
On Using SVM and Kolmogorov Complexity for Spam Filtering
Sihem Belabbes2 and Gilles Richard1,2

1British Institute of Technology and E-commerce,
Avecina House,258-262 Romford Road London E7 9HZ, UK

2Institut de Recherche en Informatique de Toulouse,
118 Rte de Narbonne 31062 Toulouse, France

grichard@bite.ac.uk
{belabbes,richard}@irit.fr

Abstract

As a side effect of e-marketing strategy the number of
spam e-mails is rocketing, the time and cost needed to
deal with spam as well. Spam filtering is one of the most
difficult tasks among diverse kinds of text categoriza-
tion, sad consequence of spammers dynamic efforts to
escape filtering. In this paper, we investigate the use of
Kolmogorov complexity theory as a backbone for spam
filtering, avoiding the burden of text analysis, keywords
and blacklists update. Exploiting the fact that we can
estimate a message information content through com-
pression techniques, we represent an e-mail as a multi-
dimensional real vector and then we implement a sup-
port vector machine classifier to classify new incoming
e-mails. The first results we get exhibit interesting ac-
curacy rates and emphasize the relevance of our idea.

Introduction
Detecting and filtering spam e-mails face a number of com-
plex challenges due to the dynamic and malicious nature of
spam. A truly effective spam filter must block the maxi-
mum unwanted e-mails while minimizing the number of le-
gitimate messages wrongly identified as spam (namely false
positives). However individual users may not share the same
view on what really a spam is.
A great deal of existing methods, generally rule-based, pro-
ceed by checking content of incoming e-mail looking for
specific keywords (dictionary approach), and/or comparing
with blacklists of hosts and domains known as issuing spam
(see (Graham 2002) for a survey). In one case, the user can
define his own dictionary thus adapting the filter to his own
use. In the other, the blacklist needs to be regularly updated.
Anyway, getting rid of spam remains a classification prob-
lem and it is quite natural to apply machine learning meth-
ods. The main idea on which they rely is to train a learner on
a sample e-mails set (known as the witness or training set)
clearly identified as spam or ham (legitimate e-mail), and
then to use the system output as a classifier for next incom-
ing e-mails.
Amongst the most successful approaches to deal with spam
is the so-called Bayesian technique which is based on the
probabilistic notion of Bayesian networks((Pearl & Russell

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2003)), and has so far proved to be a powerful filtering tool.
First described by P. Graham (Graham 2002), the Bayesian
filters block over 90% of spam. Due to their statistical nature
they are adaptive but can suffer statistical attacks simply by
adding a huge number of relevant ham words in a spam mes-
sage (see (Lowd & Meek 2005)). Next-generation spam fil-
tering systems may thus depend on merging rule-based prac-
tices (like blacklists and dictionaries) and machine learning
techniques.
A useful underlying classification notion is the mathemati-
cal concept of distance. Roughly speaking, this relies on the
fact that when 2 objects are close one to another, it means
that they share some similarity. In spam filtering settings, if
an e-mail m is close to a junk e-mail, then m is likely a junk
e-mail as well. Such a distance takes parameters like sender
domain or specific words occurrences. An e-mail is then
represented as a point in a vector space and spam are identi-
fied by simply implementing a distance-based classifier. At
first glance an e-mail can be identified as spam by looking
at its origin. We definitely think that this can be refined by
considering the whole e-mail content, including header and
body. An e-mail is classified as spam when its informative
content is similar or close to that of another spam. So we
are interested in a distance between 2 e-mails ensuring that
when they are close, we can conclude that they have simi-
lar informative content without distinction between header
and body. One can wonder about the formal meaning of that
‘informative content’ concept. Kolmogorov (also known as
Kolmogorov-Chaitin) complexity is a strong tool for this
purpose. In its essence Kolmogorov’s work considers the
informative content of a string s as the measure of the size
of the ultimate compression of s, noted K(s).
In this paper we aim at showing that Kolmogorov complex-
ity and its associated distance can be pretty reliable in clas-
sifying spam. Most important is that this can be achieved:

• without any body analysis

• without any header analysis

The originality of our approach is the use of support vec-
tor machines for classification such that we represent every
e-mail in the training set and in the testing set as a multi-
dimensional real vector. This can be done by considering a
set of typical e-mails previously identified as spam or ham.

130

Proceedings of the Twenty-First International FLAIRS Conference (2008)

The rest of this paper is organized as follows: we briefly
review the Kolmogorov theory and its very meaning for a
given string s. Then we describe the main idea behind prac-
tical applications of Kolmogorov theory which is defining a
suitable information distance. Since K(s) is an ideal num-
ber, we explain how to estimate K and the relationship with
commonly used compression techniques. We then exhibit
our first experiment with a simple k-nearest neighbors algo-
rithm and show why we move to more sophisticated tools.
After introducing support vector machine classifiers, we de-
scribe our multi-dimensional real vector representation of an
e-mail. We exhibit and comment our new results. We dis-
cuss related approaches before concluding and outlining fu-
ture perspectives.

What is Kolmogorov complexity?
The data a computer deals with are digitalized, namely de-
scribed by finite binary strings. In our context we focus on
pieces of text. Kolmogorov complexityK(s) is a measure of
the descriptive complexity contained in an object or string
s. A good introduction to Kolmogorov’s complexity is con-
tained in (Kolmogorov 1965) with a solid treatment in (Li &
Vitányi 1997; Kirchherr, Li, & Vitányi 1997). Kolmogorov’s
complexity is related to Shannon entropy (Shannon 1948) in
that the expected value of K(s) for a random sequence is
approximately the entropy of the source distribution for the
process generating this sequence. However, Kolmogorov’s
complexity differs from entropy in that it is related to the
specific string being considered rather than to the source dis-
tribution. Kolmogorov complexity can be roughly described
as follows, where T represents a universal computer (Turing
machine), p represents a program, and s represents a string:

K(s) is the size |p| of the smallest program p s.t. T (p) = s

Thus p can be considered as the essence of s since there is
no way to get s with a shorter program than p. It is logical to
consider p as the most compressed form of s. The size of p,
K(s), is a measure of the amount of information contained
in s. Consequently K(s) is the lower bound limit of all pos-
sible compressions of s: it is the ultimate compression size
of the string. Random strings have rather high Kolmogorov
complexity on the order of their length, as patterns cannot
be discerned to reduce the size of a program generating such
a string. On the other hand, strings with a large amount of
structure have fairly low complexity and can be massively
compressed.
Universal computers can be equated through programs of
constant length, thus a mapping can be made between uni-
versal computers of different types, and the Kolmogorov
complexity of a given string on two computers differs by
known or determinable constants.
In some sense, this complexity is a kind of universal charac-
teristic attached to a given data. For a given string s, K(s) is
a strange number which cannot be computed just because it
is an ideal lower limit related to an ideal machine (Univer-
sal Turing machine or calculator). This is a major difficulty
which can be overcome by using the fact that the length of
any program producing s is an upper bound of K(s). We
develop this fact in a further section. But now we need to

understand how to build a suitable distance starting from K.
This is our aim in the next section.

Information distance
When considering data mining and knowledge discovery,
mathematical distances are powerful tools to classify new
data. The theory around Kolmogorov complexity helps to
define a distance called ‘Information Distance’ or ‘Bennett’s
distance’ (see (Bennett et al. 1998) for a complete study).
The informal idea is that given two strings or files, a and b,
we can say:

K(a) = K(a \ b) +K(a ∩ b)
K(b) = K(b \ a) +K(a ∩ b)

It is important to point out that those 2 equations do not be-
long to the theoretical framework but are approximate for-
mula allowing to understand the final computation. The first
equation says that a’s complexity (its information content) is
the sum of the proper a’s information content denoted a \ b,
and the common content with b denoted a ∩ b. Concatenat-
ing a with b yields a new file denoted a.b whose complexity
is K(a.b):

K(a.b) = K(a \ b) +K(b \ a) +K(a ∩ b),

since there is no redundancy with Kolmogorov compression.
So the following number:

m(a, b) = K(a) +K(b)−K(a.b) = K(a ∩ b)

is a relevant measure of the common information content to
a and b.
Normalizing this number in order to avoid side effects due
to strings size helps in defining the information distance:

d(a, b) = 1−m(a, b)/max(K(a),K(b))

Let us understand the very meaning of d. If a = b, then
K(a) = K(b) and m(a, b) = K(a) thus d(a, b) = 0. On
the opposite side, if a and b do not have any common in-
formation, m(a, b) = 0 and then d(a, b) = 1. Formally,
d is a metric satisfying d(a, a) = 0, d(a, b) = d(b, a) and
d(a, b) ≤ d(a, c) + d(c, b) over the set of finite strings. d
is called the information distance or the Bennett distance.
If d(a, b) is very small, it means a and b are very similar.
d(a, b) close to 1 means a and b have very few information
in common. This is exactly what we need to start with classi-
fication. As we understand now, the basic quantity we need
to compute or estimate for a given string s is K(s). This is
addressed in the next section.

Kolmogorov complexity estimation
In this section we are interested in adapting the formal tool
introduced so far to real-world applications. We have men-
tioned above that the Kolmogorov complexity exact value
can never be computed. Though K(s) being the lower limit
of all possible compressions of s means that every compres-
sion C(s) of s approximates K(s). A decompression algo-
rithm is considered as our universal Turing machine T such
that: T (C(s)) = s.
Hence it is obvious that we focus our attention on lossless

131

compression algorithms to preserve the validity of the pre-
vious equality. Fortunately there exists a variety of such al-
gorithms coming from the ‘compression’ community. Dis-
cussing those tools falls out of the scope of this paper, and
we briefly overview some classical compression tools avail-
able on the market. On one side there are formal loss-
less compression algorithms: LZW standing for Lempel-Ziv-
Welch (Welch 1984), Huffman (Huffman 1952), Burrows-
Wheeler (Burrows & Wheeler 1994). On the other side there
are real implementations adding some clever manipulations
to the previous algorithms:
• Unix compress utility based on LZ which is a less elab-

orated version of LZW
• zip and gzip which are a combination of LZ and Huff-

man encoding (for instance, Adobe Reader contains an
implementation of LZW)
• bzip2 which first uses Burrows-Wheeler transform then

a Huffman coding.
The bzip2 tool is known to achieve interesting compres-
sion ratios and we choose it to approximate Kolmogorov
complexity. In the following, instead of dealing with the
ideal number K(s) where s is a file, we deal with the size of
the corresponding compressed file. The better the algorithm
compresses the data s, the better the estimation of K(s).
When replacingK(s) by C(s), it becomes clear that the pre-
vious information distance is not anymore a true mathemat-
ical distance but remains sufficient for our purpose.

Our first tests with k-nn
In order to quickly validate our approach, we start from
a classical k-nearest-neighbors (k-nn) algorithm where all
neighbors of a given incoming e-mail equally contribute to
determining the actual class to which it belongs (either spam
or ham). The training set S is constituted of both spam and
ham e-mails. Complexity estimation is obtained by bzip2
compression tool whose C source code is freely available
(http://www.bzip.org/) and easy to integrate. This
technique performs without information loss and is quite
good in term of runtime efficiency, which is exactly what
we need.
Basically, starting from an incoming e-mail, we compute its
k-nearest neighbors belonging to a set of witness e-mails
previously classified as spam/ham. Then we choose the most
frequent class among those k neighbors as the class for the
incoming e-mail. The distance we use is just the information
distance estimated through bzip2 compression. Our algo-
rithm is implemented in C and our programs (source and
executable) are freely available on request.
Using the previous software, our experimentation has been
run over a set of 200 new e-mails to classify. We then per-
formed 4 tests series using 4 different training sets with car-
dinalities as below:
• 25 spam/25 ham,
• 50 spam/50 ham,
• 75 spam/75 ham,
• 100 spam/100 ham.

The only parameter we tune is k and we choose k as 11,
21, 31, 41, 51, 61, 71. As expected, when increasing k to a
certain threshold, the results quality decreased. That is why
finally we choose the value of k as the square root of the
training set cardinality. This is just an empirical value which
works well. Below we provide only one graphic (with 200
checked e-mails) which gives an intuition of our results:

Figure 1: 50 spam/50 ham witness e-mails.

Visual inspection of our curve provides clear evidence that
information distance really captures an underlying ‘seman-
tics’. Since in our samples there are e-mails in diverse lan-
guages (French, English), we can think that there is a kind
of common underlying information structure for spam. The
accuracy rate remains in the range of 80%-87%, whatever
the number of witness e-mails, and the false negative level
remains low. Up to now there is no existing filtering method
ensuring a perfect 100% accuracy, thus false positive level
implies that the individual user still needs to check his junk
folder to avoid losing important e-mails.
Since our first results are quite encouraging, we decide to
move to a completely different and more sophisticated tech-
nique. Instead of investigating the k-nn algorithm tuning, we
work with a powerful training component, namely Support
Vector Machines (SVM), and we adapt our implementation.
We briefly introduce SVM in the next section.

SVM for spam classification
Support vector machines are powerful classifiers. It is out of
the scope of this paper to review SVM (see (Burges 1998))
and we only give a flavor. Given a set of k-dimensional vec-
tors xi, each one labeled 1 or -1 depending on their classi-
fication. Given a problem, a discriminating hyperplane w is
one that creates a decision function satisfying the following
constraint for all i: yi(xi.w + b)− 1 ≥ 0.
The learning problem is called linearly inseparable in case
of no existing such hyperplane. This drawback can be
dealt with following some strategies. Indeed Support Vec-
tor Machines can use a nonlinear kernel function defining
a new inner-product on the input space. This inner product
may be used to calculate many higher-power terms of sam-
ples combinations in the input space. This yields a higher-
dimensional space such that when it is large enough, there
will be a separating hyperplane. An SVM tool is controlled

132

by 2 parameters. The main one relates to the kernel function.
Radial Basis Function (RBF) kernel is widely used since it
somewhat captures other kernel functions. It takes the value
1 in case of two equal input vectors. Contrarily, its value
slowly decreases towards 0 in a radially symmetric fashion:
K(xi, xj) = e−||xi−xj ||2/2α2

.
Here, α is a parameter controlling the decreasing rate and is
set priorly to the SVM learning procedure. Other parame-
ters may be considered as well but it is not our aim to tune
such parameters in the present paper. That is why we leave
this task to the SVM package we use since there is a way to
automatically provide suitable values for these parameters.
As we understand, running an SVM algorithm depends on a
vector representation of e-mails. We obtain this by exploit-
ing a quite simple idea. We choose a set of typical e-mails:
Typ = {ti|i ∈ [1, n]} mixing 50% spam and 50% ham. For
every e-mail m not belonging to Typ we compute the infor-
mation distance: mi = d(m, ti).
We get #Typ1 coordinates, building a #Typ-dimensional
vector representingm. The choice of Typ sets up the dimen-
sion of the vector space we deal with. Later on we will see
that Typ’s quality is crucial for the filter performance.

In terms of implementation, we use the LIBSVM soft-
ware (Chih-Chung Chang & Chih-Jen Lin 2001). When it
comes to evaluate the relevance of a spam filtering system,
the standard accuracy rate (which is a usual measure for clas-
sification purpose) is not really sufficient since all errors are
treated on equal footing. If we have 90% of accuracy rate, it
is possible to have 10% of errors only by misclassifying the
ham. It means that your inbox is clean but you have to check
your junk box to get the missing ham. So it is important for
an end-user to know the rate of ham (or legitimate e-mails)
lost during the process. If this rate (False Positive Rate) is
very low (for instance around 1%), then there is no need to
deeply examine the junk box. Vice-versa if the number of
not identified spam is important, then a lot of spam remain
in the inbox: so we want a high rate of identified spam (True
Positive Rate). Another interesting value is the number of
spam properly identified among the total number of e-mails
considered as spam (true spam and false positives). This
value is the Positive Predictive Value (or precision). Let us
give formal definitions:

• fn = number of spam identified as ham

• fp number of ham identified as spam

• s number of spam in the test set

• h number of ham in the test set (s + h is the test set car-
dinality)

• accuracy = 1− (fn+ fp)/(s+ h)

• FPR = fp/h (False Positive Rate or fall out)

• TPR = (s− fn)/s (True Positive Rate or recall)

• PPV = (s−fn)/(s−fn+fp) (Positive Predictive Value
also known as precision).

1Here, #Typ denotes the cardinality of the set Typ.

It is quite clear that those numbers are not independent and
sometimes, it can be interesting to represent TPR as a func-
tion of FPR (roc analysis). Due to space limitations, we do
not present graphical representation of our results.

Our results with SVM
We have run a set of experiments on the publicly available
Spamassassin corpus. This set is constituted of 9348 e-mails
of which 2397 are spam. We performed no pre-processing
on those e-mails that we consider as raw input data for our
system. Below is our protocol:

• First of all, we have defined 4 training sets of 50, 100, 150
and 200 e-mails.

• We have then defined 5 sets of typical e-mails with car-
dinality 8, 10, 12, 16 and 20, each one on a 50/50%
spam/ham basis.

• Those 5 typical sets gave rise to 5 experiment types with
the same training and testing sets: each type is associated
to an 8, 10, 12, 16 and 20 dimensional vector space.

• Then instead of working on the full dataset, we have cho-
sen 3 test sets: 2 with 500 and one with 1000 e-mails of
both types. We give here the results for the final 1000 set.

Our experiments series are aimed to:

• allow to choose the most effective vector space dimension

• allow to choose the most effective training set cardinality.

• validate the combination of Kolmogorov complexity and
SVM as a really effective framework for spam filtering.

Table 1 presents our results (all numbers are percentages, the
testing set contains 1000 new e-mails to classify).

train50 8 10 12 16 20
Accuracy 94.60 95.60 95.40 94.60 95.00

FPR 1.60 2.80 4.00 5.60 5.20
TPR 90.80 94.00 94.80 94.80 95.20

train100 8 10 12 16 20
Accuracy 94.60 96.20 95.40 94.80 94.80

FPR 1.60 2.40 2.40 1.60 1.20
TPR 90.80 94.80 93.20 91.20 90.80

train150 8 10 12 16 20
Accuracy 94.80 94.60 94.60 96.40 96.20

FPR 1.20 2.40 2.40 2.40 2.40
TPR 90.80 91.60 91.60 95.20 94.80

train200 8 10 12 16 20
Accuracy 93.80 93.40 93.60 93.80 93.40

FPR 1.60 1.60 2.00 1.60 1.60
TPR 89.20 88.40 89.20 89.20 88.40

Table 1: Classification results with bzip2

In our experiment, and except with a training set of 150
e-mails, it is clear that the best dimensional representation

133

should be in the range of 8-10. We think there is a rela-
tionship between the size of the vector representation and
the training set size: It is well known that over-fitting can
occur with a huge training set, thus reducing the prediction
power of the classifier. In fact when we increase the vector
dimension (e.g. 16 or 20 in our experiment), we increase the
quantity of information carried by an e-mail. It is realistic
to consider that relatively small training sets perform better
than bigger ones since they are less sensitive to over-fitting.
This relationship needs to be more deeply investigated.
Regarding the training set size, 100 seems to be quite effec-
tive. It can be seen from our results that when dealing with a
bigger training set (150 or 200), some kind of over-fitting ef-
fect harms the classifier accuracy and in particular the harms
the false positive and true positive rates. Obviously a smaller
training set (50 e-mails) is not sufficient to output a precise
classifier via the SVM tool. Moreover our experiment shows
that, in that case, the false positive rate reaches the worst val-
ues as the vector space dimension increases (12, 16 and 20).
It is worth noting that, except for the smaller training set, our
accuracy rates range from 93% to 97% with FPR between
1% and 3%, which is usually quite acceptable.

Despite the fact that more investigation has to be performed,
it is obvious that the pair Kolmogorov complexity-SVM
provides a clean theoretical framework to accurately deal
with practical applications like spam filtering. In that case,
our simple implementation is equivalent in terms of perfor-
mance to more mature tools (such as SpamBayes or Spamas-
sassin). It becomes definitely clear that a deep analysis of
the incoming e-mail itself or a clever pre-processing are not
a prerequisite to get accurate results. Better performances
could be expected (e.g. by combining diverse approaches),
however we are not sure this is feasible since Kolmogorov
complexity theory is a strong substratum. Of course there is
room for improving our model due to the number of param-
eters controlling it!

Related works
Despite their relative novelty, complexity-based approaches
have been proved quite successful in numerous fields of IT:
data mining, classification, clustering, fraud detection, and
so on. Within the IT security field, we can refer to works
of (Kulkarni & Bush 2001; Bush 2002; 2003), and more re-
cently (Wehner 2006): they are mainly devoted to analyzing
data flow coming from network activities and to detecting
intrusion or virus. From a spam filtering perspective, using
compression paradigm is not a completely new idea, despite
the fact that our way to mix Kolmogorov complexity with
an SVM training component is quite new (as far as we know
and except other applications such as protein sequence clas-
sification (Kocsor et al. 2006)).
Probably the most closely related work is that of Sprack-
lin and Saxton (Spracklin & Saxton 2007): they use Kol-
mogorov complexity without referring to the information
distance. In each e-mail, they just consider the body which
is first pre-processed and cleaned up (only lower case letters,
removal of common words and HTML tags, etc.). Then each
word is converted into 0 if it appears frequently in spam or

1 if it appears more frequently in ham. The final result is
a string of 0 and 1 which is then compressed. If the com-
plexity is below a certain threshold the e-mail is classified
as ham, otherwise as spam. Their accuracy rates vary in the
range of 80%-96% depending of their test sets. This is a
good result similar to ours, with the difference that we do
not pre-process our e-mails. In term of complexity, our pro-
cess is much simpler since we only compute distances.
Work of Bratko et al. (Bratko et al. 2006) also has to be
cited. It is not exactly based on Kolmogorov complexity but
is compression-based. They use an adaptive statistical data
compression process. The main idea is to consider the mes-
sages as issued by an unknown information source and to
estimate the probability of a symbol x to be produced. Such
a probability then exhibits a way to encode the given symbol
and to compress. So in order to filter spam, it is sufficient
to compress the training ham set into a file Ham, and to
do the same for the training spam set getting a file Spam.
When a new e-mail m arrives, it is added to the ham folder
and the resulting folder is compressed into a file Ham+m.
The same is done for the spam folder getting Spam + m.
If the difference between Spam + m size and Spam size
is small, it means m does not bring new information to the
training spam and is likely to be a spam. Otherwise m is
considered as a ham. This method, which does not use the
information distance, provides good results on the standard
databases whatever the compression model. Our rates are
currently similar but we have not yet investigated the whole
collection of available databases.

Conclusion and Future works
In this paper we have investigated the anti-spamming field
and have considered the Kolmorogov complexity of an e-
mail as a tool for classifying it as spam or ham. In order to
quickly validate our idea, we first implemented a basic ver-
sion of k-nearest neighbors algorithm, using the information
distance deduced from K as a closeness measure. Our tests
have been processed on relatively small data sets. Still, the
first obtained results clearly show that the compression dis-
tance is meaningful in that situation. This is not completely
coming as a surprise: the seminal works of (Bennett et al.
1998) then (Cilibrasi & Vitányi 2005) already paved the
way and highlighted the real practical power of compression
methods. One major advantage in using compression for e-
mail classification is that there is no need to deeply analyze
the diverse parts of an e-mail (header and body). Our al-
gorithm can of course be refined, and simply having a more
powerful compression technique would probably bring more
accurate results. Multiple complexity estimators could also
be combined in order to improve discrimination accuracy.
A more sophisticated machine learning component based on
SVM could then be implemented to further investigate our
compression-based classification method.
In the present work using SVM required a real vector rep-
resentation of e-mails and it appears that 10 is a suitable
dimension for the vector space model. Then we trained our
SVM on diverse e-mail sets: by examining our experimen-
tal results it appears that a suitable size for the training set
is in the range of 100. On our test sets (coming from Spa-

134

massassin repository), we got accuracy rates in the range of
93%-97%, with false positive rates between 1% and 2%. It
is quite clear that the compression method coupled with the
SVM training component is successful, and our results em-
phasize the idea that there is no need to separate the header
from the body and to analyze them separately. A great ad-
vantage of this kind of ‘blind’ techniques is that there is:

• no need to update a dictionary or a blacklist of do-
main names. The system automatically updates when
the training base evolves over time (i.e. the database
of junk/legitimate e-mails which is basically unique to
a given user): it can be trained on a per-user basis, like
Bayesian spam filtering.

• no need to pre-process the e-mails (like tokenization,
HTML tag and capital letters removal).

A similarity with Bayesian filtering is that complexity based
methods do not bring any explanations about their results.
Fortunately this is generally not a requirement for an e-
mail filtering system. In that particular case it cannot be
considered as a drawback. Even if some commercial soft-
wares claim 99% of success in spam elimination (e.g. see
http://www.liveprism.com/), it is well known that
the end users are not entirely satisfied by the current per-
formances of anti-spam tools. For instance in (SPAMfighter
2007) people estimate around 15% the amount of daily spam
they receive after the spam filters have done their job. It
means 85% of accuracy which is clearly outperformed in
our experiments. It is quite clear that compression based
approaches are not the ultimate Graal. Though we strongly
believe that when mixed with other classical strategies they
will definitely bring a step further in the spam filtering field.
For us it remains to investigate how to overcome the fact that
we only estimate the Kolmogorov complexity. Using com-
pression makes information distance calculation approxima-
tive since d(m,m) is definitely not 0 but a small value be-
tween 0.1 and 0.3. This error has to be properly managed to
provide accurate vectors for the training components. This
is our next step to conceive a more accurate system and to
ultimately tend towards a ‘spam-free’ internet!

Acknowledgment
The authors are grateful to Ivan José Varzinczak for his help
in integrating the bzip2 code to the used programs.

References
Bennett, C.; Gacs, P.; Li, M.; Vitányi, P.; and Zurek, W.
1998. Information distance. IEEE Transaction on Infor-
mation Theory 44(4):1407–1423.
Bratko, A.; Cormack, G. V.; Filipic, B.; Lynam, T. R.; and
Zupan, B. 2006. Spam filtering using statistical data com-
pression models. Journal of Machine Learning Research
7:2673–2698.
Burges, C. 1998. A tutorial on support vector machines for
pattern recognition. Data Mining and Knowledge Discov-
ery 2(2):121–167.

Burrows, M., and Wheeler, D. 1994. A block sorting loss-
less data compression algorithm. Technical Report 124,
Digital Equipment Corporation.
Bush, S. F. 2002. Active virtual network manage-
ment prediction: Complexity as a framework for predic-
tion, optimization, and assurance. In Proceedings of the
2002 DARPA Active Networks Conference and Exposition
(DANCE), 534–553.
Bush, S. F. 2003. Extended abstract: Complexity and vul-
nerability analysis. In Complexity and Inference.
Chih-Chung Chang, and Chih-Jen Lin. 2001. Libsvm
: a library for support vector machines. Software avail-
able at http://www.csie.ntu.edu.tw/˜cjlin/
libsvm.
Cilibrasi, R., and Vitányi, P. 2005. Clustering by compres-
sion. IEEE Transaction on Information Theory 51(4).
Graham, P. 2002. A plan for spam. Available online at
http://www.paulgraham.com/spam.html.
Huffman, D. 1952. A method for the construction of min-
imum reduncancy codes. In Proceedings of the IRE.
Kirchherr, W.; Li, M.; and Vitányi, P. 1997. The miracu-
lous universal distribution. MATHINT: The Mathematical
Intelligencer 19(4).
Kocsor, A.; Kertész-Farkas, A.; Kaján, L.; and Pongor,
S. 2006. Application of compression-based distance mea-
sures to protein sequence classification: a methodological
study. Bioinformatics 22(4):407–412.
Kolmogorov, A. N. 1965. Three approaches to the quan-
titative definition of information. Problems in Information
Transmission 1(1):1–7.
Kulkarni, P., and Bush, S. F. 2001. Active network man-
agement and kolmogorov complexity. In OpenArch 2001.
Li, M., and Vitányi, P. 1997. Introduction to Kolmogorov
Complexity and Its Applications. Springer-Verlag.
Lowd, D., and Meek, C. 2005. Anti-spam products give
unsatisfactory performance. In Proceedings of the Second
Conference on E-mail and Anti-spam (CEAS), 125–132.
Pearl, J., and Russell, S. 2003. Bayesian networks. In
A., A. M., ed., Handbook of Brain Theory and Neural Net-
works. Cambridge, MA: MIT Press. 157–160.
Shannon, C. 1948. A mathematical theory of communica-
tion. Bell System Technical Journal 27:379–423, 623–656.
SPAMfighter. 2007. Anti-spam products give
unsatisfactory performance. Available online at
http://www.spamfighter.com/News_List_
Other.asp?D=2007.7.31.
Spracklin, L., and Saxton, L. 2007. Filtering spam using
kolmogorov complexity estimates. In 21st International
Conference on Advanced Information Networking and Ap-
plications Workshops (AINAW), 321–328.
Wehner, S. 2006. Analyzing worms and network traffic
using compression. Available online at http://arxiv.
org/abs/cs.CV/0504045.
Welch, T. 1984. A technique for high performance data
compression. IEEE Computer 17(6).

135

