimation are
bounded. Our experimental results with this approach are

that the test succeeds. The conditional probability of agtest
being successful given that the test is performed after history

= %. A set of testf) is a PSR of a dynamical
system if its prediction, which is called thpgediction vec-
tor, P(QJh), forms a sufficient statistic for the system after
any historyh, i.e., if a prediction for any tesfat any history

h can be computed based B(Q/h): P(qlh) = fq(P(Q|h)),

wherefq : [0,1]/9 — [0,1]. The state update operator can be

written as:P(qg|hao) = %((S\W'

The size of the model, or the number of extension tests,
is proportional to the size of the s& The number of core

encouraging. In particular, our method can take advantage tests,|Q|, is called thedimensionof the model. The PSR

of the POMDP domains which contain structures in the un-

representation of a dynamical system has at most a num-

derlying states, transitions, and observations to represent aper of core test equal to the number of hidden states in the

very compact model.

Background

In this section we briefly describe POMDPs and PSRs.

Formally, a POMDP is defined by the following com-
ponents: a finite set of hidden stat§sa finite set of ac-
tions A; a finite set of observationg, a transition function
T:SxAxS— [0,1], such thafl (s,a,9) is the probabil-
ity that the agent will end up in stag after taking action
a in states; an observation functio® : Ax Sx Z — [0, 1],
such thatO(a, s, z) gives the probability that the agent re-
ceives observationafter taking actiora and getting to state
g; an initial belief statebg, which is a probability distribu-
tion over the set of hidden stat&s and a reward function
R: Ax S— [, such thatR(a,s) is the immediate reward
received when the agent takes act@dn hidden stats. Ad-
ditionally, there can be a discount factgk: (0, 1), which is
used to weigh less rewards received farther into the future.

The sufficient statistic in a POMDP is the belief sthte
which is a vector of lengtl§| specifying a probability distri-
bution over hidden states. The elements of this vebi),
specify the conditional probability of the agent being in state
s, given the initial belieby and the history (sequence of ac-
tions and observations) experienced so far.

After taking actiona and receiving observation the
agent updates its belief state using Bayes’ Rule:

 o(¥) =P(E|b,a,0) = O(a,g,0) g(sf);b(bs))-r(a a,9)

where denominator is a normalizing constant and is given
by the sum of the numerator over all valuessb€ S. The
real value reward for taking actiom at a belief statd is
computed by:

2)

1)

R(b,a) =b"R?
Predictive state representations,

of test used in the definition of PSRs, carries the central
idea of relating states of the model to verifiable and observ-

able quantities. A test is an ordered sequence of action-

observation pairg = a10;...8x0x. Thepredictionfor a test
q, is the probability of the sequence of observations.., o,
being generated, given that the sequence of actgns, ay

POMDP representation (6). In fact, the PSR model is po-
tentially more compact than the corresponding POMDP. A
linear-PSRis a PSR in which there exists a projection vector
mg for any testq such that:P(g/h) = P(Q[h)'my. A linear
PSR model consists of:

e A finite set of actions;
e O: finite set of observations including rewards;
e Q:finite set of selected tes{s);, oy, ..., 0k} (core tests);

e My : Weight vectors for projections of one-step tests, de-
fined for each actioa € A and each observatiane O;

® Myoq : Weight vectors for projections of one-step exten-
sions of core tests, defined for each actaa A, each
observatioro € Z and each core tegt € Q.

The matrix containing the predictions of all core tests given
the underlying states is called thematrix (S x |Q|). The
exactU can be found by searching for the maximum num-
ber of linearly independent tests through rank computation
given the POMDP model of the environment (6). Predic-
tive states in PSRs are mapped to belief states in POMDPs
through the definition o)

P(Qlh) =b'U ®)

Reward in PSRs is considered as part of the observation. In
this paper, we assume that exists a finite set of real value
rewards,6. The observable feedbaok— rz, contains the
discrete reward value € 6 and the observation € Z, as
defined in POMDPs. We can associate a scalar reward for
each actiora at each prediction vectB(Q|h):

R(P(QIN).2) = 3 rp(r|P(Qlh).2) = 5 ;rP@lh)Tmao

r
(4)
To simplify the notations, we lafiayr =1 Y oz Mao. There-

as an alternative to fore, the above equation is:
POMDPs, are based on testable experiences. The notion

RP(QI),a) = T PQI) mey (5)

Linear PSRs aslosslessrepresentations for
compressed POMDPs
Linear PSRs are able to find special type of structure called

was taken. If this observation sequence is generated, we saylinear dependendil) in dynamical systems and discover the
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reduced model for given input POMDPs. This structure is in minimize: G z €a0+Co z €aoq (6)

fact a property of the underlying states of the MDP model. ac aoy

A linearly dependent state in an MDP is defined to be the

one whose transitions are expressible by a linear combina- .

tion of the ones from other states. Linear state dependency ~ Subjectto:

is a sufficient condition for the linear PSR to have smaller YacAVoeZ:

dimensionality without losing any information. Considering [ T20%% — U Mao|| e

the reward as a part of observation, the compression pro- VacAVoeZ e Q:

vided by PSRs will preserve the dynamics together with the At ’ '

values (1). [T*O*™U(.,q) — UMaog| e
While lossless compressions preserve the dynamics of

a system in the reduced model, there are other types of

compressions which are more relaxed and only preserve L

properties useful for decision making. The value-directed minimize: @Ear ()

compression (VDC) algorithm (8) is an example of this

type. VDC computes a low dimensional representation of

a POMDP directly from the model parameteR;T, and subject to:

O by finding aKrylov subspace for the reward function un- vacAVre 8|RR—Umyllo < &ar

der propagating beliefs. The Krylov subspace for a vector

and a matrix is the smallest subspace that contains the vec-

tor and is closed under multiplication by the matrix. VDC  wheree is the unite vector transpose. Hegds a column

i _ 2 . . .

uses a transformation matrix = {R TRT°R,....} tocre-  qfipe approximat®J, corresponding to an approximate out-

ate a reduced model and preserves the optimal state-actioncome of a core test. But the actual test representation, as an

value funct|on._ _ _ ordered sequence of action-observation pairs, is not impor-
The value-directed compression method has differences tant and is not computed here. We alternate between solving

as well as similarities to predictive state representations. the LPs presented in Equations 6 and 7, which adjust the pa-

Both PSRs and VDC provide linear compression and they rametersm.g, Mar, andmgeq While keeping the fixed, and

are both considered as lossless compression methods. Theirsolving these LPs which adjudts while keeping the para-

approach for recursively growing a set of sufficient variables  metersmao, mar, andmaq fixed. Convergence of the algo-

for prediction is identical. However, they focus on preserv- rithm is guaranteed just as argued in (8) since the objective

ing slightly different properties in their compression. In  function decreases at each iteration. However, the resulting

VDC, belief states in the original model might not be cor-  fixed point may not be a global or a local optimum.

rectly recovered but PSRs ensure the accurate prediction of

all future observations. Therefore, a next belief state in the Algorithm 1 PSRs Approximate Constructing

original POMDP can be correctly recovered, as described — - - -

in Equation 3. If reward is considered as part of observa- ReqU|r<e. F')Ct)hl\gDnzmg]eordoeflit(e?éﬁbzn’g’O’ R);  dimension

tion, then PSRs focus on the accurate prediction of observa- lgi|ti5|i|zse|'U with random values

tions and rewards. The transformation matrix for VOKG, : :

IN

€ao

IN

€aoq

can be thought of as a change of basis for the value func- = O.t
tion, whereas the transformation matfix=UT for the PSR 1repeas ve the LP in 6 f iabl d d
model can be viewed as change of basis for the belief space. ~ ccfn\;?antj} In 5 Tor variabi@So andMaog, an
2. Solve the LP in 6 for variablgd and constantm,g,
L ossy compression with Predictive State s andmaciq.
i .=
Representations ntili— |
Exact PSRs do not seem to provide more than linear dimen- ! = 0.

sionality reduction. Linear lossless compression is still con- ~ "epeat _ _

sidered insufficient in practice. This is a motivation to fur- 1.  Solve the LP in 7 for variableser and constanit).

ther investigate predictive models that can answer more task-  2- Solve the LP in 7 for variablé and constantsi.
specific questions, but perhaps scale better. Building on the 3. =i+l

lossy compression version of VDC, we develop an algorithm ~~ until i =1

for learning compact PSRs. Algorithm 1 illustrates thisidea. =~ RETURN: The parameters of the compressed PSR
Given a POMDP model and the required dimension for the __model.

corresponding PSR approximate model, the algorithm finds

the best parameters of an approximate PSR model that mini- We need to try several random initializations before set-
mize the loss in rewards and in observation probabilities. We tling for a solution. In practice, we may initialize the ma-
use the following LPs to find parameters of the approximate trix U with first set of linearly independent vectors found
PSR: by search as in (6). This algorithm avoids rank computation
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which is the main drawback in learning PSRs. The algo-
rithm proposed by McCracken and Bowling (7) also avoids

the rank estimation and instead uses a gradient descent ap-

proach to estimate predictions of tests in an online fashion.

Analysis of theapproximation error

Valuefunction error  Let &5, = maXsea €ar. We define er-

ror in the value function for a given belief poibte B in
horizoni, &, (b), to be the difference between valuetodic-
cording to the optimal POMDP value function of horizign
Vi*(b), and value of the corresponding state in approximate
PSR value function of horizon V*(UTb). Also, letg; be

the worst such error over the ent|re belief space.

£; = Mapepsy (b) = mapep|b’ (o —UB)|  (8)

We need to show this error is bounded. We denote value
function of the POMDP model by a set afvectors, value
function of the approximate PSR by a setff/ectors, ac-
tion correspond to the beat vector atb by a*, and action
correspond to the begtvector atJ Tb by a

g = |b'(a—UB)
IbTRY — bTUma* +yZP (ola*,b)bl. a4

P(olag,UTb)UB" 4|
< [bTR" — b0k + vy P(ola’, bl o(ai"
[¢)

1—UB"y)|
= |bTRa* - bT'j MGer + y %P(0|a*, b)gw—ll
o€
< l&ar Ve s %P(Ola*vb” =&+ Ve,
o€

Itis anticipated that the error foy is bounded:

&, = [b'(a5—UB)|
< bl [|ag —UBZ |« (Holder inequality)
= |lag —UB;|l» (b is a probability vector)
< max||RR—Unye
acA
< =g
< e s
Therefore:
& < fgrry 9)

Belief estimation error We show a bound on the maxi-
mum divergence between a belief stitand belief staté'
inferred from the approximate PSRg; = ||b' — b'U [|.. Let
b° be the initial belief state, the correspondlng approximate
belief by the reduced PSR b&° = b%J, maximum error
on predicting an observatianbe: £, = |bt —biTa02°|,
and maximum error on predicting an observatmand a
core tesg be: egoq |btmaeg — bIT20%U (., q)].

Attimet =0, &) = ||® — b°U ||, = O since the initial be-

liefs are identical. Also,e2, = |b%myo — bOTan°e| =
Ib%Umy — b°T20%¢ < &, and egoq = |b®maoq —
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bOTaOaOU (., q)| = |b0U rnaoq - bOTaOaOU (., q)| S £a0q.

Let x be the probability to obsen@followed by the test
q after executing the actioa, x = b'T20*U(.,q), andy
be the probability to obsen@after executing the actioa,
y = blT20%%. Thereforex <y. Attimet + 1 we have:

t+1

Rt+1
eb _ Hbt+

_ bt+1U Hoo

max|b'**(q) — b 1U (., )]

geqQ
tTrana

max| > bTO"U(.,q)|

qeQ ' btmyg bt Tagace

biT20%U (., q) + €hoq _ bT20*U(,q)
btTa00e — gl btTa020e

bTa0%U (,,q) BITA0RU(.,q) — elyq

' piTagae bt Ta0=0e + gt }

X+ Ehoq

t
y_ gao

IN

max
CIGQ{

X— eaoq

R

IN

max
xye[0.1]
X<Y,X>EboqpY>Eho

max

€
and

The first inequality is because: b‘mao
[B'T20%U(,0) — hoqBT20*U(,0) + Elog
b'myo € [b'T20%% — £}, b' T20%e + £l ).

We can use partial derivation to prove that, under the
constraints,y € [0,1],x < y,x > €}, andy > €., we have:

a0q
t t t _ t t

Xt€oq  x < €aotE€aoq and* — X gaoq €aotEaoq

y—€&o Y= 1-gp Y  Vt&o — 1-&o

Therefore:
5210"’ Séoq
1—¢€ly
Let us definesgnmyo) as the vector indicating the sign of

every entry ofmg, (i.e. sgnmae)(g) = 1 if mye(q) > 0 and
SgNMao) (9) = —1if mye(q) < 0).

t+1
& <

8;31 _ |5t+1 bt+1-|-aoaoe|

< maX{|(bt+1U 4 SGNMao) €L ) Ma — b 1T20R%]
(61U — Sgr(Mao) e )mao — b 1T20%%) )

< max{|(bt+1U mao_leTaoao )+sgr(mao) t+1mao|
|| (651U mge — BHHT20%%) — sgr(mu) et my|}

< max{gao+ |SGNMao) €L My
,€a0+ | — SGNMao) &, Meo|}

< €ao+|S9MMao) €, Mol

< a0+ Mheeh ™ wherems, = mgéosgr(nbo)

We can also follow the same steps to prove
that: €5 < Eaog + Mieeeh T Wheremy,,
MaXeA 0c0,9eQ SINMaog) Maog, Which meanssggl < Ex0+

t t
€aot€aog

« 5ao+£;oq t+1 t+1 5ao+£aoq
Meo-T-¢L, + Gaoq < aoqtMaog 1-¢t, +& = = “T-g, -



PSR
Random

0.8

0.6

0.4

Average prediction error

0.2

N\
z > TN

—
&8

« Y
& o N

3
g
I}
-3
o
e}
Bl
7
@

PSR wzzz
0.6 Random —s—

0.5
0.4

0.3

0.2
01%
o
2

Average prediction error

77
3 4 5 6 7
Number of core tests

(b)

PSR
Random

0.8

0.6 |

0.4

Average prediction error

Number of core tests

(©

PSR! wzzmm
Random ——

Average reward error
e

"
N

®
N
a

o

(d)
Figure 1: The average error on predicting observations as a func-
tion of the number of core tests in: (a) shuttle, (b) network, (c) 4x4
grid, (d) robot coffee problems.

Empirical evaluation

A complete model of a system should be able to pre-
dict the probability of an arbitrary observatian after
a historyh. The POMDP model can make such pre-
dictions using its internal state update function, given by
Equation 1, and the observation predictioR{ola,b) =
Ysesb(s) SeesT(s,a,5)0(a,s,0). The approximate PSR
calculates the probab|I|ty of the future observatiorby:
P(ola,h) = P(Q|h)Triw,. We use these equations as the
baseline to evaluate the accuracy of predictions using the
approximate PSR model and compare it to the predictions
of the POMDP. The initial belief statby of the POMDP
is generated randomly, and the initial core test probabilities
P(Q) of the approximate PSR are given BYQ) = bJU.
We choose a random acti@pand calculate the predlcuons
P(ola,h) andP(ola,h), Yo € O. We sample also the next
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Domain Coffee Hall Hall2 SD
dim(time) 1(0.36) 5(20.59) 5(20.46) 2(350.93)
2(0.56) 10(35.42) 10(41.92) 3(557.09)
3(0.68) 15(60.87) 15(69.46) 5(759.2)
4(0.98) 20(74.47) 20(107.28)  8(1166.04)
5(1.15) 25(94.93) 25(157.73) 10(1459.56)
6(1.18) 30(114.9) 30(184.23)

Table 1:The runtime of algorithm 2 in seconds for the coffee do-
main (rewards and observations), the hallway and the hallways2
problems (observations only). For the coffee domain, 2 is the max-
imum number of core tests that we can find.

underlaying state and generate an observatiaccording
to T andO matrixes. The observatianand the actiom are
used by both the POMDP and the approximate PSR to up-
date their internal states. The average prediction error com-

puted by:E2 = 1, 51 57, (R(0) ~ R(0)).

In our experiments, we have consideted 100. The er-
ror on the predictions become more important as the hori-
zon grows, this is due to the fact that the update of state for
the PSR uses approximate values, therefore, after long train
the cumulated error makes that the PSR state far from the
POMDP belief state. The parametessandc, are set to
1, as we found there is no significant difference in the av-
erage error when we consider different valuesodndc,.

The maximum number of iterations of Algorithm 1 is set to
20. In practice, the parametars,, Maoq andU converge
often to a fixed point before 10 iterations. We repeated the
algorithm 5 times for every problem.

We tested our discovery and learning algorithm on sev-
eral standard POMDP problems used in (8; 3): the shut-
tle( 8 states, 3 actions, 5 observations), network( 7 states,
4 actions, 2 observations), 4x4 grid( 16 states, 4 actions, 2
observations), robot coffee domain( 32 states, 2 actions, 3
observations), the spoken dialogue domain (SD)( 433 states,
37 actions, 16 observations), and hallways( with 60 and 90
states respectively). Figures 1 and 2 present the average er-
ror E as function of the number of core tests used for every
problem. The erroE is contained in the intervd0, 1] be-
cause it measures a difference between two probabilities.

In all the experiments, the compression of the POMDP
was successful, as we needed only a few core tests to con-
struct an approximate PSR model with low prediction error.
For the SD problem for example, we can use only 8 core
tests instead of 433 to make predictions on future observa-
tions with an average error of 0.08 over the 100 time steps.
This is very promising. Of course this domain contains a lot
of structure (see (8)).

The random prediction makes an average error of 0.55
in most of the other problems. In the shuttle problem, the
average error become null when the number of core tests
used is 7, which is a gain itself, even not considerable. The
results for the network are very promising, we can predict
the future observations of the system by using only 3 tests,
while the prediction error is nearly null (0.0159). For the
coffee domain, we have included the rewards in the set of
observations, because this problem contains lot of terminal
and equivalent states, and can be represented with only 2




core tests, if rewards are not taken in consideration. So, we duced model can predict the observations and rewards prob-
tested the performance of the compressed model on the pre-abilities with high precision compared to the exact model.
diction of observations and immediate reward at the same The impact of this method is more pronounced for prob-
time. With only 7 core tests, the PSR model is able to make lems with special structure. The approximate PSR represen-
predictions with an average error of 0.0333. tation provides similar compression as lossy value-directed
We remark also that in general, the average error de- compression for POMDPs. However, there are more poten-
creases when the number of core tests grows. This is nat- tial advantageous in applying PSRs instead of POMDPs for
ural, because with more variables the LP has higher free- planning and plan generalization. The immediate next step
dom degree, and can adjust the values in order to minimize to this research is to use the approximate models resulted
the objective function better. The error become null when from the algorithm in planning to target the curse of dimen-
IQ| = |S]. In some special cases, the average efran- sionality in decision making under uncertainty. In this paper,
creases slightly when we increase the number of core tests, we illustrated the theoretical bound for value function error
this is due to the fadE depends on the random initialization ~ using the approximate PSR model. However, we were not

of U, andE correspond to a local minima in these particular able to measure this error empirically, as PSR planning is
cases. still an open problem and there exist only attempts to extend

POMDP solution methods to PSRs (2).
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The existing works on exact learning methods for PSRs

demonstrate that the intractability of finding an exact model

for POMDPs remains the same for the case of PSRs. In this

paper, we investigated the possibility of finding an approxi-

mate PSR model. We formulated this problem in linear pro-

gramming frameworks. Using approximate model learning

seems to have a definite advantage in PSRs as confirmed by

our experimental results. Our results illustrates that the re-
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