
One-Pass Learning Algorithm for Fast Recovery of Bayesian Network

Shunkai Fu 1 , Michel C. Desmarais 1 and Fan Li 2

Ecole Polytechnique de Montreal, Canada
1 , SPSS Inc. 2

{shukai.fu, michel.desmarais@polymtl.ca}, fli@spss.com

Abstract

An efficient framework is proposed for the fast
recovery of Bayesian network classifier. A novel
algorithm, called Iterative Parent-Child learning-
Bayesian Network Classifier (IPC-BNC), is proposed
to learn a BNC without having to learn the complete
Bayesian network first. IPC-BNC was proved correct
and more efficient compared with a traditional global
learning algorithm, called PC, by requiring much
fewer conditional independence (CI) tests. Besides,
we recognize and introduce AD-tree into the
implementation so that computational efficiency is
further increased through collecting full statistics
within a single data pass. The IPC-BNC and AD-tree
combination is demonstrated very efficient in time by
our empirical study, making itself an attractive
solution in very large applications.
Keywords: Bayesian Network classifier, IPC-BNC,
AD-tree

Introduction

Classification is a fundamental task in data mining that

requires learning a classifier through the observation of

data. Basically, a classifier is a function that maps

instances described by a set of attributes to a class label.

Naïve BAyes neworks have been widely used for the task

of classification (Duda & Hart 1973, Langley 1995) (Fig 1

upper-left). They represent a special case of the more

general Bayesian networks (BN) formalism and are

characterized by their strong assumption about the

independence of attributes given the target node. Although

they generally perform fairly well in spite of this

assumption (Domingos & Pazzani, 1997), they lack the

power to represent more complex dependencies among

attributes and the target node that can affect performance.

Tree Augmented Naïve Bayes (Friedman et al. 1997) (Fig 1

upper-right) is an extension of Naïve Bayes that weakens

its assumption, allowing additional dependence relations

among attributes. It is empirically shown to yield better

performance (Friedman et al. 1997).
 Compared with Naïve Bayes and TAN, a BN((Fig 1

bottom) doesn’t distinguish between the target and

Copyright © 2008, Association for the Advancement of Artificial

Intelligence (www.aaai.org). All rights reserved.

attributes. The target either can be a parent or child of
attributes, and general dependencies are found among
attributes. Although such general BNs are expected to
yield better performance than Naïve Bayes and TAN, the
NP-completeness complexity to learn a BN inhibits its
widespread application.
 However, we note that not all attributes are effective in
predicting the target in applying BN as a classifier. With
the BN example in Fig 1 (bottom), we have a decision rule
like

1 7 1 7 3 5
(| ,...,) (, ,...,) (| , |)P T X X P T X X P T X X T∝ =

2 1 3 1 1 4 2 5 6 6

(|) (|) () (| ,) (|) ()P X X P X X P X P X X T P X X P X

7
(|)P X T , of which some terms, namely

1
()P X ,

2 1
(|)P X X ,

3 1
(|)P X X ,

5 6
(|)P X X , and

6
()P X , are not

involve the target node, which means that their values have
no influence on the classification decision of T . By
removing them, we obtain a simpler decision rule with no
sacrifice with regards to classification performance:

The attributes involved in this new version of the decision
rule form a set of nodes called the Markov blanket of T .
This concept can be traced back to (Pearl 1988). A formal
definition of a Markov blanket is given below.

Fig 1. Examples of Bayesian classifiers, including Naïve Bayes

(upper-left), Tree-Augmented Naïve Bayes (upper-right) and

Bayesian Network (bottom)

Definition 1 (Markov blanket). The Markov blanket of a
node X in a BN is the set of nodes composed of X ’s
parents, children and children’s parents (spouses of X ,
actually). It is denoted as ()MB X in the remaining text.
 In our example (Fig 1 bottom),

3 5
{ , }X X areT ’s parents;

4 7
{ , }X X are its children, and

2
{ }X is T ’s spouse sharing

with T a common child,
4

X .

)|(),|(),|(72453 TXPTXXPXXtTP
t

=argmax

53

Proceedings of the Twenty-First International FLAIRS Conference (2008)

mailto:fli@spss.com

Definition 2 (Conditional independence). Variables
X and Y are conditionally independent given the set of
variables Z , iff. (| ,) (|)Z ZP X Y P X= , denoted as

|X Y⊥ Z .
 Given a domain ofU , and the full knowledge of)(XMB ,
then X is independent of any Y falling outside)(XMB ,
that is | (), \ () \{ }X Y MB X Y MB X X⊥ ∀ ∈U This
important characteristic of a Markov blanket tells us that
given the whole BN over U , only the sub-network over
T and ()MB T is effective in the prediction of T , and we
refer it as a Bayesian network classifier.
Definition 3 (Bayesian Network Classifier, or BNC). In
our proposal, we refer to a Bayesian network classifier as
the directed acyclic graph (DAG) over T and ()MB T . A
Bayesian network is reserved for the complete DAG over
all attributes plusT . When all attributes belong to ()MB T ,
the BN actually equals the target BNC.
Given a learned BN, we can easily derive a BNC for any

target nodeT , but until now, none of existing known BN
learning algorithms claims to scale well to more than a few
hundred variables. The primary contribution of this paper
is to propose a learning algorithm, called Iterative Parent-
Child learning of BNC(IPC-BNC), that forgo structure
learning of the whole BN. We report an empirical study
showing that much fewer CI tests are needed compared
with the usual learning a whole BN using the PC algorithm
(Spirtes et al. 2000). Besides, by introducing AD-tree
(Moore & Lee 1998), an enhanced version, IPC-BNC++, is
derived, where a single data pass is enough to go through
the data file and collect necessary statistics. Meanwhile,
this data structure provides a convenient mechanism for
quick query of specific statistics. Because IPC-BNC
requires intensive CI testing, the use of an AD-tree greatly
reduces the computational cost. Therefore, IPC-BNC++ is
expected to solve larger applications once non-tractable.

Local Structure Learning by IPC-BNC

Overview

There are two major different approaches for the structure

learning of BN: scoring-based or CI-based (conditional

independence based). The scoring- based learning

algorithm looks for the BN that best fits the data based on

some scoring function. This approach corresponds to an

optimization problem. The CI-based method attempts to

derive the BN structure by identifying a series of

conditional independence relations among the nodes,

according to the concept of d-separation (Pearl 1988). Its

search procedure consists in identifying those conditional

independence relations. This is also often referred to as a

constraint-based algorithm (Cheng & Greiner 1999, Cheng

et al 1997, Spirtes et al 2000).
We choose the second approach to design this algorithm

because it enables us to determine specific connections
among variables, which acts as the basis of our algorithm.

We inherit two fundamental assumptions of this kind of
learning algorithm: faithfulness and correct CI test.
Definition 4 (Faithfulness). A Bayesian network G and a
joint distribution P are faithful to one another, iff. every
conditional independence relationship encoded by the
graph of G is also presented in P , i.e.,

| |Z Z
G P

T X T X⊥ ⇔ ⊥ (Spirtes et al. 2000).
 In practice, we view a CI test as reliable if the number of
instances in dataset is at least five times the number of
degrees of freedom in the test.
With the two assumptions and the known underlying

topology knowledge of a typical BNC (see Definition 1
and 3), we outline here how the proposed algorithm learn
the BNC. Firstly, we recognize those nodes directly
connected to the targetT , which are known asT ’s parents
and children, denoted as ()PC T . Secondly, we scan each

()X PC T∈ to find ()PC X , of which those satisfying the
condition of being T ’s spouse will be recognized and
denoted as ()SP T . Those arcs discovered during this
iterative procedure construct the skeleton of final BNC.
Finally, a series of orientation rules can be applied to
determine the direction of arcs.

Theoretical Basis

In this section, we provide a theoretical background for the

correctness of our algorithm.
Theorem 1. If a Bayesian network G is faithful to a
probability distribution P , then for each pair of nodes
X and Y in G , X and Y are adjacent in G iff.

| ZX Y⊥ for all Z such that X and ZY ∉ . (Spirtes et
al. 2000)
Lemma 1. If a Bayesian network G is faithful to a
probability distribution P , then for each pair of nodes
X and Y in G , if there exists a Z such that X and ZY ∉ ,

| ZX Y⊥ , then X and Y are NOT adjacent in G .
 We get Lemma 1 from Theorem 1, and its proof is
trivial. In IPC-BNC, RecognizePC (Table 3), is designed
on this discovering. Actually, the classical structure
learning algorithm PC (Spirtes et al. 2000) is the first one
working from this basis.
Theorem 2. If a Bayesian network G is faithful to a
probability distribution P , then for each triplet of nodes
X , Y and V in G such that X and Y are adjacent to V ,
but X and Y are not adjacent, YVX ←→ is a sub-graph
of G iff | ZX Y⊥ for all Z such that X , Y and Z∉V .
(Pearl 1988, Spirtes et al. 2000
Theorem 2 plus Theorem 1 are necessary for IPC-BNC

to discover T ’s spouses.

Algorithm Specification and Proof of Correctness

Overall Framework. The proposed algorithm learns the
nodes and edges of the target BNC by repeating the search
for parents and children of related nodes, as shown in IPC-
BNC (Table 3). The whole procedure can be divided into
six sequential steps as described below:
1. IPC-BNC begins by searching for the direct neighbors of

a given targetT , and these variables are known as the

54

parents or children of T , denoted by

()PC T (line 1-
5);

2. Then, false positives are removed from ()PC T through a
series of conditional independence tests.
For ()X PC T∀ ∈ , ()PC X is learned, and it is known
as false positives if ()T PC X∉ (line 6-9);

3. Thirdly, false spouses are filtered out, akin to step 2. For
each spouse candidate ()X SP T∈ , X is removed if

()PC X doesn’t contain any parent/child of T (line
10-12);

4. Next, true positives are identified among spouse
candidates by identifying the underlying −ν
structures. For any)(TSPX ∈ , if it constructs such a
−ν structure with T and someone)(TPCZ ∈ ,

like X Z T→ ← , it is known as the true spouse of T
based on Theorem 2(line 13-19);

5. By removing all nodes that are not connected to T or
any)(TPCX ∈ , we get a network over T and

)(TMB , possibly with some arcs oriented as we
identify −ν structures during step 4 (line 20);

6. Finally, apply a series of orientation rules over the
outcome of step 5 to determine the directions of the
remaining edges and output the complete BNC.

These six steps summarize the overall design of IPC-
BNC, from which one can see that we repeatedly depend
on the recognition of parents and children to determine a
connection between any pair of nodes (Step 1, 2 and 3).
Meanwhile, we limit the search to the neighborhood of the
target as much as possible, filtering out any false positives
of)(TMB at as early as possible to restrain the search to a
local space. In the following three subsections, we will
discuss IPC-BNC in more detail, including its correctness.

Recognize Parents and Children. As the name of this
algorithm indicates, the discovery of parents and children
plays as a core role in constraining the search to a local
space.
RecognizePC (Table 3) is responsible for the search of

parent/child candidates of given variable. It starts by
connecting the current active target T (1st input parameter)
to all other nodes not visited by with RecognizePC before,
with non-oriented edges. Then, it deletes the edge
(,)

i
T X if there is any subset of \{ }ADJ

T i
X conditioning

on which T and
i

X is independent based on the
significance of a conditional independence test,

D
I . The set

obtained, , iT XS , is kept for later use (line 16 of IPC-BNC) .
In IPC-BNC (discussed in the next section),

RecognizePC appears at three different locations, line 3, 8
and 12. This is designed to ensure that, for each pair (,)X Y ,
both RecognizePC(X) and RecognizePC(Y) will be called,
and YX − is true only when)(XPCY ∈ and)(YPCX ∈ ,
avoiding that any false nodes and links enter into

)(TMB and BNC respectively. Overall, this is similar to
the conventional PC structure learning algorithm, but it
limits the search to the neighbors of the target node, which
is why local, instead of global, learning is required and
considerable time can be saved especially in applications
with a large number of variables.

The correctness of our approach to find the parents and
children of a specific node T is the basis for the whole
algorithm, so the following theorem is provided.
Theorem 3. Parents and children of the node T of interest
can be correctly discovered given the faithfulness
assumption.
Proof. (i) A potential link between (,)T X , where X is a
candidate of ()PC T , is kept only when there is no set
S such that T and X S∉ , and (, |)S

D
I X T ε≤ , i.e.

T and X is conditional independent given S . This is the
direct application of Theorem 1, and this result guarantees
that no false parent/child will be added into ()PC T . (ii)
Our algorithm ensures this point by conditioning on all
possible sets S . (iii) Since we always start by connecting
T with all non-scanned nodes, we won’t miss any true
positives that should be included. Therefore, all parents
and children of T can be identified if we call
RecognizePC(T) and RecognizePC(X) for each

)(TPCX ∈ as done in IPC-BNC.

Identification of the Skeleton of BNC.

Definition 5(Skeleton). Let G be an DAG, and the
undirected version of G is called the skeleton of G
(Flesch & Lucas 1997, Verma & Pearl 1990).
In the main algorithm body, IPC-BNC, RecognizePC is

iteratively called on demand. We describe this procedure
step by step with reference to the pseudo code of IPC-BNC
in Table 3:
1. Firstly (line 2-5), the targetT is connected to all other

nodes inG . Its parent/child candidates are recognized
via calling RecognizePC, the result of which may
contain false positives that need to be filtered out.
T is connected to each)(TPCX ∈ in G ;

2. Next (line 6-9), for each ()
i

X PC T∈ , we call
RecognizePC(

i
X), and determine

i
X is a false

positive if ()
i

T PC X∉ . It allows us to filter out those
false parents/children of T , and they are dis-
connected from T in G . For any pair of iX and

jX belonging to ()PC T by the end of this step, they
are connected if)(ji XPCX ∈ and)(ij XPCX ∈ ,
which is guaranteed via the calls of RecognizePC(iX)
and RecognizePC(jX) . Therefore, by now, ()PC T
and the connections over T and ()PC T are
determined;

3. Thirdly (line 10-12), spouse candidates are initialized as
the union of)(),(TPCXXPC ∈∀ , except for)(TPC
andT itself. This set is denoted as)(TSP , and it is
based on the known topology knowledge that the
spouse of T will be connected to
some)(TPCY ∈ in G . Given each)(TSPX ∈ , we
assume it is connected to some)(TPCY ∈ . We call
RecognizePC(X), and it is known as false positive if

)(XPCY ∉ (line 12). So, by the end of this step, we
get a cleaner spouse set;

4. With the outcome of the third step, we begin to
recognize the true spouses in)(TSP (line 13-19). For

)(TSPX ∈∀ , and assume it belongs to

55

)(),(TPCYYPC ∈∃ , it is true spouse only when
there exists such a −ν structure: TYX ←→ , given
Theorem 3.

5. Then (line 20), among G , we remove the nodes not
belonging to { } () ()T PC T SP T∪ ∪ , and those arcs
connected to these removed nodes. What remains is
the skeleton of BNC, with some oriented arcs (during
the determination of −ν structure in step 4);

6. Finally, some orientation rules are applied to determine
the remaining non-oriented links, and this will be
discussed in the next section.

Theorem 4. Line 1-20 of IPC-BNC lets us to learn the
complete skeleton of BNC, possibly with some arcs
oriented.
Proof. Our step-by-step explanation of this algorithm
above actually is the basis for the proof of correctness. (i)
For each node pair (X ,Y), their connection is determined
by RecognizePC(X) and RecognizePC(Y). This is a
procedure similar to what the traditional PC algorithm
does, which is based on Theorem 1. (ii)Line 1-9 helps us to
find ()PC T , and all arcs over { } ()T PC T∪ , which is
trivial and can be inferred through our discussion above.
(iii) True spouses of T are recognized based on Theorem 2,
and this is a sound procedure. (iv)Those additional arcs
among true spouses, and between spouses and
parents/children of T, are added by line 11-12, and are
kept in BNC since we only remove false spouses and the
related arcs. Therefore, line 1-20 of IPC-BNC enables to
find the complete skeleton of BNC, and some arcs’
direction are determined given Theorem 2.

Orientation Rules and More. The orientation step will

look for all triples },,{ ZYX such that edges ZX − and

ZY − are in the graph but not the edge YX − . Then, if

XYSZ ∉ , we have oriented edges as ZX → and ZY → ,

which creates a new −ν structure: YZX ←→ . After all

−ν structures are recognized by repeating this rule, the rest

edges are oriented following two basic principles: not to

create cycles and not to create new −ν structure. In our

implementation, we refer rules applied in (Kalisch &

Buhlmann 2007) and (Meek 1996). However, except for

the skeleton and −ν structure of BNC, those remaining

arcs’ orientation are trivial to find given the study by

(Flesch & Lucas 2007):
Theorem 5. Two DAGs are Markov equivalent with each
other if and only if they have the same skeleton and they
consist of the same of −ν structure (or immoralities in the
original text since they are equivalent concepts).
Definition 6(Markov equivalence): Two DAGs are
Markov equivalent if they encode the same set of
independence relations.
In the section of empirical study, we will only check the

skeleton and −ν structures learned when we compare them
to that of the underlying true models. This simplifies the
comparison work but without sacrificing the desired effect.

AD-tree and IPC-BNC++

Being a CI test-based algorithm, IPC-BNC depends

intensively on computing joint frequency distributions, e.g.

1 1 3 3
()C X x X x= ∧ = , intensively. On an extreme, we can

look through the dataset to collect a specific joint

frequencies on demand, and another data pass for another a

new query. This can be terribly time consuming

considering thousands of CI tests are required (see our

experiment example in next section), and it becomes worst

when the number of attributes increases, or the dataset

becomes larger. In the implementation of IPC-BNC, we try

to cache as much statistics that can be expected given

different conditioning set (so called cut-set) size (see Table

3) as possible, aiming at reducing the data passes. That

approach does work but dozens of data passes still are

necessary in our testing, which prohibits IPC-BNC from

being an efficient candidate in large applications. An ideal

solution we are looking for should be efficient not only in

time, allowing all sufficient statistics to be collected in

single data pass, but in memory, at least scaling much more

slowly relative to complexity of problems (i.e. attribute

number).
All Dimensions tree (AD-tree), proposed by Moore and

Lee (Moore & Lee 1998, Komarek & Moore 2000), is such
a solution. It is introduced for representing the cached
frequency statistics for a categorical data set, from which
we can query any frequencies we need without having to
go through the data repeatedly. Fig 2 is an example from
(Komarek & Moore 2000), where attributes

1 2
,X X and

3
X have 2, 4 and 2 categories respectively. Each
rectangular node in the tree stores the value of one
conjunctive counting query, and they are called AD-nodes.
The children of AD-node are called Vary nodes, displayed
as ovals. Each corresponds to an attribute with index
greater than that of its parent node.

Fig 2. Sample data with tree attributes and six records
(upper), and its corresponding AD-tree (bottom).
A tree built in this way would be enormous for non-

trivially sized problems, and its complexity increases
quickly as the number of attributes and number of
categories per attribute increase. However, considering that

56

normally only a small percent of the all possible instances
happens given attributes {

i
X }, the actual tree will very

often be sparse, with many zero counts (Moore & Lee
1998, Komarek & Moore 2000). This finding is used by
the authors to decrease the memory cost greatly, and it is
implemented in ours as well. Other techniques mentioned
by the authors of AD-tree to make the data structure more
efficient are ignored in our current version, and interested
readers can refer them in the original documents.
In this project, we refer IPC-BNC with AD-tree as IPC-

BNC++, indicating that it is an enhanced version. Its
algorithm specification is just same as IPC-BNC (see
Table 3) since we hide the details of tree construction and
query, allowing readers focusing on the primary
architecture.

Empirical Study

Experiment Design

We illustrate our method using a well knwon BN called

ALARM network (Beinlich et al 1989). ALARM network

was developed for on-line monitoring of patients in

intensive care units, and is widely used as a benchmark

model to evaluate BN’s learning algorithms. ALARM

network has 37 nodes and 46 edges. We use synthetic data

sampled from this network, and we run IPC-BNC with

each node in the BN as the target random variable T, trying

to recover the corresponding BNC.
 The different sample size we have used are 5000, 10000,
and 20000. With each sample size, 10 replicates are
prepared for study. Due to space constraint, we are unable
to present results on other common BNs.

Evaluation and Analysis

To measure time efficiency, we use the number of data

passes and CI tests to represent the average cost of the

algorithms.
In Table 1, the “# CI tests” of IPC-BNC refers to the

average number of CI test we need to measure to induce
the corresponding BNC given

i
X (1..37i = , ranging over

each node in Alarm network) as the target. The amount for
PC is the total number of CI tests required to learn the
whole Alarm BN as by traditional approach. We see that
about 70% fewer CI tests are necessary for local search,
compared with the global search method. Therefore, IPC-
BNC is more economical in time cost by learn only what
we need, which enables it to solve larger scale of problem
once non-tractable for PC.
The number of data passes is also listed in Table 1 as

“#Data passes”. For example, given 20000 instances, IPC-
BNC needs 24 data passes by average, whereas IPC-
BNC++ needs only 1 pass. The time saved become more
obvious when the observation is large. Therefore, IPC-
BNC++ gives us an attractive solution which not only
requires much fewer CI tests than traditional PC, but also
needs a single data pass to learn a BNC

Table 1: Time efficiency comparison, in term of number of CI

test and data passes required by PC to learn the global network

and the average amount of CI tests cost by IPC-BNC and IPC-

BNC++ over all the 37 nodes.

Instances Algorithm # CI tests #Data passes

5k PC 5458±35 N/A

5k IPC-BNC 1522±12 23±0

5k IPC-BNC++ 1522±12 1±0

10k PC 5703±24 N/A

10k IPC-BNC 1728±14 24±0

10k IPC-BNC++ 1728±14 1±0

20k PC 5853±32 N/A

20k IPC-BNC 1833±24 24±0

20k IPC-BNC++ 1833±24 1±0

Table 2: Effectiveness of IPC-BNC and IPC-BNC++

Instances Distance of Edges Distance of v-structure

5k 0.09±.00 0.10±.00

10k 0.06±.00 0.07±.00

20k 0.06±.00 0.08±.00

 Table 2 is about the effectiveness of the proposed
learning algorithm. We measure the distance of edges and
−ν structure learned from the true model. Here, the

distance is defined as 22)Re1()Pr1(callecision −+− .
Precision is the number of true positives found divided by
the number of edges/v-structures of the true model; recall
is the value of true positives found divided by the number
of edges/ −ν structures found.

Conclusion

In using a BN for classification, we make use of what is

known as the Markov blanket of the target node, i.e. the

target’s parents, children and spouses, thereby ensuring

that only the relevant features are selected and that all other

nodes can be ignored. The DAG structure over ()MB T

and T is called Bayesian network classifier. An algorithm

called IPC-BNC is proposed to learn BNC with a local

search, iteratively looking for those parents and children of

any node of interest. It is proved correct and shown to

outperform other algorithms for deriving the Markov

blanket in an experiment with a single data set. Although

further experiments are required to validate the generality

of these results, the IPC-BNC is expected to be much more

time efficient than a conventional approach where a

complete BN over all attributes and the target variable has

to be learned first before BNC can be derived.

Furthermore, by implementing AD-tree to collect all

statistics in one data pass, computational efficiency is

greatly improved. We claim that IPC-BNC plus AD-tree is

a better approach to solve larger scale of problem, and

owns more practical value in real applications.

57

References

Beinlich, I., Suermondt,H., Chavez,R., and Cooper,G.

1989. The Alarm Monitoring System: A Case Study

with two Probabilistic Inference Techniques for Belief

Networks. In Proceedings of the Second European

Conference on Artificial Intelligence in Medical Care,

pp. 247-256

Cheng,J. and Greiner,R. 1999. Comparing Bayesian

network classifiers. In Proceedings of UAI.

Cheng,J., Bell,D. and Liu,W. 1997. Learning belief

networks from data: An information theory based

approach. In Proceedings of CIMM.

Chickering,D.M. 1996. Learning Bayesian networks is NP

Complete. In Fisher,D. and Lenz,H., editors, Learning

from Data: Artificial Intelligence and Statistics V, pp

121-130, Springer-Verlag.

Cooper, G.F. and Herskovits,E. 1992. A Bayesian method

for the induction of probabilistic networks from data.

Journal of Machine Learning, 9:309-347.

Domingos,P. and Pazzani, M.(1997). On the optimality of

the simple Bayesian classifier under zero-one loss.

Machine Learning, 29, 103-130.

Duda, R.O. and Hart, P.E. 1973. Pattern classification and

scene analysis, New York: John Wiley and Sons.

Flesch, I. and Lucas, P.J.F. 2007. Markov equivalence in

Bayesian networks. Advances in Probabilistic Graphical

Models, Springer Berlin, pp 3-38.

Friedman,N., Geiger,D. and Goldszmidt,M. 1997.

Bayesian network classifiers, Journal of Machine

Learning, 29:131-163.

Kalisch, Z. and Bühlmann, P. 2007. Estimating high-

dimensional directed acyclic graphs with the PC-

Algorithm.Journal of Machine Learning Research 8:

613-636.

Komarek, P. and Moore, A. 2000. A dynamic adaptation of

AD-Trees for efficient machine learning on large data

sets, In Proceedings of ICML.

Langley,P.1995.: Order effects in incremental learning, In

P.Reimann and H.Spada editors, Learning in humans

and machines: Towards an Interdisciplinary Learning

Science, Pergamon.

Meek,C. 1996. Causal inference and causal explanation

with background knowledge. Proc. Of 11
th
 Uncertainty

in Artificial Intelligence, pp 403-410.

Moore,A. and Lee, M.S. 1998. Cached sufficient statistics

for efficient machine learning with large datasets.

Journal of Artificial Intelligence Research 8:67-91.

Pearl,J. 1988. Probabilistic reasoning in intelligent systems,

Morgan Kaufmann.

Spirtes,P., Glymour,G. and Scheines,R. 2000. Causation,

Prediction, and Search. The MIT Press, 2
nd
 edition.

Verma,T. and Pearl, J. 2000. Equivalence and synthesis

of causal models. Proc. Of 6
th
 Uncertainty in Artificial

Intelligence, pp 220-227.

Table 3. Algorithm specification of IPC-BNC and IPC-BNC++

58

