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Abstract
Developing and testing intelligent agents is a complex task
that is both time-consuming and costly. This creates the
potential that problems in the agent’s behavior will be re-
alized only after the agent has been put to use. In this pa-
per we explore two implementations of a generic agent self-
assessment framework applied to the Soar agent architecture.
Our system extends previous work and can be used to achieve
adjustable levels of agent autonomy or runtime verification
with only minor modifications to existing Soar agents. We
present results indicating the computational overhead of both
approaches compared against an agent that exhibits identical
behavior without the help of the self-assessment framework.

Agents whose behavior has not been completely validated
run the risk of performing their tasks incorrectly. Such sit-
uations may occur if an agent encounters situations it was
not designed to deal with or if its knowledge for how to
deal with a particular situation is incorrect. In the former
case, the agent is operating outside of its intended (specified)
scope; in the latter case, the agent’s implementation is incon-
sistent with its specification and thus incorrect. Regardless,
the impact of unintended behavior may be relatively minor,
or, in mission critical situations such as when controlling an
unmanned aerial vehicle, the consequences may have a far
reaching impact.

Prior work on adjustable autonomy (e.g., [Bradshaw et
al.2004, Scerri et al.2003, Sellner et al.2006]) has explored
a variety of approaches that allow a human supervisor, or an
agent itself to deal with exceptional situations that may arise
due to incomplete or incorrect knowledge. In this paper, we
briefly describe a generic infrastructure of adjustable auton-
omy that can be used in conjunction with Soar agents and
compare the performance of two implementations of this in-
frastructure.

Our generic framework (see Figure 1) works in conjunc-
tion with the Soar [Laird, Newell, & Rosenbloom1987]
agent architecture. After a Soar agent identifies possible op-
erators (goals or actions) to pursue, the framework intercepts
decision making and compares the actions and goals to an
external policy. The result of the comparison may deny, re-
quire or permit operators the agent has proposed. If all pro-
posed operators have been denied, the framework provides a
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Figure 1: Generic Self-Assessment Framework

natural opening to defer to outside assistance. The following
sections describe two implementations of this framework.
They differ simply in how they interface to the Soar architec-
ture. Below we briefly describe the implementations, com-
ment on how existing agents must be modified to use the im-
plementation, and then examine the performance overhead
they create.

S-ASSESS
The first version of our framework is implemented within the
Soar agent architecture as a modular knowledge base called
S-Assess [Wallace2005] which is stored in 62 domain-
independent Soar rules. The S-Assess library stores the
agent’s policy as a constraint model (CM) inside the agent’s
working memory. The model is loaded at run-time and can
be supplied by the designer or some arbitrary third party. As
the agent performs its task, S-Assess traces which goals are
selected and which actions are performed. In addition, it
monitors when these events take place, and the relationships
between goals, subgoals and primitive actions. As it does
so, S-Assess builds a hierarchical execution model of the
agent’s behavior. At each point in time, the agent’s intended
actions are temporarily added to the execution model to eval-
uate whether the intended action will violate the prescribed
policy. If so, S-Assess prevents the agent from selecting the
goal or action; if not, the agent’s decision process continues
as normal.
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Figure 2: Runtime Performance In High-Load Situations

Leveraging the S-Assess library requires only the avail-
ability of a constraint model and minor changes to existing
agents. Specifically, we require that the agent assigns nu-
meric preferences to operators instead of using Soar’s built-
in preferences. This has similar semantics, and easily allows
one to establish a partial order of preferences over potential
operations. However, this modification also ensures that the
architecture will not commit to a specific operator as soon
as the (now numeric) preferences are asserted. As a result,
the assessment framework has a chance to evaluate potential
options and can then assign standard Soar preferences based
on the finalized rankings. Thus, by this approach, all options
are guaranteed to be ranked by both the agent and the assess-
ment framework, and the final operator selection can still be
performed via Soar’s standard architectural mechanism.

External Consultation System

Our second execution time monitoring system is referred to
as the external consultation system (ECS). In contrast to S-
Assess, this approach is external to the agent, meaning that
the system is written in C. It only has access to information
that can either be obtained through observation or that is de-
liberately passed by the agent to the monitor. The ECS does
not have direct access to arbitrary contents of the agent’s
working memory—rather, the ECS loads policies directly
from a text file. This makes them simpler to specify than
policies in the S-Assess framework, as the text representa-
tion does not have to be translated into a format that can be
used within Soar itself.

Leveraging the ECS is also somewhat simpler that S-
Assess. Because the framework exists outside of Soar, the
agent’s own rules do not need to be modified. Instead, a
small additional set of 12 rules is added to the existing agent
that forces interaction with the external framework. This in-
teraction (called consulting) happens once for each operator
the agent considers. Thus overhead associated with the sys-
tem should grow as a function of how often consulting takes
place.
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Figure 3: Runtime Performance in Low-Load Situations

Evaluation
The two implementations were examined within the
TankSoar environment (a standard domain distributed with
the Soar architecture). We tested a series of agents within
the environment. Stochastic elements from the environment
were removed so as to make the results easily reproducible.
Figures 2 and 3 illustrate the runtime results of running one
agent within the testbed. The figures represent high-load
(many operators to check against the policy) and low-load
(few operators to check against the policy) situations re-
spectively. Each graph contains three lines: one indicating
the runtime overhead of each implementation while the third
(labeled Standard Soar) indicates the performance of a Soar
agent without runtime monitoring (here the Soar agent ad-
heres to the policy without external control). The key ob-
servation from these figures is that the overhead associated
with runtime monitoring need not be prohibitive, and in rel-
atively low-load situations can approach the performance of
a Soar agent without additional constraint monitoring.
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