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Abstract 

An efficient framework is proposed for the fast 
recovery of Bayesian network classifier. A novel 
algorithm, called Iterative Parent-Child learning-
Bayesian Network Classifier (IPC-BNC), is proposed 
to learn a BNC without having to learn the complete 
Bayesian network first. IPC-BNC was proved correct 
and more efficient compared with a traditional global 
learning algorithm, called PC, by requiring much 
fewer conditional independence (CI) tests. Besides, 
we recognize and introduce AD-tree into the 
implementation so that computational efficiency is 
further increased through collecting full statistics 
within a single data pass. The IPC-BNC and AD-tree 
combination is demonstrated very efficient in time by 
our empirical study, making itself an attractive 
solution in very large applications. 
Keywords: Bayesian Network classifier, IPC-BNC, 
AD-tree 

Introduction   

Classification is a fundamental task in data mining that 

requires learning a classifier through the observation of 

data. Basically, a classifier is a function that maps 

instances described by a set of attributes to a class label. 

Naïve BAyes neworks have been widely used for the task 

of classification (Duda & Hart 1973, Langley 1995) (Fig 1 

upper-left). They represent a special case of the more 

general Bayesian networks (BN) formalism and are 

characterized by their strong assumption about the 

independence of attributes given the target node. Although 

they generally perform fairly well in spite of this 

assumption (Domingos & Pazzani, 1997), they lack the 

power to represent more complex dependencies among 

attributes and the target node that can affect performance. 

Tree Augmented Naïve Bayes (Friedman et al. 1997) (Fig 1 

upper-right) is an extension of Naïve Bayes that weakens 

its assumption, allowing additional dependence relations 

among attributes. It is empirically shown to yield better 

performance (Friedman et al. 1997). 
  Compared with Naïve Bayes and TAN, a BN((Fig 1 

bottom) doesn’t distinguish between the target and 
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attributes. The target either can be a parent or child of 
attributes, and general dependencies are found among 
attributes. Although such general BNs are expected to 
yield better performance than Naïve Bayes and TAN, the 
NP-completeness complexity to learn a BN inhibits its 
widespread application. 
   However, we note that not all attributes are effective in 
predicting the target in applying BN as a classifier. With 
the BN example in Fig 1 (bottom), we have a decision rule 
like

1 7 1 7 3 5
( | ,..., ) ( , ,..., ) ( | , | )P T X X P T X X P T X X T∝ =
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( | )P X T , of which some terms, namely
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( )P X , 

2 1
( | )P X X ,

3 1
( | )P X X , 

5 6
( | )P X X , and 

6
( )P X , are not 

involve the target node, which means that their values have 
no influence on the classification decision of T . By 
removing them, we obtain a simpler decision rule with no 
sacrifice with regards to classification performance: 

The attributes involved in this new version of the decision 
rule form a set of nodes called the Markov blanket of T . 
This concept can be traced back to (Pearl 1988). A formal 
definition of a Markov blanket is given below. 

 

Fig 1. Examples of Bayesian classifiers, including Naïve Bayes 

(upper-left), Tree-Augmented Naïve Bayes (upper-right) and 

Bayesian Network (bottom) 

Definition 1 (Markov blanket). The Markov blanket of a 
node X in a BN is the set of nodes composed of X ’s 
parents, children and children’s parents (spouses of X , 
actually). It is denoted as ( )MB X in the remaining text.  
  In our example (Fig 1 bottom), 

3 5
{ , }X X areT ’s parents; 

4 7
{ , }X X are its children, and 

2
{ }X is T ’s spouse sharing 

with T a common child, 
4

X . 
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Definition 2 (Conditional independence). Variables 
X and Y are conditionally independent given the set of 
variables Z , iff. ( | , ) ( | )Z ZP X Y P X= , denoted as 

|X Y⊥ Z . 
  Given a domain ofU , and the full knowledge of )(XMB , 
then X is independent of any Y falling outside )(XMB , 
that is | ( ), \ ( ) \{ }X Y MB X Y MB X X⊥ ∀ ∈U This 
important characteristic of a Markov blanket tells us that 
given the whole BN over U , only the sub-network over 
T and ( )MB T  is effective in the prediction of T , and we 
refer it as a Bayesian network classifier.  
Definition 3 (Bayesian Network Classifier, or BNC). In 
our proposal, we refer to a Bayesian network classifier as 
the directed acyclic graph (DAG) over T and ( )MB T . A 
Bayesian network is reserved for the complete DAG over 
all attributes plusT . When all attributes belong to ( )MB T , 
the BN actually equals the target BNC. 
Given a learned BN, we can easily derive a BNC for any 

target nodeT , but until now, none of existing known BN 
learning algorithms claims to scale well to more than a few 
hundred variables. The primary contribution of this paper 
is to propose a learning algorithm, called Iterative Parent-
Child learning of BNC(IPC-BNC), that forgo structure 
learning of the whole BN. We report an empirical study 
showing that much fewer CI tests are needed compared 
with the usual learning a whole BN using the PC algorithm 
(Spirtes et al. 2000). Besides, by introducing AD-tree 
(Moore & Lee 1998), an enhanced version, IPC-BNC++, is 
derived, where a single data pass is enough to go through 
the data file and collect necessary statistics. Meanwhile, 
this data structure provides a convenient mechanism for 
quick query of specific statistics. Because IPC-BNC 
requires intensive CI testing, the use of an AD-tree greatly 
reduces the computational cost. Therefore, IPC-BNC++ is 
expected to solve larger applications once non-tractable.  

Local Structure Learning by IPC-BNC 

 

Overview 

There are two major different approaches for the structure 

learning of BN: scoring-based or CI-based (conditional 

independence based). The scoring- based learning 

algorithm looks for the BN that best fits the data based on 

some scoring function. This approach corresponds to an 

optimization problem. The CI-based method attempts to 

derive the BN structure by identifying a series of 

conditional independence relations among the nodes, 

according to the concept of d-separation (Pearl 1988). Its 

search procedure consists in identifying those conditional 

independence relations. This is also often referred to as a 

constraint-based algorithm (Cheng & Greiner 1999, Cheng 

et al 1997, Spirtes et al 2000).  
We choose the second approach to design this algorithm 

because it enables us to determine specific connections 
among variables, which acts as the basis of our algorithm. 

We inherit two fundamental assumptions of this kind of 
learning algorithm: faithfulness and correct CI test.  
Definition 4 (Faithfulness). A Bayesian network G and a 
joint distribution P are faithful to one another, iff. every 
conditional independence relationship encoded by the 
graph of G is also presented in P , i.e., 

| |Z Z
G P

T X T X⊥ ⇔ ⊥  (Spirtes et al. 2000).   
    In practice, we view a CI test as reliable if the number of 
instances in dataset is at least five times the number of 
degrees of freedom in the test. 
With the two assumptions and the known underlying 

topology knowledge of a typical BNC (see Definition 1 
and 3), we outline here how the proposed algorithm learn 
the BNC. Firstly, we recognize those nodes directly 
connected to the targetT , which are known asT ’s parents 
and children, denoted as ( )PC T . Secondly, we scan each 

( )X PC T∈ to find ( )PC X , of which those satisfying the 
condition of being T ’s spouse will be recognized and 
denoted as ( )SP T . Those arcs discovered during this 
iterative procedure construct the skeleton of final BNC. 
Finally, a series of orientation rules can be applied to 
determine the direction of arcs.   

Theoretical Basis 

In this section, we provide a theoretical background for the 

correctness of our algorithm. 
Theorem 1. If a Bayesian network G  is faithful to a 
probability distribution P , then for each pair of nodes 
X and Y in G , X and Y are adjacent in G iff. 

| ZX Y⊥ for all Z such that X and ZY ∉ . (Spirtes et 
al. 2000) 
Lemma 1. If a Bayesian network G  is faithful to a 
probability distribution P , then for each pair of nodes 
X and Y in G , if there exists a Z such that X and ZY ∉ , 

| ZX Y⊥ , then X and Y are NOT adjacent in G .  
 We get Lemma 1 from Theorem 1, and its proof is 
trivial. In IPC-BNC, RecognizePC (Table 3), is designed 
on this discovering. Actually, the classical structure 
learning algorithm PC (Spirtes et al. 2000) is the first one 
working from this basis.  
Theorem 2. If a Bayesian network G  is faithful to a 
probability distribution P , then for each triplet of nodes 
X , Y  and V in G such that X and Y are adjacent to V , 
but X and Y are not adjacent,  YVX ←→ is a sub-graph 
of G iff | ZX Y⊥ for all Z such that X , Y  and Z∉V . 
(Pearl 1988, Spirtes et al. 2000 
Theorem 2 plus Theorem 1 are necessary for IPC-BNC 

to discover T ’s spouses. 

Algorithm Specification and Proof of Correctness 

Overall Framework. The proposed algorithm learns the 
nodes and edges of the target BNC by repeating the search 
for parents and children of related nodes, as shown in IPC-
BNC (Table 3). The whole procedure can be divided into 
six sequential steps as described below:  
1. IPC-BNC begins by searching for the direct neighbors of 

a given targetT , and these variables are known as the 
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parents or children of T , denoted by
 

( )PC T (line 1-
5); 

2. Then, false positives are removed from ( )PC T  through a 
series of conditional independence tests. 
For ( )X PC T∀ ∈ , ( )PC X is learned, and it is known 
as false positives if ( )T PC X∉ (line 6-9); 

3. Thirdly, false spouses are filtered out, akin to step 2. For 
each spouse candidate ( )X SP T∈ , X  is removed if 

( )PC X doesn’t contain any parent/child of T  (line 
10-12);  

4. Next, true positives are identified among spouse 
candidates by identifying the underlying −ν  
structures. For any )(TSPX ∈ , if it constructs such a 
−ν structure with T and someone )(TPCZ ∈ , 

like X Z T→ ← , it is known as the true spouse of T  
based on Theorem 2(line 13-19); 

5. By removing all nodes that are not connected to T or 
any )(TPCX ∈ , we get a network over T  and 

)(TMB , possibly with some arcs oriented as we 
identify −ν structures during step 4 (line 20); 

6. Finally, apply a series of orientation rules over the 
outcome of step 5 to determine the directions of the 
remaining edges and output the complete BNC.  

These six steps summarize the overall design of IPC-
BNC, from which one can see that we repeatedly depend 
on the recognition of parents and children to determine a 
connection between any pair of nodes (Step 1, 2 and 3). 
Meanwhile, we limit the search to the neighborhood of the 
target as much as possible, filtering out any false positives 
of )(TMB  at as early as possible to restrain the search to a 
local space. In the following three subsections, we will 
discuss IPC-BNC in more detail, including its correctness.  

 

Recognize Parents and Children. As the name of this 
algorithm indicates, the discovery of parents and children 
plays as a core role in constraining the search to a local 
space.  
RecognizePC (Table 3) is responsible for the search of 

parent/child candidates of given variable. It starts by 
connecting the current active target T (1st input parameter) 
to all other nodes not visited by with RecognizePC before, 
with non-oriented edges. Then, it deletes the edge 
( , )

i
T X if there is any subset of \{ }ADJ

T i
X  conditioning 

on which T and 
i

X is independent based on the 
significance of a conditional independence test,

D
I . The set 

obtained, , iT XS , is kept for later use (line 16 of IPC-BNC) . 
In IPC-BNC (discussed in the next section), 

RecognizePC appears at three different locations, line 3, 8 
and 12. This is designed to ensure that, for each pair ( , )X Y , 
both RecognizePC(X) and RecognizePC(Y) will be called, 
and YX − is true only when )(XPCY ∈ and )(YPCX ∈ , 
avoiding that any false nodes and links enter into 

)(TMB and BNC respectively. Overall, this is similar to 
the conventional PC structure learning algorithm, but it 
limits the search to the neighbors of the target node, which 
is why local, instead of global, learning is required and 
considerable time can be saved especially in applications 
with a large number of variables.  

The correctness of our approach to find the parents and 
children of a specific node T is the basis for the whole 
algorithm, so the following theorem is provided. 
Theorem 3. Parents and children of the node T of interest 
can be correctly discovered given the faithfulness 
assumption.   
Proof. (i) A potential link between ( , )T X , where X is a 
candidate of ( )PC T , is kept only when there is no set 
S such that T and X S∉ , and ( , | )S

D
I X T ε≤ , i.e. 

T and X is conditional independent given S . This is the 
direct application of Theorem 1, and this result guarantees 
that no false parent/child will be added into ( )PC T . (ii) 
Our algorithm ensures this point by conditioning on all 
possible sets S . (iii) Since we always start by connecting 
T with all non-scanned nodes, we won’t miss any true 
positives that should be included. Therefore, all parents 
and children of T can be identified if we call 
RecognizePC(T) and RecognizePC(X) for each 

)(TPCX ∈ as done in IPC-BNC.  

 

Identification of the Skeleton of BNC.  
 
Definition 5(Skeleton). Let G  be an DAG, and the 
undirected version of G  is called the skeleton of G  
(Flesch & Lucas 1997, Verma & Pearl 1990).  
In the main algorithm body, IPC-BNC, RecognizePC is 

iteratively called on demand. We describe this procedure 
step by step with reference to the pseudo code of IPC-BNC 
in Table 3: 
1. Firstly (line 2-5), the targetT  is connected to all other 

nodes inG . Its parent/child candidates are recognized 
via calling RecognizePC, the result of which may 
contain false positives that need to be filtered out. 
T is connected to each )(TPCX ∈ in G ;  

2. Next (line 6-9), for each ( )
i

X PC T∈ , we call 
RecognizePC(

i
X ), and determine 

i
X is a false 

positive if ( )
i

T PC X∉ . It allows us to filter out those 
false parents/children of T , and they are dis-
connected from T in G . For any pair of iX  and 

jX belonging to ( )PC T by the end of this step, they 
are connected if )( ji XPCX ∈ and )( ij XPCX ∈ , 
which is guaranteed via the calls of RecognizePC( iX ) 
and RecognizePC( jX ) . Therefore, by now, ( )PC T  
and the connections over T and ( )PC T are 
determined; 

3. Thirdly (line 10-12), spouse candidates are initialized as 
the union of )(),( TPCXXPC ∈∀ , except for )(TPC  
andT itself.  This set is denoted as )(TSP , and it is 
based on the known topology knowledge that the 
spouse of T will be connected to 
some )(TPCY ∈ in G . Given each )(TSPX ∈ , we 
assume it is connected to some )(TPCY ∈ . We call 
RecognizePC( X ), and it is known as false positive if 

)(XPCY ∉ (line 12). So, by the end of this step, we 
get a cleaner spouse set;  

4. With the outcome of the third step, we begin to 
recognize the true spouses in )(TSP  (line 13-19). For 

)(TSPX ∈∀ , and assume it belongs to 
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)(),( TPCYYPC ∈∃ , it is true spouse only when 
there exists such a −ν structure: TYX ←→ , given 
Theorem 3.   

5. Then (line 20), among G , we remove the nodes not 
belonging to { } ( ) ( )T PC T SP T∪ ∪ , and those arcs 
connected to these removed nodes. What remains is 
the skeleton of BNC, with some oriented arcs (during 
the determination of −ν structure in step 4); 

6. Finally, some orientation rules are applied to determine 
the remaining non-oriented links, and this will be 
discussed in the next section. 

Theorem 4. Line 1-20 of IPC-BNC lets us to learn the 
complete skeleton of BNC, possibly with some arcs 
oriented. 
Proof. Our step-by-step explanation of this algorithm 
above actually is the basis for the proof of correctness. (i) 
For each node pair ( X ,Y ), their connection is determined 
by RecognizePC( X ) and RecognizePC( Y ). This is a 
procedure similar to what the traditional PC algorithm 
does, which is based on Theorem 1. (ii)Line 1-9 helps us to 
find ( )PC T , and all arcs over { } ( )T PC T∪ , which is 
trivial and can be inferred through our discussion above. 
(iii) True spouses of T are recognized based on Theorem 2, 
and this is a sound procedure. (iv)Those additional arcs 
among true spouses, and between spouses and 
parents/children of T, are added by line 11-12, and are 
kept in BNC since we only remove false spouses and the 
related arcs. Therefore, line 1-20 of IPC-BNC enables to 
find the complete skeleton of BNC, and some arcs’ 
direction are determined given Theorem 2. 
 
Orientation Rules and More.  The orientation step will 

look for all triples },,{ ZYX such that edges ZX − and 

ZY − are in the graph but not the edge YX − . Then, if 

XYSZ ∉ , we have oriented edges as ZX → and ZY → , 

which creates a new −ν structure: YZX ←→ . After all 

−ν structures are recognized by repeating this rule, the rest 

edges are oriented following two basic principles: not to 

create cycles and not to create new −ν structure. In our 

implementation, we refer rules applied in (Kalisch & 

Buhlmann 2007) and (Meek 1996). However, except for 

the skeleton and −ν structure of BNC, those remaining 

arcs’ orientation are trivial to find given the study by 

(Flesch & Lucas 2007): 
Theorem 5. Two DAGs are Markov equivalent with each 
other if and only if they have the same skeleton and they 
consist of the same of −ν structure (or immoralities in the 
original text since they are equivalent concepts).  
Definition 6(Markov equivalence): Two DAGs are 
Markov equivalent if they encode the same set of 
independence relations.  
In the section of empirical study, we will only check the 

skeleton and −ν structures learned when we compare them 
to that of the underlying true models. This simplifies the 
comparison work but without sacrificing the desired effect.  

AD-tree and IPC-BNC++ 

Being a CI test-based algorithm, IPC-BNC depends 

intensively on computing joint frequency distributions, e.g. 

1 1 3 3
( )C X x X x= ∧ = , intensively. On an extreme, we can 

look through the dataset to collect a specific joint 

frequencies on demand, and another data pass for another a 

new query. This can be terribly time consuming 

considering thousands of CI tests are required (see our 

experiment example in next section), and it becomes worst 

when the number of attributes increases, or the dataset 

becomes larger. In the implementation of IPC-BNC, we try 

to cache as much statistics that can be expected given 

different conditioning set (so called cut-set) size (see Table 

3) as possible, aiming at reducing the data passes. That 

approach does work but dozens of data passes still are 

necessary in our testing, which prohibits IPC-BNC from 

being an efficient candidate in large applications. An ideal 

solution we are looking for should be efficient not only in 

time, allowing all sufficient statistics to be collected in 

single data pass, but in memory, at least scaling much more 

slowly relative to complexity of problems (i.e. attribute 

number).  
All Dimensions tree (AD-tree), proposed by Moore and 

Lee (Moore & Lee 1998, Komarek & Moore 2000), is such 
a solution. It is introduced for representing the cached 
frequency statistics for a categorical data set, from which 
we can query any frequencies we need without having to 
go through the data repeatedly. Fig 2 is an example from 
(Komarek & Moore 2000), where attributes 

1 2
,X X and 

3
X have 2, 4 and 2 categories respectively. Each 
rectangular node in the tree stores the value of one 
conjunctive counting query, and they are called AD-nodes. 
The children of AD-node are called Vary nodes, displayed 
as ovals. Each corresponds to an attribute with index 
greater than that of its parent node.  

Fig 2. Sample data with tree attributes and six records 
(upper), and its corresponding AD-tree (bottom).  
A tree built in this way would be enormous for non-

trivially sized problems, and its complexity increases 
quickly as the number of attributes and number of 
categories per attribute increase. However, considering that 
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normally only a small percent of the all possible instances 
happens given attributes {

i
X }, the actual tree will very 

often be sparse, with many zero counts (Moore & Lee 
1998, Komarek & Moore 2000). This finding is used by 
the authors to decrease the memory cost greatly, and it is 
implemented in ours as well. Other techniques mentioned 
by the authors of AD-tree to make the data structure more 
efficient are ignored in our current version, and interested 
readers can refer them in the original documents. 
In this project, we refer IPC-BNC with AD-tree as IPC-

BNC++, indicating that it is an enhanced version. Its 
algorithm specification is just same as IPC-BNC (see 
Table 3) since we hide the details of tree construction and 
query, allowing readers focusing on the primary 
architecture.  

Empirical Study 

Experiment Design 

We illustrate our method using a well knwon BN called 

ALARM network (Beinlich et al 1989). ALARM network 

was developed for on-line monitoring of patients in 

intensive care units, and is widely used as a benchmark 

model to evaluate BN’s learning algorithms. ALARM 

network has 37 nodes and 46 edges. We use synthetic data 

sampled from this network, and we run IPC-BNC with 

each node in the BN as the target random variable T, trying 

to recover the corresponding BNC. 
 The different sample size we have used are 5000, 10000, 
and 20000. With each sample size, 10 replicates are 
prepared for study. Due to space constraint, we are unable 
to present results on other common BNs.  

Evaluation and Analysis 

To measure time efficiency, we use the number of data 

passes and CI tests to represent the average cost of the 

algorithms.  
In Table 1, the “# CI tests” of IPC-BNC refers to the 

average number of CI test we need to measure to induce 
the corresponding BNC given 

i
X  ( 1..37i = , ranging over 

each node in Alarm network) as the target.  The amount for 
PC is the total number of CI tests required to learn the 
whole Alarm BN as by traditional approach. We see that 
about 70% fewer CI tests are necessary for local search, 
compared with the global search method. Therefore, IPC-
BNC is more economical in time cost by learn only what 
we need, which enables it to solve larger scale of problem 
once non-tractable for PC.  
The number of data passes is also listed in Table 1 as 

“#Data passes”. For example, given 20000 instances, IPC-
BNC needs 24 data passes by average, whereas IPC-
BNC++ needs only 1 pass. The time saved become more 
obvious when the observation is large. Therefore, IPC-
BNC++ gives us an attractive solution which not only 
requires much fewer CI tests than traditional PC, but also 
needs a single data pass to learn a BNC 

Table 1: Time efficiency comparison, in term of number of CI 

test and data passes required by PC to learn the global network 

and the average amount of CI tests cost by IPC-BNC and IPC-

BNC++ over all the 37 nodes.  

Instances Algorithm # CI tests #Data passes 

5k PC 5458±35 N/A 

5k IPC-BNC 1522±12 23±0 

5k IPC-BNC++ 1522±12 1±0 

10k PC 5703±24 N/A 

10k IPC-BNC 1728±14 24±0 

10k IPC-BNC++ 1728±14 1±0 

20k PC 5853±32 N/A 

20k IPC-BNC 1833±24 24±0 

20k IPC-BNC++ 1833±24 1±0 

Table 2: Effectiveness of IPC-BNC and IPC-BNC++ 

Instances Distance of Edges Distance of v-structure 

5k 0.09±.00 0.10±.00 

10k 0.06±.00 0.07±.00 

20k 0.06±.00 0.08±.00 

 
 Table 2 is about the effectiveness of the proposed 
learning algorithm. We measure the distance of edges and 
−ν structure learned from the true model. Here, the 

distance is defined as 22 )Re1()Pr1( callecision −+− . 
Precision is the number of true positives found divided by 
the number of edges/v-structures of the true model; recall 
is the value of true positives found divided by the number 
of edges/ −ν structures found.  

Conclusion 

In using a BN for classification, we make use of what is 

known as the Markov blanket of the target node, i.e. the 

target’s parents, children and spouses, thereby ensuring 

that only the relevant features are selected and that all other 

nodes can be ignored. The DAG structure over ( )MB T  

and T  is called Bayesian network classifier. An algorithm 

called IPC-BNC is proposed to learn BNC with a local 

search, iteratively looking for those parents and children of 

any node of interest. It is proved correct and shown to 

outperform other algorithms for deriving the Markov 

blanket in an experiment with a single data set. Although 

further experiments are required to validate the generality 

of these results, the IPC-BNC is expected to be much more 

time efficient than a conventional approach where a 

complete BN over all attributes and the target variable has 

to be learned first before BNC can be derived. 

Furthermore, by implementing AD-tree to collect all 

statistics in one data pass, computational efficiency is 

greatly improved. We claim that IPC-BNC plus AD-tree is 

a better approach to solve larger scale of problem, and 

owns more practical value in real applications.   
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