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Abstract

We propose a new unsupervised learning approach for
discovering event scenarios from texts. We interpret
an event scenario as a collection of related events that
characterize a specific situation. The approach uses the
Latent Dirichlet Allocation (LDA) probabilistic model
described in (Blei, Ng, & Jordan 2003) to automatically
learn the probability distribution of events correspond-
ing to event scenarios.

We performed experiments on an event annotated cor-
pus and compared the automatically extracted event
scenarios with frame scenarios defined in FrameNet
(Baker, Fillmore, & Lowe 1998). The results show a
better coverage for those event scenarios that are de-
scribed in more detail in the event annotated corpus.
When compared with a smoothed unigram model, the
event scenario model achieves a perplexity reduction of
93.46%.

Introduction

With the avalanche of electronic text collections descend-
ing from all over the web, new forms of document process-
ing that facilitate automatic extraction of useful information
from texts are required. One approach for understanding the
key aspects of a document or of a set of documents is to
analyze the events in the document(s) and to automatically
find scenarios of related events. We call an event scenario
a set of events that can interact with each other in specific
situations. For example, Figure 1 shows an excerpt from a
web article describing the arrest of a Columbian drug dealer,
Diego Montoya, on September, 2007. The events from this
excerpt, shown in boldface in Figure 1, capture the event
scenario describing the arrest of a criminal. The accusation
of a crime, the capture of the criminal followed by his inter-
rogation and trial are typical events that happen in a CRIME

scenario.
Clustering the interrelated events into scenarios consti-

tutes the foundation of studying various forms of interac-
tions between events. If we know what events can happen
in a specific situation or if we know what events can interact
with a given event or set of events, we can build more com-
plex inference models for dealing with causality, intention-
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Columbia captures top cocaine boss wanted by U.S.
A reputed drug lord on the FBI’s top 10 most-wanted list was cap-
tured in western Colombia, the interior minister said Monday, in
a major blow to the country’s largest remaining drug cartel.
Diego Montoya, who sits alongside Osama bin Laden as the only
major alleged drug trafficker on the FBI list, is accused of leading
the Norte del Valle cartel and exporting tons of cocaine to the
United States.
The FBI had offered a reward of $5 million for information lead-
ing to his arrest.
Aware of the arrest, FBI officials Monday were checking fin-
gerprint databases and otherwise trying to confirm that it was,
in fact, Montoya who was captured, said spokesman Richard
Kolko.
Montoya put up no resistance when the army finally cornered
him in the cartel’s stronghold of Valle del Cauca state on the Pa-
cific Coast, officials said.
He is to be questioned before being extradited to the U.S. for
trial, a process that Santos said would take at least two months.

Figure 1: Excerpt describing the arrest of Diego Montoya.

ality and temporality of events. In addition, this approach
can be used in applications on commonsense reasoning such
as statistical story extraction or automatic narrative compre-
hension.

We propose an unsupervised learning method for discov-
ering event scenarios using the LDA model. In this method,
we represent the documents from the event annotated corpus
as a collection of events. Following the LDA model, each
document is expressed as a probabilistic mixture of event
scenarios and each event scenario is defined as a probability
distribution of events. We compare the scenarios extracted
by the LDA-based model with several frame scenarios en-
coded in FrameNet (FN). The main advantage of the event
scenario model is that it is able to extract the event scenar-
ios in an unsupervised fashion, assuming that the events in
the documents are already extracted. Therefore, this ap-
proach can model large collections of documents without
prior analysis or special initializations and can be adapted to
different document collections without requiring additional
efforts. Moreover, since a document can express multiple
event scenarios, this model also captures the association that
exists between these scenarios.

The rest of the paper is structured as follows. In section
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2, we present a set of relations that hold in event scenarios.
In this section, we also describe how the event scenarios,
together with these event relations, form structured repre-
sentations that can encode complex semantic and temporal
structures. In section 3, we describe how we can build event
scenarios using FrameNet frame relations and discuss the
limitations of these frame-based scenarios. We present the
event scenario model based on the Latent Dirichlet Alloca-
tion generative model in section 4. In section 5, we show the
experimental results and compare the event scenario model
with a smoothed unigram model. Section 6 summarizes the
conclusions.

Structured Event Representations

The best way to understand our motivation for automati-
cally discovering event scenarios from texts is to present
“the big picture” of what we want to achieve. Our ulti-
mate goal is to automatically extract structured representa-
tion of events from documents, where every event from such
an event structure interacts with one or multiple events from
the same structure.

• The SUBEVENT relation holds between an event A that is part
of a composite event B. A composite event can have multiple
subevents, which can be involved in complex semantic and tem-
poral structures.

• The REASON relation is a causal relation that happens between
a reason event A and a consequence event B. When multiple rea-
son events cause one consequence event, this relation is applied
successively.

• The PURPOSE relation is a causal relation which represents
the intention of an event A to achieve a goal event B.

• The ENABLEMENT relation is a causal relation for which an
event A allows an event B to happen, but does not necessarily
cause B.

• The PRECEDENCE relation determines a sequential ordering
of two events belonging to the same event structure. When the
events are explicitly anchored to non overlapping time inter-
vals, but they are not linked by any event structure relation, the
PRECEDENCE relation does not apply.

• The RELATED relation refers to event structures between
which there is a weak connection. For example, a related re-
lation exists between a reporting event and an event mentioned
in the reported statement.

Table 1: Event relations in structured scenarios.

We interpret event interactions as event relations. In or-
der to propose the relations that best define the concept of
an event structure, we surveyed the literature on the the-
ory of discourse relations (Hobbs 1985; Mann & Thompson
1988), frame semantics (Fillmore 1982), and event ontolo-
gies (Sinha & Narayanan 2005) and concluded with the set
of relations listed in Table 1. As an example, for the arti-
cle illustrated in Figure 1, the leading and exporting events
represent REASONS for accusation, the accusation is the EN-
ABLER for arrest, the PURPOSE of trying is confirm, extra-
dited PRECEDES trial, etc.

The first step for discovering event structures is to group
the events from the same structure into clusters. In our ap-
proach, each cluster corresponds to an event scenario. This
approach diverge from a classic topic modeling approach be-
cause we constrain the clusters to contain only events instead
of words and because the event relations allows us to con-
sider structured event representations instead of topically re-
lated bag of words. The event representations can be further
extended by using semantic parsers to extract the semantic
and temporal information associated to events from event
structures.

Scenarios Using Semantic Frames

The Berkeley FrameNet project (Baker, Fillmore, & Lowe
1998) is an ongoing effort to build a semantic lexicon for
English based on the theory of frame semantics (Fillmore
1982). The frame semantics theory models the meaning of
words or word expressions, also called target words or pred-
icates, into conceptual structures that characterize scenes or
situations called semantic frames. A semantic frame can
contain multiple target words while a target word can evoke
multiple frames. Therefore, for polysemous target words a
frame disambiguation task is required. The FrameNet lex-
icon also encodes frame-to-frame relations that allow us to
group frames into frame scenarios. The list of frame rela-
tions is presented in Table 2.

PrecedesInchoative OfUsingSubframe

See AlsoCausative OfPerspective OnInheritance

Table 2: The FrameNet frame relations.

Based on the theory of frame semantics, Sinha &
Narayanan (2005) have built an event ontology in which
each event is associated to a semantic frame. Following
the same intuition, we can build event scenarios by map-
ping the events extracted from texts to semantic frames and
by grouping them using the frame relations. For instance,
Figure 2 illustrates the frames and frame relations that en-
code the CRIME scenario derived from FrameNet. In this
scenario, only the shaded frames contain target words that
can be mapped to events from Figure 1. After the mapping
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Figure 2: Representing event scenarios using frame relations.
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method is applied, the resulting event scenario is composed
of the following events: wanted, arrest, trail, accused and
questioned.

There is no doubt that frame relations are useful for dis-
covering event scenarios. However, the method of extract-
ing scenarios using frames has several limitations. First, a
well known problem of the FrameNet project is related to
the coverage of the lexical database. In spite of being a
large resource, there are still many target words and seman-
tic frames to annotate. For instance, the resistance, offered,
and cornered events from our example are not yet covered in
FrameNet, and hence they will never be assigned to a frame
scenario.

Second, the method suffers from poor scalability and do-
main adaptability. For any document collection, the method
will always extract only the scenarios corresponding to those
frames that are evoked by the events from the collection.
Moreover, since it does not take into account how many
times a specific event occurs in the document collection, or
how frequently a frame scenario occurs in a document, the
method is not able to predict how important an event is for a
scenario or how important a scenario is in a document.

The last problem we have noticed is related to the flexibil-
ity of the frame-based scenarios. Because they are defined
at the conceptual level, the scenarios defined by frame rela-
tions are too generalized, and therefore they cannot capture
all the events that happen in specific situations. Also, be-
cause FrameNet has a fixed number of frame scenarios, the
method does not have the capability to “zoom in” or “zoom
out” the event scenario space in order to extract more spe-
cific or more general event scenarios. All these limitations
are surmounted by the event scenario model that we describe
in the next section.

The Event Scenario Model

In recent years, the Latent Dirichlet Allocation model has
been successfully applied in various applications such as
topic modeling from a collection of documents (Blei, Ng,
& Jordan 2003; Griffiths & Steyvers 2004), word sense dis-
ambiguation (Boyd-Graber, Blei, & Zhu 2007; Boyd-Graber
& Blei 2007), object categorization from a collection of im-
ages (Sivic et al. 2005), and image classification into scene
categories (Li & Perona 2005). In this section, we describe
the event scenario model that uses the LDA model for a new
application, namely finding event scenarios in a document
collection.

The basic idea in the event scenario model is that docu-
ments are expressed as probabilistic mixtures of event sce-
narios, while each event scenario in a document has assigned
a probability distribution over the events mentioned in the
document. The purpose of this model is to find the best
set of latent event scenarios that can explain the observed
events and to make recovering these scenarios possible us-
ing statistical inference. In this model, we consider events
as discrete random variables, a document contains a fixed
number of events, and each event ei, i ∈ {1, . . . , E}, is an
element from an event collection E . A document d is rep-
resented as a sequence of Nd events, e=(e1, e2, . . . , eNd

),

while a corpus C is represented as a collection of M doc-
uments, C={d1, d2, . . . , dM}, having the total number of

events N=
∑M

d=1 Nd.
To present the event scenario model in a more formal way,

we make additional notations. Assuming we have S scenar-
ios, we indicate the assignment of an event to a scenario
s ∈ {1, . . . , S} with an E-dimensional vector z. If P (z) de-
notes the probability distribution over event scenarios z and
P (e|z) is the probability distribution over events e given the
event scenario z, the distribution over the events from a doc-
ument d is given by:

P (ei) =

S
∑

j=1

P (ei|zi = j)P (zi = j)

In this formula, P (ei|zi = j) is the probability of the
event ei given the jth event scenario and represents how
significant the event ei is for the jth scenario, while
P (zi = j) is the probability that the jth scenario was
chosen for the ith event from the document d. In our
event scenario model, the multinomial distribution as-
sociated to each scenario, P (e|z), is parameterized by

an E×S matrix Φ such that P (e|z = j) = φ
(j)
e is the

multinomial distribution over events for the jth scenario

(
∑E

i=1 φ
(j)
i = 1). Similarly, the distribution of event

scenarios associated with each document d is parameterized

by an S×M matrix Θ such that P (z) = θ(d) is the multi-
monial distribution of the event scenarios corresponding to

d (
∑S

j=1 θ
(d)
j = 1). Using these notations, the generative

process for each document d ∈ C is described as follows:

1. Choose θ(d) ∼ Dirichlet(α).

2. For each event e
(d)
i , i ∈ {1 . . . Nd}:

1. Choose a scenario z
(d)
i ∼ Multinomial(θ(d)).

2. Choose an event e
(d)
i ∼ Multinomial(φ

z
(d)
i

e ) condi-

tioned on the scenario z
(d)
i .

Therefore, the generative process for each document d is
performed in three steps. First, a distribution over event sce-
narios is sampled from a prior Dirichlet distribution with pa-
rameter α. Next, an event scenario is assigned to each event

in the document according to the sampled distribution θ(d).
Finally, an event is chosen from a fixed multinomial distri-
bution over events given the event scenario sampled in the
previous step.

For each document d, the model assigns the following
probability:

P (e|φ, α) =

∫

P (e|φ, θ)P (θ|α)dθ

Because the integral in this expression is intractable, sev-
eral approximation techniques were proposed: mean field
variational methods (Blei, Ng, & Jordan 2003), expectation
propagation (Minka & Lafferty 2002), collapsed Gibbs sam-
pling (Griffiths & Steyvers 2002), and collapsed variational
inference (Teh, Kurihara, & Welling 2008).
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Scenario 2 Scenario 6 Scenario 38 Scenario 41

event P (e|z = 2) event P (e|z = 6) event P (e|z = 38) event P (e|z = 41)
said .0938 said .1030 said .0567 found .0449
killed .0285 offer .0924 dropped .0262 said .0337
investigation .0163 proposal .0308 showed .0218 took .0337
bombing .0163 closed .0231 rose .0174 negotiations .0224
made .0122 trading .0231 demand .0174 kidnapped .0224
search .0122 make .0231 losses .0131 promise .0224
found .0122 proposed .0231 continue .0131 dismembered .0224
sent .0122 acquire .0154 expected .0131 abandoned .0112
ordered .0122 transaction .0154 declined .0131 wrapped .0112
discovered .0081 sale .0154 drop .0131 kill .0112
killings .0081 comment .0154 reported .0087 report .0112
arrested .0081 own .0154 closed .0087 confirmed .0112
attacks .0081 provide .0154 gains .0087 hostage .0112
evidence .0081 talks .0154 result .0087 decapitated .0112
find .0081 respond .0154 increased .0087 ransom .0112
manhunt .0081 set .0098 raise .0087 kidnappings .0112
arrests .0081 rejected .0091 posted .0087 crime .0112
bombings .0081 agreement .0077 earned .0087 discover .0112
slayings .0081 acquisition .0077 trend .0087 demanded .0112
murdered .0081 sold .0077 lead .0087 cast .0112

Table 3: Examples of learned event scenarios.

Table 3 lists four scenario examples learned by the event
scenario model from an event annotated collection of news
articles. For this example, the number of scenarios S was set
to 50. The events from this example are related to commerce
transaction, financial market, kidnapping, and war scenar-
ios and are listed in order of their relevance to every sce-
nario. As can be observed in this table, because news arti-
cles usually abound in reporting events, these type of events
are highly related to all four scenarios.

Aside from the advantages of being unsupervised, the
event scenario model has the benefit that all the events from
each scenario can be interpreted separately. Another advan-
tage is that we can vary how general or how specific we want
the extracted event scenarios. Setting a lower value for the
number of scenarios in the model will derive more general
events, whereas a higher value for the number of scenarios
will produce very specific events in every scenario.

Experimental Results

We trained the event scenario model on version 1.2 of Time-
Bank (Pustejovsky et al. 2003b), which is a corpus of news
articles annotated with events, time expressions, and tempo-
ral relations between them. TimeBank contains 183 docu-
ments with 7935 event annotations. After removing 3 doc-
uments from the corpus because of naive event annotation,
we extracted 7622 event instances corresponding to an event
collection of 2549 unique events. The events in TimeBank
are annotated following the TimeML specifications (Puste-
jovsky et al. 2003a) and can be expressed as verbs, nominals
and adjectives.

For extracting the event scenarios we used the lda-c

tool, which is an implementation of the LDA model and is
available at http://www.cs.princeton.edu/∼blei/lda-c/. In or-
der to see how well it models the data, we compared our un-
supervised method against several event scenarios extracted

from FrameNet and against a baseline model consisting of a
smoothed unigram model.

Frame Scenario Modeling

Despite its limitations, the method that maps events on se-
mantic frames creates valid scenarios with relevant events
in every scenario. Therefore, we can evaluate how well the
frame scenarios are covered by the event scenarios extracted
with our model and compute a coverage score for each frame
scenario. To perform this evaluation, we automatically ex-
tracted four frame scenarios from FrameNet based on the
relations that exist between frames. These frame-based sce-
narios are listed in Table 4. In the next step, we selected
all the TimeBank events that evoke frames from the frame-
based scenarios following the method described in section
3. For instance, Table 5 lists all the events from the Time-
Bank corpus that evoke frames belonging to the COMMERCE

scenario.

COMMERCE scenario CRIME scenario

Commerce scenario, Busi-
nesses, Exchange currency,
Commercial transaction, Fin-
ing, Commerce pay, Com-
merce sell, Commerce collect,
Commerce buy, Import export

Seeking, Committing crime,
Criminal investigation, Want sus-
pect, Arrest, Surrendering, Trial,
Sentencing, Appeal, Notification
of charges, Entering of plea,
Verdict, Questioning, Kidnapping

ATTACK scenario EMPLOYMENT scenario

Attack, Defend, Hostile en-
counter, Fighting activity

Employment scenario, Firing, Get
a job, Being employed, Quitting

Table 4: The frame scenarios used in evaluation.

As can be observed in Table 5, we derived two types of
frame-based scenarios: (1) a generic scenario having se-
mantic frames as basic elements (left column in the table),
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Frame Frame-evoking events

Commerce scenario price pricecutting price-cutting
priced prices pricing pricings cost
costs

Businesses business businesses establish estab-
lished establishing establishment

Exchange currency change changed changes changing
exchange convert converted convert-
ible

Commercial transaction transaction transactions
Commerce pay pay payable paying payment pay-

ments payout pays
Commerce collect charge charged charges
Commerce buy buy buy-back buying buy-out buy-

outs bought purchase purchased pur-
chases purchasing

Fining damage damages
Import export export exports
Commerce sell sale sales sell seller selling sell-off

sold

Table 5: Example of frame scenario mapped on TimeBank.

and (2) a specific scenario containing the TimeBank frame-
evoking events (right column in the table). Thus, we can
compute a frame-based coverage score and an event-based
score for each frame scenario. To compute the coverage
score, we selected the best matching LDA scenario for each
scenario derived from FrameNet and evaluated the percent-
age of events from the LDA scenarios that is needed to cover
all the events from the frame-based scenarios. In this evalu-
ation procedure, we iterated through events in order of their
relevance to an LDA-inferred scenario, and compute the per-
centage of events from an FrameNet scenario covered at the
current iteration step. The sooner it reaches 100% cover-
age, the better the LDA scenario models its corresponding
FN scenario. For the frame-based coverage score it is suf-
ficient to reach only one frame-evoking event to cover its
corresponding frame.

Figure 3 illustrates the frame and event coverage curves
for each of the four frame-based scenarios. The best cover-
age results are obtained for COMMERCE and EMPLOYMENT

scenarios. This can be explained by the fact that the ma-
jority of the documents from TimeBank are from financial
publications. Specifically, for the COMMERCE frame-based
scenario, the best LDA scenario when computing the event
coverage measure is the 13th scenario. This scenario re-
quires to iterate on the first 940 (36.87%) relevant events
in order to cover all the events from the frame-based sce-
nario. In a similar way, the best LDA scenario for covering
all the frames in the COMMERCE scenario requires only the
first 696 (27.3%) relevant events. The frame coverage for
the EMPLOYMENT scenario is even better. To cover 60% of
the frames, the LDA scenario that best models the frames
in the EMPLOYMENT scenario (LDA scenario 44) requires
only 1.68% of its most relevant events, whereas to cover all
the frames from this FN scenario, the 44th LDA scenario
iterates only through 10.86% of its relevant events.

The event scenario model performs slightly worse on cov-

ering the ATTACK and CRIME scenarios. One explanation is
that these scenarios are not well represented in the document
collection. For example, the event plead is the only event
that evokes the last covered frame (ENTERING OF PLEA) on
the coverage curve corresponding to the CRIME scenario and
appears only once in the document collection. Another ex-
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Figure 3: Coverage curves for four FN scenarios.

planation for a weak coverage is caused by the events that
can evoke multiple frames. For instance, order is an am-
biguous event that can evoke SENTENCING, REQUEST and
BAIL SETTING semantic frames. Since SENTENCING is a
frame in the CRIME scenario, the contribution of the or-
der event to the coverage score has to be encountered as
well. However, we noticed that this event is disambiguated
in TimeBank corpus as evoking the REQUEST frame in most
of the cases and therefore the impact of the order event for
the CRIME scenario is diminished. We leave the study of
frame-based coverage using disambiguated events to future
work.

Document Modeling

In addition to frame-based scenario evaluation, we also mea-
sured the predictive power of the event scenario model by
comparing it with a smoothed unigram baseline model using
the perplexity score. Perplexity is a commonly used measure
in language modeling and captures how surprised a model is
when exposing to unseen data. Lower perplexity scores are
better and imply that the model is less surprised for the un-
seen data. Formally, the perplexity score of a held-out test
data from the event annotated corpus, Ctest, is defined as:

Perplexity(Ctest) = exp

(

−

∑M

d=1 log p(ed)
∑M

d=1 Nd

)

where M is the number of documents in Ctest, p(ed) is the
probability of events corresponding to a document d, and
Nd is the total number of events from d. In our experimen-
tal setup, we used the 5-fold cross validation scheme and
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computed the perplexity of every held-out test set given the
model learned on the remaining part of the data. Figure 4
illustrates the average perplexity of our LDA-based model
when compared to a smoothed unigram model. In addition,
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Figure 4: Perplexity results for unigram and LDA-based event
models.

this plot shows the impact of the predefined event scenario
numbers on the LDA-based model. As can be observed,
the more scenarios extracted, the lower the average perplex-
ity value is. When extracting 10 scenarios the LDA-based
model achieves a perplexity reduction of 89.96% against the
unigram model, whereas for 200 scenarios the perplexity re-
duction increases to 93.46%. Therefore, these results sup-
port the LDA model assumption that a document encodes
multiple event scenarios to different degrees.

Conclusions

Discovering event scenarios from texts constitutes a step-
ping stone in the process of understanding and reasoning
about texts. In this paper, we introduced a novel method
for automatically extracting event scenarios from texts. The
method is based on the LDA model that uses the observed
events from texts to learn latent scenarios. Additionally, we
introduced a method for evaluating event scenarios by com-
paring them with hand-annotated frame scenarios.

In our evaluations, we proved that an LDA-based ap-
proach is a suitable model for learning event scenarios even
when it is trained on a small collection of event annotated
documents. When comparing the event scenarios extracted
by this method with several predefined scenarios derived
from FrameNet, the results show a good coverage for those
scenarios that are representative for the document collec-
tion. Our experiments also show a better generalization
score for the LDA-based event model when it is compared
to a smoothed unigram event model.
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