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Abstract

We develop a formal system dealing ‘spatially’ with certain
aspects of uniformity and control during knowledge acquisi-
tion. To this end, we study an appropriate modality, which
is essentially due to Baskent, against the background of dy-
namic epistemic logic. The new connective turns out to be
rather complex, but hybridizing the source language enables
us to prove some of the desired fundamental properties of the
arising logic like completeness or decidability.

Introduction
Moss and Parikh’s effort operator, cf (Moss & Parikh 1992)
and (Dabrowski, Moss, & Parikh 1996), constitutes the con-
necting link between two different approaches to reasoning
about non-static aspects of knowledge: topologic, and, on
the other hand, dynamic epistemic logic.1 The connection
we indicated is, however, rather loose. This will become
apparent in a minute when particularly the first system is in-
spected to some extent, but already now the main reason for
that can be stated: The effort operator of topologic models
actions of agents implicitly while these are explicitly present
in dynamic epistemic logic.

The goal of this paper is, among other things, bringing
topologic a little closer to dynamic epistemic logic. This
is done with the aid of an interesting modality describing
controlled shrinking.

For convenience of the reader, we now recall the language
underlying topologic, L. We lead up to the new operator
afterwards, having our eye on dynamic epistemic logic at
the same time.

In L, the knowledge of an agent in question is described
by the space of all knowledge states. These are the sets of
states the agent considers possible at a time. If an effort is
made to acquire knowledge, then this appears as a shrink-
ing procedure regarding that space of sets. The formulas of

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1To become acquainted with these systems the reader is re-
ferred to the following books published quite recently: the hand-
book (Aiello, Pratt-Hartmann, & van Benthem 2007), of which
Chapter 6 contains a rather detailed exposition of topologic, and,
respectively, the textbook (van Ditmarsch, van der Hoek, & Kooi
2007).

topologic may contain both a modality K describing knowl-
edge and an operator � expressing effort. The semantic do-
mains are triples (X,O, V ) called subset spaces, which con-
sist of a non-empty set X of states, a set O of subsets of X
representing the knowledge states of the agent,2 and a valua-
tion V determining the states where the atomic propositions
are true. The operator K then quantifies over some knowl-
edge state U ∈ O, whereas � quantifies ‘downward’ overO
since shrinking elements of O and gaining knowledge cor-
respond to each other.

Thus � models some knowledge acquisition procedure,
i.e., a sequence of actions that are not specified further un-
less they increase knowledge. Unlike that the actions con-
sidered in dynamic epistemic logic are quite concrete. In
fact, they strongly resemble the program constructs known
from propositional dynamic logic (in short, PDL); cf (van
Ditmarsch, van der Hoek, & Kooi 2007), Ch. 5, and (Gold-
blatt 1992), § 10, respectively.

It is, therefore, fairly natural to try combining topologic
and PDL in order to reach the aforementioned goal. Since
procedures change knowledge states, subset spaces must be
enriched with partial functions operating onO for that. Such
functions are intended to represent the ‘elementary’ actions.
The more complex ones come into play when composition,
alternation, iteration, etc are included.

The idea of combining those two systems, which has just
been given by way of a hint, was elaborated in (Heinemann
2007). Certain features of topologic get lost by doing this
though. For instance, a �-like construct appears only as the
reflexive and transitive closure of procedures then; i.e., we
do no longer have the original effort operator at our disposal
since it may be independent of those closures and we do
not have the interaction of the modalities under control in
this case. On account of this we follow a different approach
here, which is now motivated by two examples.

Our first example concerns the computation of binary
streams. This is one of the wide-spread cases for which the
process of acquiring knowledge can be modelled by a tree;
cf (Georgatos 1997). In fact, let B be the set of all infinite 0-
1-sequences endowed with the initial-segment topology, T .

2These sets are sometimes called the opens since a topological
interpretation of knowledge is supported by the system under dis-
cussion; see the papers cited above. (By the way, this justifies the
name topologic.)

65

Proceedings of the Twenty-First International FLAIRS Conference (2008)



This set can be depicted as the full infinite binary tree. More-
over, every node of this tree can be annotated with the basic
neighbourhood U ∈ T containing all possible prolongations
of the initial segment leading to this node. In this way, a tree
of subsets of B results. Now, computing a concrete function
g : N → {0, 1} yields, step by step, a bisection of the actual
open, constituting the respective knowledge state of the ob-
server. Thus shrinking of opens proceeds in a uniform and
controlled way here. Furthermore, and this is also an im-
portant point, only some elements of the domain (viz those
from the canonical basis of T ) are needed for describing
how more and more knowledge of g is obtained.

A similar phenomenon appears whenever the measure-
ment precision has to be increased repeatedly during an ex-
periment (say by one decimal place each time). Again, a
uniform and controlled process turns up, this time concern-
ing the knowledge of the measured object.

More examples of controlled shrinking from as diverse
fields as philosophy, belief revision, basic topology, and
public announcement logic,3 are given in Ch. 5 of the paper
(Başkent 2007). These examples led the author to introduce
a new modality [F ], which, roughly speaking, captures con-
trol by addressing all (or, more generally, some of) the dis-
tinguished functions on O that represent a correspondingly
(eg, syntactically) given procedure.

The precise definition and a more detailed discussion of
[F ] will be provided in the next section. The problems aris-
ing out of this operator too will immediately become appar-
ent there. Due to the intrinsic complexity of [F ], the devel-
opment of the relevant modal theory seems to be difficult,
and almost nothing is known about it.4 Somewhat surpris-
ingly, we can make considerable headway by using meth-
ods from hybrid logic; see (Blackburn, de Rijke, & Venema
2001), Sec. 7.3, or Ch. 14 of the handbook (Blackburn, van
Benthem, & Wolter 2007). This is carried out in the techni-
cal part of this paper.

The paper is organized as follows. In the next section,
we insert the operator of controlled shrinking in topologic
and comment on the new language, in particular, with regard
to systems encompassing PDL. Then we recall the concepts
from hybrid logic we need later on, and we briefly revisit
hybrid topologic; see (Heinemann 2008). The final technical
section contains an account of the resulting logic and of the
basic issues indicated in the abstract. Concluding the paper,
we sum up and state some of the remaining questions.

Controlled Shrinking
We now define the extended language, L. Throughout this
paper, we confine ourselves to the single-agent case.

The syntax of L is based on a denumerable set Prop =
{p, q, . . .} of symbols called proposition letters. The set
Form of all formulas over Prop is given by the rule

α ::= p | ¬α | α ∧ β | Kα | �α | [F ]α

3See, eg, (Baltag, Moss, & Solecki 1998), and also (van Dit-
marsch, van der Hoek, & Kooi 2007), Ch. 4.

4Nevertheless, just abstracting the operator [F ] from the given
examples is the unquestionable merit of the paper (Başkent 2007).

then. While K and � denote the well-known modalities of
knowledge and effort, the new operator [F ] should describe
controlled shrinking.5 The missing boolean connectives are
treated as abbreviations, as needed. The symbol 3 desig-
nates the dual of the effort operator. The duals of the other
modalities are displayed by putting the corresponding let-
ters in angle brackets; thus 〈K〉 denotes the dual of K and
〈F 〉 denotes the dual of [F ].

Now, we turn to the semantics of L. For a start, we fix the
relevant domains. We let P(X) designate the powerset of a
given set X .

Definition 1 (Controlled structures) 1. Let be given
a triple S := (X,O,F) such that

(a) X is a non-empty set,
(b) O ⊆ P(X) is a set of subsets of X , and
(c) F = {f | f : O → O} is a set of one-place partial

functions satisfying, for all U ∈ O, the condition
f(U) ⊆ U whenever f(U) exists.

Then S is called a controlled subset frame.
2. Let S = (X,O,F) be a controlled subset frame.

The elements of the set

NS := {(x, U) | x ∈ U and U ∈ O}

are called the neighbourhood situations of S.
3. Let S = (X,O,F) be a controlled subset frame and

V : PROP → P(X) be a mapping. Then V is
called an S–valuation.

4. Let S = (X,O,F) be a controlled subset frame and
V be an S–valuation. Then,

M := (X,O,F , V )

is called a controlled subset space, or, in short, a
CSS (based on S).

Three facts are worth mentioning for item 1 of this defini-
tion: First, control is represented by functions onO, which is
quite natural because of the aforementioned examples. Sec-
ond, partiality should obviously be admitted in order to be
general enough. And third, the requirement ‘f(U) ⊆ U ’ in
item 1 (c) shows shrinking, i.e., knowledge acquisition.

The neighbourhood situations introduced in item 2 of
Definition 1 make up the atomic semantic entities of our lan-
guage. They are used for evaluating formulas; see the next
definition. In a sense, the set component of a neighbourhood
situation measures the uncertainty about the associated state
component at any one time.

We are mainly interested in interpreted systems, which
are here formalized by the use of subset spaces (Definition
1.4). The assignment of sets of states to proposition letters
by means of valuations (see item 3 above) is in accordance
with the usual logic of knowledge; cf (Fagin et al. 1995) or
(Meyer & van der Hoek 1995).

The final remark on Definition 1 concerns uniformity.
Consider once again the tree example from the introduction.

5We adopt the name, which does not reflect the aspect of unifor-
mity, from (Başkent 2007). However, the definitions in the present
paper are a little different from those there.
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In this example, proceeding in a controlled mode means go-
ing down the subset tree either one step left or one step
right. Consequently, the set F there consists of two func-
tions which model the respective direction. Note that mak-
ing progress in this way is uniform for all stages of the whole
process (i.e., for all levels of the tree). Therefore, control and
uniformity are captured at the same time.

Our next task is defining the relation of satisfaction. This
is done with respect to a CSS M. Thus satisfaction, which
should hold between neighbourhood situations of the under-
lying frame and formulas from Form, is designated |=M . In
the following, neighbourhood situations are written without
brackets.

Definition 2 (Satisfaction; validity) Let be given a CSS
M = (X,O,F , V ) based on S = (X,O,F) , and let
x,U ∈ NS be a neighbourhood situation. Then

x, U |=M p : ⇐⇒ x ∈ V (p)
x, U |=M ¬α : ⇐⇒ x, U 6|=M α

x, U |=M α ∧ β : ⇐⇒ x, U |=M α and x,U |=M β

x, U |=M Kα : ⇐⇒ for all y ∈ U : y, U |=M α

x, U |=M �α : ⇐⇒
{
∀U ′ ∈ O : (x ∈ U ′ ⊆ U

⇒ x,U ′ |=M α)

x, U |=M [F ]α : ⇐⇒
{
∀ f ∈ F : (x ∈ f(U)
⇒ x, f(U) |=M α) ,

for all p ∈ Prop and α, β ∈ Form. In case x,U |=M α is
true we say that α holds in M at the neighbourhood situa-
tion x, U. Furthermore, a formula α is called valid in M iff
it holds in M at every neighbourhood situation. (Manner of
writing: M |= α.)

Note that the meaning of proposition letters is indepen-
dent of the opens by definition, hence ‘stable’ with respect
to � and [F ]. This fact will also find expression in the logi-
cal system considered later on; see footnote 9 below.

For the rest of this section, we deal with the operator [F ].
This is the key construct of our language. Definition 2 lights
up how it is expressed that α ∈ Form is valid due to con-
trolled shrinking, viz by quantifying over all functions that
are responsible for that. At this point, the position of the
present approach between topologic and PDL-like epistemic
logics becomes quite clear: While we do not have any ex-
plicit control in topologic, and even syntactically presented
control in dynamic epistemic logic, control (in terms of the
functions from F) is at least present in the semantics here;
the modality [F ] then allows to speak about it in the formal
language.

Definition 2 also indicates that by no means all the results
that can be obtained by some effort must be yielded in a
controlled manner. This property is, in fact, a validity for
controlled subset spaces, as the first item of the subsequent
proposition shows.

Proposition 3 Let M be a CSS. Then, for all α ∈ Form,

1. M |= �α → [F ]α 2. M |= K[F ]α → [F ]Kα.

Replacing [F ] with � in the second item yields the Cross
Axiom of topologic. This axiom is the crucial schema of that

system; cf (Dabrowski, Moss, & Parikh 1996). – The proof
of Proposition 3 is straightforward from Definition 2 and,
therefore, omitted.

By integrating controlled shrinking into topologic we
have really won more expressive power. This is demon-
strated by the next example.

Example 4 We consider the tree example from the introduc-
tion one last time. For all binary strings w ∈ {0, 1}∗, we let
wB := {h ∈ B | h is prefixed by w}. Then, for every a ∈
{0, 1}, we define fa : B → B as follows: fa(wB) := waB
for all w ∈ {0, 1}∗, and fa(U) := undefined for all other
elements U ∈ T . (Thus these functions are the ones rep-
resenting uniformity and control on the topological space
(B, T ); see the final remark on Definition 1 above.) Now,
consider the controlled subset frame S = (B, T , {f0, f1}).
Using this frame we are able to specify a certain live-
ness property of a program computing a concrete function
g : N → {0, 1} :

g,B |=M �3〈F 〉>

holds for all CSSs M based on S. – Note that we are free
to choose the functions we are interested in, as long as these
are in accordance with the demands for uniformity or con-
trol. Thus if we restrict the frame S to {f0} in the third
component, then the same formula says that a machine com-
puting g time after time outputs the bit ‘0’.

Concluding this section, we look at Definition 2 in view
of a logical theory of [F ]. For the development of such a
theory, the following question must be answered: How can
we come to grips with the functions from F? Note that the
operator [F ] provides only ‘indirect’ access to these func-
tions. But for a model to be constructed, we must be able to
handle them extensionally, and the semantics of [F ] must be
respected at the same time. – In the next section, we supply
the prerequisites for a possible answer.

Hybridization
In this section, the just defined language L is hybridized.
The logic invented in (Heinemann 2008) is sketched in addi-
tion. First, however, we recall the basic features from hybrid
logic we need for that.6

The key idea of the hybrid approach is adding a set Nom
of nominals, i.e., a set of names of states, to a modal lan-
guage. One may take nominals as special proposition let-
ters having a unique denotation. Already this simple con-
cept is very powerful since a good deal more properties of
frames can be expressed than before. However, hybrid logic
develops its abilities in full only after integrating particular
binders. For the purposes of this paper, the so-called satis-
faction operators play a part. These operators enable one to
evaluate formulas at the denotation of a nominal under dis-
cussion: For an arbitrary i ∈ Nom, the formula @iα holds
at some state x iff α holds at the state y denoted by i. Thus

6(Blackburn 2000) gives a nice overview (including history), in
particular, of the various areas of application of hybrid logic; see
also the references cited above.
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the information stored in named states can be retrieved by
means of satisfaction operators.

There is another hybrid peculiarity worth mentioning
here: unorthodox proof rules. Such rules facilitate a proper
treatment of names in the framework of modal logic. We
shall list most of the unorthodox proof rules that will be uti-
lized for L below.

Now, due to the two-component semantics of L we en-
rich this language with two disjoint sets of nominals called
names of states and names of sets, respectively. Let Nstat =
{i, j, . . .} and Nsets = {I, J, . . .} be the corresponding sets
of symbols. Moreover, let A designate the global modality
and E its dual; see (Blackburn, de Rijke, & Venema 2001),
Sec. 7.1. The global modality is mainly used for simulating
satisfaction operators in our bi-modal setting, as the reader
will see in a moment.

But first we have to make the necessary adjustments con-
cerning the semantics. To begin with, we introduce hybrid
CSSs.

Definition 5 (Hybrid CSSs) Let be given a controlled sub-
set frame S = (X,O,F).

1. Assume that, for every U ∈ O, any two distinct el-
ements of {f(U) | f ∈ F} are incomparable with
respect to inclusion. Then S is called regular.

2. A mapping V : Prop ∪ Nstat ∪ Nsets → P(X)
is called a hybrid S–valuation iff the following two
conditions are satisfied:

(a) V (i) is either ∅ or a singleton subset of X for every
i ∈ Nstat , and

(b) V (I) ∈ O for every I ∈ Nsets .
3. Let S be regular and V be a hybrid S–valuation.

Then, M := (X,O, V ) is called a hybrid controlled
subset space, or, in short, an HCSS.

The regularity requirement from item 1 of Definition 5 is
quite reasonable: If one is able to proceed to both U and U ′

by controlled shrinking, and if U ⊆ U ′ is true additionally,
then U may be excluded without worsening the process in
question as a whole.7 Note that the above examples too are
in accordance with this requirement.

Item 2 of Definition 5 takes into account that nominals
may have an empty denotation. This is appropriate to us for
technical reasons, but not usual for standard hybrid logic;
see (Heinemann 2008) for a discussion regarding this. – We
now extend Definition 2 accordingly.

Definition 6 (Hybrid satisfaction and validity) Let M =
(X,O,F , V ) be an HCSS based on S = (X,O,F), and let
x, U ∈ NS be a neighbourhood situation. Then

x,U |=M i : ⇐⇒ x ∈ V (i)
x,U |=M I : ⇐⇒ V (I) = U

x, U |=M Aα : ⇐⇒
{

for all x′, U ′ ∈ NS :
x′, U ′ |=M α ,

7Formally, if W, U, U ′ ∈ O, f(W ) = U , f ′(W ) = U ′, and
U ⊆ U ′, then redefine f(W ) := undefined. (f must not be left
out completely since the regularity condition may be satisfied at
some elements of O different from W .)

where i ∈ Nstat , I ∈ Nsets and α ∈ Form.8

Thus the intended meaning is truly assigned to nominals.
Furthermore, the modality A turns out to be ‘global’ with
respect to neighbourhood situations here.

The formulas of the form i ∧ I, where i ∈ Nstat and
I ∈ Nsets , play an important part below since they can be
taken as names of neighbourhood situations. We are able to
associate a satisfaction operator with such a name by virtue
of @(i∧I) α :≡ E(i ∧ I ∧ α), where α ∈ Form. Thus for-
mulas of the above form function as ‘proper’ nominals for
controlled subset spaces.

The operators @(i∧I) are needed for axiomatizing the
logic of HCSSs. This logic is naturally based on hybrid
topologic. Hence we should briefly review the latter system.

Doing so, it is not necessary to list the corresponding ax-
ioms here. The reader is referred to the paper (Heinemann
2008) regarding this. We start off with the unorthodox proof
rules of hybrid topologic instead.

Definition 7 (Unorthodox proof rules) The following hy-
brid schemata have to be added to the usual modal ones:

(NAMEstat )
j → β

β
(NAMEsets )

J → β

β

(∇–ENRICHMENT)
E (i ∧ I ∧∇(j ∧ J ∧ α)) → β

E (i ∧ I ∧∇α) → β
,

where α, β ∈ Form, i, j ∈ Nstat , I, J ∈ Nsets , ∇ ∈
{〈K〉, 3,E}, and j, J are new each time (i.e., do not occur
in any other syntactic building block of the respective rule).

A ‘contrapository’ reading is suggested for the reader not
familiar with this kind of proof rule. For example, the rule
(NAMEstat ) is to be read ‘if β is satisfiable, then j ∧β is sat-
isfiable, too’ (provided that the nominal j does not occur in
β). From that, the soundness of the unorthodox rules should
be obvious.

Just the ENRICHMENT-schema for 〈F 〉 must be added
later on in order to obtain the proof rules for the logic ac-
companying L.

Technically, the NAME and ENRICHMENT rules are used
for proving an appropriate Lindenbaum Lemma and an Exis-
tence Lemma, respectively; cf (Heinemann 2008), Lemmata
3.3 and 3.6. Both auxiliary results constitute the first steps
towards the completeness theorem for hybrid topologic. In
fact, these lemmata make possible a hybridization of the
canonical model of the logical system under discussion. A
model M falsifying a given non-derivable formula can then
be obtained via a certain space, X , of partial functions over
the carrier set D of that hybridized structure. We emphasize
the individual components of M:
• The domain dom(h) of every function h ∈ X is a maxi-

mal subset of the set Q := {[Σ] | Σ ∈ D} of all equiva-
lence classes [Σ] := {Σ′ ∈ D | Σ K−→Σ′} of the acces-

sibility relation K−→ induced by the knowledge modality
K. In this connection, maximality is meant with regard to
the two subsequent conditions:
8From now on, Form denotes the set of formulas of the en-

riched language.
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1. h([Σ]) ∈ [Σ] for all [Σ] ∈ dom(h), and

2. h([Σ]) �−→h([Θ]) for all [Σ], [Θ] ∈ dom(h) such
that [Σ] precedes [Θ] in the following sense:

∃Σ′ ∈ [Σ],Θ′ ∈ [Θ] : Σ′ �−→Θ′,

where Σ, Θ ∈ D and �−→ denotes the accessibility
relation belonging to the effort modality �.

We write hΣ := h([Σ]) in case h([Σ]) exists. Furthermore,
we define
• U[Σ] := {h ∈ X | hΣ exists}, for all Σ ∈ D,

• O := {U[Σ] | Σ ∈ D} ∪ {∅}, and

• V : Prop ∪Nstat ∪Nsets −→ P(X) by

h ∈ V (c) : ⇐⇒
{

c ∈ hΣ for some Σ ∈ D
such that hΣ exists ,

for all c ∈ Prop ∪Nstat ∪Nsets .
With that, we obtain the relevant Truth Lemma, cf (Heine-

mann 2008), Lemma 3.11, from which the completeness of
hybrid topologic can easily be concluded. – We shall come
back to the above construction in the next section.

It is true that hybrid topologic is decidable as well; cf
(Heinemann 2008), Theorem 4.4. This is proved by estab-
lishing a certain finite model property of this logic. The
suitable method of proof for that is filtration; cf (Goldblatt
1992), § 4. For later purposes, we now go into that proof a
little.

First of all, the filter set must be arranged in a way which
facilitates the validation of all the axioms of the system for
the filtrated model, called ad hoc M. In particular, the nom-
inals occurring in the (consistent) formula γ for which we
want to find a finite model have to be taken into account for
that. Now, the point comes which is crucial to hybrid decid-
ability: It is sufficient for the verification of the axioms in-
volving nominals to check only the instances in which nomi-
nals from the filter set occur. This reduction can be achieved
by modifying the valuation of M appropriately. Therefore,
it is no longer necessary to show that the first-order frame
property associated with the respective axiom is valid for
M. – This technique too will be applied in the next section.

The hybrid logic of controlled shrinking
The main outcome of this paper is a completeness and, re-
spectively, a decidability result for the hybrid logic arising
from L, which is designated LC (‘Logic of Control’). In this
section, both theorems are stated and the respective proofs
are outlined.

LC contains three additional axiom schemata: those two
from Proposition 3, and the subsequent purely hybrid one
corresponding to regularity:

(∗) 〈F 〉(i ∧ I) ∧ 〈F 〉(i ∧ J) ∧@(i∧I)¬J →
@(i∧I)K�¬J ∧@(i∧J)K�¬I ,

where i ∈ Nstat and I, J ∈ Nsets . The effect of the latter
schema will be discussed in a minute.9

9The expected schema (p → [F ]p) ∧ (〈F 〉p → p) is derivable
from the analogous one for �, which is an axiom of topologic (p ∈
Prop); cf the first remark right after Definition 2.

Since the proof rules of LC were mentioned in the previ-
ous section already we can directly strive for completeness.
To this end, we extend the structure (X,O, V ) defined above
by a fitting set of functions. The following relation between
opens from O will prove to be useful for that:

U[Σ] ≺ U[Θ] : ⇐⇒ ∃h ∈ U[Σ] ∩ U[Θ] : hΣ
[F ]−→hΘ,

where
[F ]−→ denotes the accessibility relation induced by the

operator of controlled shrinking and the other notations are
taken from above. Now, we call a subset K ⊆ O a ≺-chain
iff the reflexive and transitive closure of ≺ restricted to K
is a linear order. Let K be the set of all ≺-chains contained
in O that are maximal (with respect to inclusion). For every
K ∈ K, we would like to define a set-valued partial function
fK as follows:

fK(U) :=
{

U ′ if U ′ ∈ K and U ≺ U ′

undefined otherwise ,

for all U ∈ O. It turns out that this is in fact possible.
Lemma 8 For every K ∈ K, the relation fK is a partial
function, fK : O → O.

Note that this is a subtle point since it cannot be excluded
from the outset thatK contains two or more≺-successors of
the same open (induced by different elements of K):
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Figure 1: A non-regular situation

In this picture, arrows should indicate the accessibility re-
lation belonging to [F ]. Thus any≺-chainK ∈ K containing
U1 ≺ U3 ≺ U4 as a subchain violates the regularity condi-
tion (whereas, eg, U2 ≺ U3 ≺ U5 is an admissible subchain
of some K′ ∈ K).

The axiom schema (∗) preserves us from such critical sit-
uations and is decisive to the proof of Lemma 8 thus.

Now, we let
• F := {fK : O → O | K ∈ K}.
Then we obtain the subsequent Truth Lemma.
Lemma 9 The just constructed model M = (X,O,F , V )
constitutes an HCSS. Moreover, for all formulas α ∈ Form,
elements h ∈ X , and points Σ ∈ D such that h ∈ U[Σ], we
have that

h, U[Σ] |=M α ⇐⇒ α ∈ hΣ.
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The proof of the second part of this lemma is done by
induction on the structure of formulas. It should be men-
tioned that both schemata from Proposition 3 are needed for
the case α = [F ]β of the induction step. Actually, it is
suitable to replace [F ]β with 〈F 〉β in this case. Note that
h, U[Σ] |=M 〈F 〉β is valid iff there exists some K ∈ K such
that β ∈ hΘ, where Θ ∈ D satisfies U[Θ] = fK(U[Σ]).

The first of our main results now follows immediately.
Theorem 10 The system LC is sound and complete with re-
spect to the class of all HCSSs.

Concerning decidability, we follow the strategy which
was briefly described at the end of the previous section.
Thus we prove that the additional axioms are valid for the
filtrated model. This is quite easy in case of the ‘Inclu-
sion Axiom’, �α → [F ]α. Only the defining properties
of the so-called minimal filtration, cf (Goldblatt 1992), 4.5,
are used for that. A more involved argument is necessary for
the ‘Second Cross Axiom’, K[F ]α → [F ]Kα. But, fortu-
nately, one can proceed as for the usual Cross Axiom in this
case; cf (Dabrowski, Moss, & Parikh 1996), Sec. 2.3. The
case of the ‘Regularity Axiom’, (∗), is the most complicated
one, as expected. Here the basic filter set has to be modified.
As a first approximation, all subformulas of (∗) that contain
only nominals occurring in γ must be added (where γ is as
above). Note that the filter set remains finite in doing so.
Now, the filtration machinery has to be applied carefully. As
a consequence, the desired finite model property of the logic
results. This implies the following theorem.
Theorem 11 The set of all LC-derivable formulas is decid-
able.

Concluding remarks
In this paper, we took up a spatial view of knowledge to the
effect that subset spaces appeared as the appropriate models.
We developed a logical system being located between topo-
logic and dynamic epistemic logic. The intermediary ele-
ment was a modality describing uniformity and control dur-
ing knowledge acquisition. Because of the immanent com-
plexity of this operator we hybridized the source language
in order to obtain a sound and complete axiomatization as
well as the decidability of the arising logic. The functional
structure of the hybridized canonical model was decisively
utilized for that.

Generality, simplicity, and the trans-sectoral position be-
tween two areas of epistemic reasoning, make up the mer-
its of the new system. Nevertheless, it remains a lot to be
done with regard to both theory and practicality. One prob-
lem concerning the first field was already mentioned above:
What about the purely modal theory of controlled shrinking?
Another one, for which most systems related to topologic are
notorious, is computational complexity.

As to extensions, one might think of a combination of
temporal systems (eg, those from (Heinemann 1999)) and
the one presented in this paper. (In this connection, see
(Henriksen & Thiagarajan 1999) for an example of dynamic
temporal logic.) Moreover, multi-agent versions of such sys-
tems would further reduce the gap between topologic and
dynamic epistemic logic.
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