
Causal Reasoning with Contexts using Dependent Types

Richard Dapoigny and Patrick Barlatier
LISTIC/Polytech’Savoie, University of Savoie, France,

email:richard.dapoigny@univ-savoie.fr

Abstract

In Artificial Intelligence, a crucial requirement is the
ability to reason about actions and their effects on the
environment. Traditional approaches which rely on
classical logic suffer from a number of limitations such
as semi-decidability, closed-world assumption, frame
problem, and a lack of ability to cope with partial
knowledge and dynamic environments. While many so-
lutions have been proposed for these topics, difficulties
and uncertainties remain, even in the latest papers. In
this paper, we look at this issue from a proof-theoretical
perspective and we describe the foundations for reason-
ing about action based on Constructive Type Theory.

Introduction
A crucial requirement for intelligent systems is the ability to
reason about actions and effects on the world while avoid-
ing standard problems of classical logic. The basic idea is
to consider a theory in which knowledge is incoming con-
structively (as constructive proofs) from observations. It
is axiomatized entirely in a fragment of Constructive Type
Theory (CTT). The logic employs the so-called open-world
assumption, which means that if something is not explicitly
said to be false, it is not assumed to be false (the knowl-
edge about the world is assumed to be incomplete). The
system includes an ontology which describes entities as the
first component of knowledge and proposition as the second
component, provided that knowledge consists in having ev-
idence for a proposition. The present approach is causal,
highly dynamic with information structures while preserv-
ing the algorithmic complexity.

The Action-based Theory
Data Structures
The basic idea of the present work is to apply the formal-
ism of CTT into an action-based logical process in which
it is able to serve as a background for expressing knowl-
edge via Dependent Record Types (DRTs). The two ba-
sic dependent types are the Π-types and the Σ-types. Π-
types model functions whose output type may vary accord-
ing to the input (i.e., dependent functions). As a con-

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

sequence, predicates can be interpreted as functions from
some object to a proposition. For instance, one may de-
fine the following Π-type in order to represent the fact
that a lift referred as Sch0437 has a door: has door :
(Πx : lift.P (x)) in which P (x) stands for a proposition
that depends on x. An instance of the Π-type would be
has door(Sch0437) : P (x). Similarly, Σ-types model
pairs in which the second component depends on the first.
Let us consider the following proposition boarded(x) such
as boarded : (Πx : passenger.P (x)). If q is an object
having the type, q : (Πx : passenger.boarded(x)) then
one can define the Σ-type (Σx : passenger.boarded(x))
whose object < peter, q(peter) > indicates that for the in-
dividual peter, the proposition is proved. DRTs (Betarte
2000)(Kopylov 2003) are an extension of Π-types and Σ-
types in which types are expressed in terms of data. Depen-
dent record types are much more flexible than simple de-
pendent types (McKinna 2006). They realize a continuum
of precision from the basic assertions we are used to expect
from types, up to a complete specification of a representa-
tion (e.g., a context).

Definition 1 A dependent record type is a sequence of fields
in which labels li correspond to certain types Ti, that is,
each successive field type can depend on the values of the
preceding fields:

< l1 : T1, l2 : T2(l1) . . . , ln : Tn(l1 . . . ln−1) > (1)

where the type Ti may depend on the preceding labels
l1, ..., li−1.

The fields of the Context Dependent Record Type (C-DRT)
detail the domain knowledge (i.e., concepts, their proper-
ties and their constraints). Their simple structure can be
reused to specify different kinds of structured semantic ob-
jects (Dapoigny and Barlatier 2007).


l1 : lift
x1 : passenger
p1 : boarded(x1)
f1 : floor
p2 : destination(x1, f1)︸ ︷︷ ︸

C1:Context type



. . .
l1 = Sch0437
x1 = peter
p1 = q1
f1 = 5
p2 = q2
. . .︸ ︷︷ ︸

c1:C1

107

Proceedings of the Twenty-First International FLAIRS Conference (2008)



in which q1 and q2 are respective proofs of boarded(peter)
and destination(peter, 5). Dots in the context token ex-
press that any information can be added in the record token
provided that it does not contradict the previous one (partial
knowledge). The resulting token is still of the type C1. An
important aspect of DRT is that sub-typing is allowed.
Definition 2 Given two record types C and C ′, if C ′ con-
tains at least every label declared in C and if the types of
these common labels are in the inclusion relation then C is
a subtype of C ′ which is written:

C v C ′ (2)

Semantics
The action-based theory automates a succession of actions
to determine, which of them lead to the desired effects. An
action can be implemented, if its related context is proved.
After its execution, the action has some effects by which
the environment changes. For that purpose, an automaton
searches among the new contexts, selects the appropriate
one among the available ones, executes its related action and
loops again until the final goal is obtained (a particular ef-
fect). In this constructive theory, the (partial) state of the
world is expressed in terms of dependent record types rel-
ativized to a particular situation. Given a situation S, the
following axioms hold:
A1 A situation S is described by a set of objects (tokens)

corresponding to basic types and propositions types.
A2 A DRT holds in S iff all its fields are proved.
A3 A finite number of C-DRT (possibly empty) can be valid

in S.
A4 A situation is consistent if it is non empty.
A5 A situation is complete if it contains at least a DRT to-

ken.
A6 A given action is related at least with one C-DRT.
A7 A given C-DRT cannot be related to several actions.
The action a maps a context type C-DRT into an effect type
(E-DRT). The theory induces a tree of context types rooted
at the empty record type (default type). This approach is
similar in spirit with that of (Thielscher 1997), in which the
domain knowledge is described by a triple (C,A,E), but
here it is expressed as a family of DRTs < c : C−DRT, a :
A−DRT (c), e : E −DRT (a, c) >.
Definition 3 Let C a context record type, A, an action
proposition type not occurring in C and E an effect record
type, an action specification is described by the DRT σ :<
c : C, a : A(c), e : E(c, a) >.
Definition 4 If S is a record of type S describing the current
situation, we say that the specification σ is available in S iff
S v C, i.e., the types occurring in the situation must form a
subtype of the context record type.
The causality operates from context-action pairs to E −
DRT . Let us consider the context C1 defined in sub-
section 1. The action stops(l1, f1) provides the (mini-
mal) effect: e1 : served(x1) and the action specifica-
tion is written: < c1 : C1, a : stops(c1.l1, c1.f1), e :

served(c1.x1) >, while a proof of this action specification
is < c1, stops(Sch0437, 5), served(peter) >.

The expressivity of the part < c : C, a : A(c) > in
σ includes multiple conditions within a single framework.
Also, the formalism accounts for actions with conditional
effects. Let consider two action specifications (for the same
action), σ1 = (c1 : C1, a : A(c1), e1 : E1(c1, a1)) and
σ2 = (c2 : C2, a : A(c2), e2 : E2(c2, a2)). It is trivial to see
that the C-DRT c1 related to the action a causes the effect(s)
in e1, whereas the occurrence of a context of type c2 change
the effect(s) to e2. This situation can be easily extended to
any number of C −DRT . A causal relationship exists only
if the C-DRT and its related action exist. In summary, the
same action put in different contexts produces different ef-
fects: this formalizes the concept of conditional effects.

Conclusion
DRTs are able to pack up data structures, operations over
them, and also proofs of the properties of those operations.
To some extent, the notions of C-DRT, actions and E-DRT
correspond to the well-known STRIPS triple pre-conditions,
action and post-conditions. However, the framework in
which they appear here is radically different. Since we con-
struct proofs after each occurrence of a new situation, and
above the assumption of causal reasoning, the frame prob-
lem no longer exists. The ramification problem doesn’t oc-
cur since action specifications are not assumed to completely
describe all the possible effects but only a minimal collec-
tion of effects. Making the information more precise with
DRTs, the theory is more expressive than existing ones. This
great expressive power together with the close relation to
ontologies are a central element in areas such as context-
aware applications or web services. The present action the-
ory also supports both nondeterministic choice of actions
and the specification of actions that have nondeterministic
effects1. However, the price to pay for such benefits is that it
requires the specification of appropriate context types which
is known to be a difficult task.

References
Betarte, G. 2000. Type checking dependent (record) types
and subtyping. Journal of Functional and Logic Program-
ming 10(2):137–166.
Dapoigny, R., and Barlatier, P. 2007. Towards a context
theory for context-aware systems. In Procs. of the 2nd
IJCAI Workshop on Artificial Intelligence Techniques for
Ambient Intelligence.
Kopylov, A. 2003. Dependent intersection: A new way of
defining records in type theory. In Procs. of the 18th IEEE
Symposium on Logic in Computer Science, 86–95.
McKinna, J. 2006. Why dependent types matter. SIGPLAN
41(1).
Thielscher, M. 1997. Ramification and causality. Artificial
Intelligence 89(1-2):317–364.

1since any E-DRT may result in an infinite number of objects
of this type.

108




