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Abstract
1
 

In this paper, we propose a peptide folding prediction 

method which discovers contrast patterns to differentiate 

and predict peptide folding classes. A contrast pattern is de-

fined as a set of sequentially associated amino acids which 

frequently appear in one type of folding but significantly in-

frequent in other folding classes. Our hypothesis is that each 

type of peptide folding has its unique interaction patterns 

among peptide residues (amino acids). The role of contrast 

patterns is to act as signatures or features for prediction of a 

peptide’s folding type. For this purpose, we propose a two 

phase peptide folding prediction framework, where the first 

stage is to discover contrast patterns from different types of 

contrast datasets, followed by a learning process which uses 

all discovered patterns as features to build a supervised clas-

sifier for folding prediction. Experimental results on two 

benchmark protein datasets will indicate that the proposed 

framework can outperform simple secondary structure pre-

diction based approaches for peptide folding prediction. 

1. Introduction 

Protein/peptide (peptides are small proteins which are short 

chains of amino acids with an average length of 20 resi-

dues) folding is the physical process by which the local and 

global interactions among amino acids enforce a sequence 

to fold into unique three-dimensional structures, through 

which the proteins/peptides can carry out their diverse 

cellular functions (Lesk 2002), such as breaking down 

starch chains into smaller sugar molecules (Amylases) or 

carrying oxygen (hemoglobin). The function of the protein 

or peptide crucially relies on their 3-D conformation struc-

ture, and changes made to such structure will most likely 

lead to changed or failed functions even if the primary 

structure (amino acid sequence) remains the same. Existing 

research (Qian & Sejnowski 1998, Kabsch & Sander 1983, 

Ptitsyn & Finkelstein 1982) suggested that 3-D structures 

of a protein or peptide are solely a function of its amino 

acid sequence, although exact formula of the function re-

mains unknown. It has been commonly agreed that due to 

local amino acid interactions mediated by hydrogen bonds, 

amino acid chains are organized into a certain types of lo-
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cal regular structures, known as alpha-helices (α-Helix), 

beta-pleated sheets (β-Sheet), and random coils (the re-

maining part), commonly referred to as secondary struc-

tures (Kabsch & Sander 1983, Ptitsyn & Finkelstein 1982). 

The one dimensional amino acid sequence spontaneously 

folds into 3-D structures, which eventually determine bio-

logical functions of the molecule. In practice, although 

finding such 3-D structure is possible with complex tech-

niques such as X-ray crystallography, the gap between the 

rapid growth of the number of protein sequences and the 

unavailability of their structure information requires effec-

tive and economical solutions to predict structures auto-

matically. Formally, the problem of protein/peptide folding 

prediction is to predict 3-D folding type of an amino acid 

sequence, without complex and time-consuming processes 

like X-ray crystallography or protein nuclear magnetic 

resonance spectroscopy (NMR), such that we can under-

stand protein/peptide structures, conformations, and func-

tions directly from their amino acid sequences. 

If amino acid sequences contain sufficient information 

to determine three-dimensional structures, it should be 

possible to devise an algorithm to predict structures from 

the amino acid sequence. Unfortunately, this has proved 

elusive (Lesk 2002). Instead, a large body of work has 

focused on less ambitious goals such as secondary 

structure prediction (Frishman & Argos 1997) and folding 

type recognition (Ding & Dubchak 2001). For example, to 

understand the relationship between an amino acid se-

quence and its corresponding structures, general distance 

functions or support vector machines are used to classify 

protein folding into five categories: All-Helix , All-Sheet, 

Helix/Sheet, Helix+Sheet, and small proteins. Ding (Ding 

& Dubchak 2001) further extended folding types to 27 

classes, with the best classification accuracy close to 50%. 

Similarly, the problem of peptide folding prediction is to 

classy folding type of a short amino acid chain into one of 

the following seven classes: All-helix(H), All-Sheet(E), 

All-Coil(C), Helix-Sheet(HE), Helix-Coil(HC), Sheet-

Coil(BC), and Helix-Sheet-Coil(HEC). More specifically, 

a peptide’s folding is identified as All-Helix (H) if and 

only if all its residues’ secondary structures are helix (the 

same logic applies to E and C as well), and a complex 

folding like “HE” means that the secondary structures of a 

peptide’s residues are mixture of Helix and Beta sheet. 
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For automatic protein secondary structure prediction, a 

sliding window can be used to move along the amino acid 

sequence to generate examples for model training. For se-

quences with known secondary structures (e.g., from DSSP 

label (Kabsch & Sander 1983)), we can move a small win-

dow along the sequence, with residues covered by the win-

dow taking as attribute values and the secondary structure 

corresponding to the central residue of the window as the 

class label of the instance. The generated training instances 

can be used for supervised learning algorithms to build 

models for secondary structure recognition.  

Because peptides are small proteins, the prediction of 

the peptide folding can also be achieved through secondary 

structure prediction. For example, given a peptide 

sequence “KPECPV”, one can predict secondary structure 

of each residue, and if the results are “HHH---“ which is a 

mixture of Helix and Coil, the folding type of the peptide 

will be identified as “HC”. Unfortunately, such a 

secondary structure based approach has two major 

drawbacks: First, most secondary structure prediction 

methods are window-based which adopt a sliding window 

to predict secondary structures of the central residue. For 

short amino acid chains like peptides (the average length of 

peptides is about 20), the sliding windows will not be able 

to predict the secondary structure of the beginning and the 

ending part of the sequence effectively. Secondly, because 

secondary structure predictions are highly inaccurate 

(especially for β-Sheet and when homology sequences are 

not available), errors made by secondary structure predic-

tion will propagate to folding prediction and severely dete-

riorate system performances.  

Motivated by the above observations, we propose in 

this paper a contrast pattern mining based peptide folding 

prediction method. Our hypothesis is that each folding type 

has its own unique patterns which associate different fold-

ing types to local amino acid sequences. This hypothesis is 

rooted from the well accepted presumptions that each resi-

due’s secondary structure is appreciably correlated with the 

local amino acid sequences and that these correlations can 

be used to predict secondary structures, or contribute to 

other tertiary structure prediction (Bowie et al 1991). In-

stead of solely relying on the secondary structure predic-

tion results to identify peptide folding, our approach di-

rectly discovers contrast patterns for three types of folding: 

all-Helix, all-Sheet, and all-Coil, where a contrast pattern 

is defined as a set of sequentially associated amino acids. 

To ensure flexibilities of pattern matching, we allow that 

each pattern bears a certain degree of freedom in its ap-

pearances (commonly referred to as gap constraints (Ji et al. 

2005, Zhu and Wu 2007)). For example, de-

fines a pattern with three letters (amino acids) K, P, and E, 

and the gap constraint between any two letters are [0, 2], 

which means that the appearances of the consecutive pat-

tern letters should be within the range 0 and 2. Sequences 

like KPVEV and KSLPKEV would both match the pattern 

(marked with underscores).  

The remaining part of the paper is structured as fol-

lows. Section 2 addresses contrast pattern mining from 

protein sequences, followed by Section 3 which uses con-

trast patterns to build supervised classifiers for peptide 

folding prediction. Section 4 reports experimental results 

on two protein datasets (RS126 (Rost & Sander 1993) and 

BC513 (Cuff and Barton 2000)) which contain 126 and 

513 protein sequences respectively, and we conclude in 

Section 5.  

2. Contrast Pattern Mining 

A contrast pattern defines a set of sequentially associated 

pattern letters which uniquely match a group of examples. 

The similar problem has been addressed in other research 

(Ji et al. 2005) which identifies minimal distinguishing 

subsequences from two datasets with gap constraints. In 

this Section, we propose to identify patterns from sequence 

databases with different secondary structures. The system 

flowchart is shown in Figure 1.  

 
Figure 1: System Framework 

 Figure 2: An example of contrast dataset construction 

The whole system consists of two phases: training 

phase and test phase. The training phase first mines con-
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trast patterns from a set of amino acid sequences where 

each contrast pattern taking the forms as a set of sequen-

tially associated amino acids bounded by a gap constraint. 

The second step of the training phase uses discovered con-

trast patterns to build a supervised learning set, from which 

a classification model can be constructed to predict the 

folding type of each short amino acid chain (peptide) si. 

2.1 Contrast Datasets 

The first step of the training phase is to transfer training 

protein sequences into three pairs of contrast datasets (DH 

vs. D′H, DE vs. D′E, and DC vs. D′C), from which the mining 

algorithm can discover contrast patterns. Because each pro-

tein sequence normally contains several hundred residues 

but a peptide only has about 20 residues on average, our 

process of building contrast datasets is to parse each pro-

tein sequence into a set of consecutive subsequences, ac-

cording to the secondary structures of the subsequence.  An 

example of the process is demonstrated in Figure 2, where 

the first and the second row report the sequence informa-

tion of protein 9apia and its second structures defined by 

DSSP (Kabsch & Sander 1983). In order to build contrast 

datasets to mine patterns, each protein sequence is parsed 

into a set of non-overlapping Maximum Consecutive Sub-

sequences (MCS), with each MCS defined as follows: 

A maximum consequence subsequence is a consecutive 

amino acid sequence segment, where all residues of the 

segment have the same type of secondary structure which 

is different from the secondary structures of the residues 

next to the segment (on both sides). 

Based on the above definition, given protein sequence 

(9apia) in Figure 2, we can partition it into 6 MCSs (s1, 

s2, .., s6) each of which containing a set of amino acids with 

the same type of secondary structures (α-Helix, β-Sheet, 

and Coil). Each segment si is further allocated to dataset DX 

or D′X, depending on whether the secondary structure of si 

belongs to X or not. After that, each pair of datasets DX and 

D′X contains a set of short amino acid chains with counter 

properties (the MCSs with/without one type of folding). Dx 

and D′X thus constitute a pair of contrast datasets, from 

which a set of contrast patterns can be discovered. 

The approach in Figure 2 parses each long protein se-

quence into short consecutive subsequences each of which 

has the same type of secondary structure and is taken as a 

peptide. Consequently, we can regard each dataset DX con-

sisting of a set of peptides with similar folding types. The 

reason we are using this approach is because it is difficult 

to find a large number of peptides with known secondary 

structures, but finding a number of proteins with known 

secondary structures is relatively easy. Meanwhile, because 

a peptide consists of a short chain of amino acids, the ap-

proach proposed here can be applied to any peptide 

datasets directly. 

 

2.2 Contrast Pattern Mining with Gap Constraints 

After the construction of contrast datasets, the next step is 

to mine patterns from each pair of contrast datasets. For 

this purpose, we propose an Apriori-based (Agrawal et al 

1993) Contrast Pattern Mining (CPM) algorithm with gap 

constraints (Figure 3), which gradually generates and 

grows candidate patterns, followed by a validation process 

to check whether a candidate satisfies users’ specifications 

(both gap and support value requirements).  

Figure 3: Contrast pattern mining with gap constraints (CPM) 

The CPM mining process in Figure 3 takes the follow-

ing three inputs and parameters: (1) : the gap require-

ments for pattern letters; (2) a pair of contrast datasets DA 

and DB (DH vs. D′H, DE vs. D′E, or DC vs. D′C); and (3) the 

minimal (Minsup) and maximal (Maxsup) support values 

which specify a contrast pattern’s frequency in DA and DB 

respectively. All contrast patterns met users’ requirements 

are output through the pattern set CP.  

As the first step of the mining process, CPM checks 

dataset DA and any single amino acid with its frequency 

higher than Minsup is put into set L1 (length-1 set). Then 

CPM joins any two amino acids li and lj in L1 to generate a 

set of length-2 candidates (C2), followed by a validation 

process to check each candidate’s frequency in DA and DB 

respectively (Steps 6 to 9). After that, CPM starts a looping 

process to grow the length of the patterns one amino acid a 

time until no candidate in the current round k can have its 

frequency larger than Minsup in DA, i.e., no need to generate 

more candidates (Steps 11 to 26).  

ContrastPatternMiningWGapConstraint ( b
aφ , DA, DB, Minsup, Maxsup) 

Parameters: (1) b
aφ : Gap constraints; (2) DA and DB: A pair of contrast 

datasets; and (3) Minsup and Maxsup: minimal and maximal frequency for 
patterns in DA and DB respectively. 
Output: Contrast Pattern Set (CP) 

1. CP ← φ; C2 ← φ; L2 ← φ; Cn← φ; Lk← φ, k=1,2,3… 
2. L1 ← Check sequences in DA and find single amino acid with its 

frequency larger than Minsup 
3. For any two amino acids li and lj in L1, generate one candidate pattern 
4.            C2 ← C2 ∪ li

b
aφ lj; li∈ L1 and lj∈ L1 

5. EndFor 
6. For each pattern pi in I2 
7.       L2 ← L2 ∪ pi, if pi’s frequency in DA is larger than Minsup 
8.              CP ← CP ∪ pi, if pi’s frequency in DB is less than Maxsup 
9. EndFor 
10. k ← 2 
11. While (Lk is nonempty)  
12.       For each pattern pi in Lk 
13.             For each amino acid lj in L1 
14.                     Generate candidate cm ← pi

b
aφ lj 

15.                     If all length-k subsequences of cm belong to pi 
16.                              If cm’s frequency in DA is larger than Minsup 
17.                                      Lk+1=Lk+1 ∪ cm 
18.                                      If cm’s frequency in DB is less than Maxsup 
19.                                            CP ← CP ∪ cm 
20.                                      EndIf 
21.                              EndIf 
22.                     EndIf 
23.             EndFor 
24.       EndFor 
25. k ← k+1 
26. EndWhile  
27. Output contrast pattern set CP 
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For each round k of the looping process, Lk contains 

all frequent patterns w.r.t. dataset DA. CPM first generates 

a set of candidates by appending each amino acid in L1 to 

each pattern in Lk to produce a length-k+1 candidate cm. 

According to the Apriori principle (Agrawal et al 1993), if 

a length-k+1 pattern pi is frequent in dataset D, any of p’s 

length-k subpattern must be frequent in D as well. Accord-

ingly, for each length-k+1 candidate cm, CPM checks its 

length-k subsequences, and if any of cm’s length-k subse-

quence does not belong to Lk, it means that cm cannot pos-

sibly become a frequent pattern (Step 15). For each candi-

date cm with its length-k subsequences belonging to Lk, 

CPM checks its frequency in DA and assigns it to frequent 

pattern set Lk+1, as long as cm’s frequency in DA is larger 

than Minsup. In addition, CPM continuously checks each 

frequent pattern cm’s frequency in DB and takes cm as a 

contrast pattern if its frequency in DB is less than Maxsup 

(Steps 18 to 19). 

3. Peptide Folding Prediction 

For each pair of contrast datasets DX and D′X, we will se-

quentially carry out mining process in Section 2.2 by set-

ting {DA ← DX, DB ← D′X} and {DA ← D′X, DB ← DX} re-

spectively, which will mine a set of patterns frequent in DX 

w.r.t. Minsup but infrequent in D′X w.r.t. Maxsup, and pat-

terns frequent in D′X w.r.t. Minsup but infrequent in DX w.r.t. 

Maxsup. In addition, since we have three pairs of contrast 

datasets (DH vs. D′H, DE vs. D′E, and DC vs. D′C), we will 

repeat the mining process 6 times like: (1) {DA ← DH, DB 

← D′H}; (2) {DA ← D′H, DB ← DH}; … (5) {DA ← DC, DB 

← D′C}; and (6) {DA ← D′C, DB ← DC}. After that, all 

contrast patterns are collected to construct a set of training 

examples, from which a supervised classifier can be built 

for peptide folding prediction.  

The procedure of training example construction takes 

a set of protein sequences S with known secondary struc-

tures and a contrast pattern set CP with n patterns as input 

to generate trainInstanceNum labeled training instances, 

each having n+20 dimensional features and one class label. 

In order to generate a single training instance Ix, our algo-

rithm randomly chooses a protein sequence s from S, and 

then randomly selects a small consecutive subsequence si 

from s (Steps 3 to 4). We calculate the number of times 

each amino acid appears in si, and use these values as the 

first 20 dimensional features (because peptide sequences 

consist of 20 types of amino acids). After that, we sequen-

tially check whether a contrast pattern cj (j=1,…,n) in CP 

match si or not. If cj appears in si, we set feature f20+j as 1, 

otherwise, we set f20+j as 0. Therefore, each subsequence si 

will have 20+n dimensional features in total. The class la-

bel of the instance Ix is determined by the secondary struc-

tures of all residues in si. If all residues belong to α-Helix 

(All-Helix), we label Ix as “H”. The same logic can be ap-

plied to other classes, e.g., “E”, “C”, “HE”, “EC”, “HC”, 

and “HEC” as well. An example of the training example 

construction is demonstrated in Figure 5. Each iteration of 

the above process generates one training example, and the 

algorithm repeats until trainInstanceNum examples are 

generated.  

Notice that random consecutive subsequence selection 

process on Step 4 has a very small chance of selecting a 

subsequence with all its residues belonging to one type of 

secondary structure. Consequently, we adjust the instance 

construction process by first selecting all maximum con-

secutive subsequences from protein sequences. The pur-

poses is to balance training examples for folding classes 

like “H”, “E”, and “C”, such that a learner can receive 

good performances over all classes of examples. In addi-

tion, when selecting a subsequence si on Step 4, the length 

of si is randomly chosen between 5 and 25 (i.e., typical 

peptide length in practice). 

After the construction of the learning set, the problem 

of peptide folding is well defined as a classification task, 

learning algorithms such as Naïve Bayes (Domingos P., 

and Pazzani 1997), Neural Networks, Support Vector Ma-

chines (Cristianini & Shawe-Taylor 2000), or C4.5 deci-

sion trees (Quinlan 1993) can be applied to build a classifi-

cation model to predict folding types of a peptide. In our 

experiments, we use Naïve Bayes classifiers frequently 

mainly because of its time efficiency. For example, it can 

easily take more than 10 hours for SVM to build one clas-

sifier but NB only takes about 10 seconds on the same data.  

4. Experimental Results 

4.1 Experimental Setting 

We validate our algorithms on two commonly used protein 

datasets (RS126 and CB513). The first one is the dataset of 

126 protein chains (RS126) (Rost & Sander 1993). This is 

a non-homologous dataset according to the definition of 

Rost & Sander where no two proteins in the set share more 

than 25% sequence identify over a length of more than 80 

residues. The second dataset has 513 protein chains (Cuff 

and Barton 2000), and almost all the sequences in the 

RS126 set are included in the CB513 set. For both datasets, 

we performance 10 times 10-fold cross validation, and 

only sequences in the training set are used to build contrast 

datasets and mine contrast patterns.  

The whole system is implemented in Java with an in-

tegration of WEKA data mining tool (Witten & Frank 

2005) which provides extensive data mining functions for 

system development. The majority results are based on Na-

ïve Bayes classifiers, unless specified otherwise. Although 

Support Vector Machines are reported to outperform other 

learners (Ding & Dubchak 2001), we found SVM perform 

extremely slow especially for a large number of training 

examples with high dimensional features. Since we are 

mainly interested in the relative improvement of the pro-

posed algorithm CPM over simple solutions, we believe 
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that conclusions drawn here are valid for SVM and other 

learners as well. 

For comparison purposes, we implement a simple sec-

ondary structure prediction algorithm (SmpSnd) with a 

window size 13 (Qian & Sejnowski 1993). The peptide 

folding prediction results based on the secondary structure 

prediction is denoted by “SmpFld” in all tables and figures.  

4.3 Peptide Folding Prediction Accuracy Assessment 

For comparison purposes, we implement a simple secon-

dary structure prediction based peptide folding prediction 

method (SmpFld). We first build a simple secondary struc-

ture predictor (SlmSnd) based on the framework in Figure 

1. For each peptide p, we use SlmSnd to predict secondary 

structures of its residues. After that, we check whether the 

predicted secondary structures form a correct folding type 

for p. If the predicted secondary structures change the fold-

ing type of p, we say SmpFld incorrectly predicts the fold-

ing type of p. In Table 2, we report the peptide folding pre-

diction results for three folding classes (All-Helix, All-

Sheet, and All-Coil), where training and test peptides are 

all maximum consecutive subsequences (e.g. no random 

selection process to generate 

complex folding types like “HE” or “EC”). 

Table 1 reports the peptide folding prediction results, 

where four measures, True Positive Rate (TPR), False 

Positive Rate (FPR), F-measure, and overall prediction ac-

curacy are used to assess the algorithm performances. The 

formal definitions of each measure are given by Eqs. (1) to 

(5). The F-measure is the harmonic mean of precision and 

recall which can be used as a single measure of 

performance of the test (the higher the F-measure value, 

the better the algorithm performs). For all results in Table 

1, the gap constraints are set to [0, 2] and Minsup and Max-

sup are specified such that the total number of mined con-

trast patterns is always less than 500.  

 (1) 

 (2) 

      (3) 

 (4) 

 (5) 

The results in Table 1 indicates that when considering 

three folding classes (All-Helix, All-Sheet, and All-Coil) 

only, the accuracy of CPM is significantly better than sim-

ple secondary structure based approach, where the average 

prediction accuracies of CPM over all three classes are 

about 70%, which are more than double the accuracy of 

SmpFld. Actually, the accuracy of SmpFld is even worse 

than random guessing.  

In Figure 4, we further report the prediction accuracies 

over all seven folding classes (H, E, C, HE, HC, EC, and 

HEC). As we have addressed in Section 3, the training ex-

amples for HE, HC, EC, and HEC are generated from ran-

dom consecutive subsequences, and the class labels are 

based on the secondary structures of all residues of the 

subsequence (based on DSSP label). For comparison pur-

poses, we also report algorithm performance by using dif-

ferent types of learners (Naïve Bayes, C4.5 decision trees, 

RBF neural networks, and SVM). Because high dimen-

sional features significantly increase the time complexity 

for C4.5, RBF, and SVM, the number of contrast patterns 

selected in Figure 6 is limited to less than three hundreds.  

The results in Figure 4 indicate that when considering 

all seven peptide folding classes, the average prediction 

accuracy of CPM decreases from 70% to about 51%, and 

on the other hand, the accuracy of SmpFld increases from 

30% to around 40% (CB513), which is still significantly 

worse than CPM. The accuracy increase of SmpFld is due 

to the fact that secondary structure based peptide folding 

prediction is less sensitive to complex folding types like 

HEC. Because HEC type folding consists of a mixture of 

three types of residues, it is possible that one or multiple 

incorrect predictions of the secondary structure may still 

preserve the folding types of the peptide. For example, if 

the genuine secondary structure of a peptide is “---HHH--

EE”, incorrect secondary structure predictions like “EE-H-

---HH” or “---HHHEEEE” would still make a correct fold-

ing prediction. Consequently, adding complex peptide 

folding classes would increase the prediction accuracy of 

SmpFld. On the other hand, Since CPM uses contrast pat-

terns customized for three types of folding (H, E, and C) to 

build peptide folding classifiers, patterns discovered by 

CPM may not effectively capture complex folding types 

like HEC. As a result, a decrease of the overall prediction 

accuracy may be observed.  

The accuracy comparisons from different types of 

learners including C4.5, RBF, and SVM further assert the 

effectiveness of contrast patterns in supporting supervised 

learning for peptide folding prediction. Similar to the con-

clusions drawn from the previous research work (Ding & 

Dubchak 2001), given same training and test data, SVM 

receives relatively better performances than NB, C4.5, and 

RBF. Meanwhile, we observed that for our particular prob-

lem, Naïve Bayes classifiers perform much better than 

C4.5 decision trees and NB’s results are comparable to 

RBF neural networks most of the time. This is interesting, 

as we know that NB classifiers consider attributes condi-

tionally independent given the class label, and some con-

trast patterns are highly correlated because they may be 

grown from the same superset. For example, pat-

terns and are both grown from one su-

perset , so they are highly correlated instead of being 

independent. However, just like observations made by 

Domingos (Domingos & Pazzani 1997), NB performs rea-
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sonably well on many real-world datasets where attribute 

independence is known not to hold, possibly because the 

assumption of conditional independence is still valid for 

the majority of the attributes. Considering high efficiency 

and relatively good performances of NB in solving our 

problem, we strongly suggest interested readers to consider 

this learner in their future research work. 

 
Figure 4: Peptide folding prediction accuracies (7 classes) 

 

5. Conclusions 

In this paper, we presented a contrast pattern based peptide 

folding prediction algorithm, where a contrast pattern is 

defined as a set of sequentially correlated amino acids 

which frequently appear in one type of folding but signifi-

cantly infrequent in other folding classes. Our hypothesis is 

that different types of peptide folding contain unique inter-

actions among amino acids of the sequences, and finding 

such patterns can be beneficial for predicting folding types 

of a peptide from its primary structure. In order to discover 

contrast patterns, we first constructed three pairs of con-

trast datasets each containing subsequences with or without 

one type of secondary structure. We mine contrast patterns 

from each pair of contrast datasets with each pattern 

bounded by a given gap constraint. The patterns mined 

from the datasets are used to build a supervised classifier 

for peptide folding prediction. Experimental results on two 

benchmark protein datasets and different learners assert the 

effectiveness of contrast patterns in capturing internal cor-

related amino acids for different types of folding.  
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Table 1: Peptide folding prediction results (Three classes) 

Overall Accuracy TPR FPR F-Measure 
Datasets 

Folding 

classes CPM SmpFld CPM SmpFld CPM SmpFld CPM SmpFld 

H 0.426 0.169 0.027 0.114 0.548 0.198 

E 0.574 0.114 0.088 0.036 0.651 0.192 RS126 

C 

0.709 0.307 

0.893 0.422 0.421 0.234 0.775 0.511 

H 0.475 0.189 0.07 0.121 0.543 0.223 

E 0.645 0.135 0.194 0.023 0.618 0.228 CB513 

C 

0.669 0.281 

0.743 0.404 0.24 0.157 0.735 0.518 
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