
CANDEL: An Algorithm for Same-Sentence Pronominal Resolution

Cristina Nicolae and Gabriel Nicolae
Human Language Technology Research Institute

Department of Computer Science
The University of Texas at Dallas

Richardson, TX 75083-0688
{cristina, gabriel}@hlt.utdallas.edu

Abstract

This paper presents a syntactic path-based learning al-
gorithm (CANDEL from CANDIDATE -ELIMINATION)
for the coreference resolution of pronouns that have
their antecedents in the same sentence. Syntactic paths
are treated as hypotheses to be learned. The hypothe-
ses make up a version space that is delimited by a spe-
cific set and a general set, which grow closer to each
other as the algorithm runs, in order to be consistent
with the training examples encountered. Experiments
on the MUC-6 and MUC-7 datasets reveal that this res-
olution method is a viable alternative to acquiring large
amounts of data from the web.

Introduction
Pronoun resolution is a vital part of the more general task
of coreference resolution. The aim of coreference resolu-
tion is, given a natural language text, to discover the entities
mentioned in it and the textual mentions of these entities.
A coreference system must correctly identify the sets into
which the mentions of the text must be clustered so that each
set corresponds to a real-world or imagined entity. As a step
in this process, the system has to detect pairs of mentions
that are assumed to refer to the same entity with a certain
confidence. When one of these mentions is a pronoun, the
task is called pronominal resolution. In the following exam-
ple, the pronounits refers back to the named entityDawn
Capital (its ’antecedent’):

Dawn Capital changesits name.

Previous work in pronominal resolution ranges from naive
syntactic approaches to semantically rich approaches and
from supervised to unsupervised learning. (Hobbs 1978) de-
signed two methods for resolving third person pronouns: a
naive algorithm based on syntactic parse trees and some se-
lectional constraints, and a semantic approach that assumes
knowledge available in the form of predicate calculus ax-
ioms. Due to the preconditions that were not available at the
time, none of the algorithms was implemented, but running
them by hand on a set of examples obtained good results.
(Lappin & Leass 1994) designed an algorithm (RAP) for

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

third person pronouns that is based on the syntactic repre-
sentation of a slot grammar parser, and manually attached
scores of salience to possible antecedents. The experimental
results placed it higher in performance than an implementa-
tion of Hobbs’ algorithm. (Kehleret al. 2004) showed that
predicate-argument statistics offer little predictive power to
a system for pronoun resolution trained with morphosyntac-
tic features, and concluded that predicate-argument statistics
are not suitable to replace world knowledge that might be
necessary in the resolution. (Yanget al. 2004) incorporated
coreferential information about the candidate antecedents of
the mentions, information ignored by other reference reso-
lution systems. The experimental results showed that this
information boosted the resolution performance. (Yang, Su,
& Tan 2005) used, in addition, statistic-based semantic com-
patibility information and data mined from the web. The
results showed that using the semantic information coupled
with the web for the twin-candidate model increased the per-
formance of a system based on the single-candidate model
and a corpus. (Cherry & Bergsma 2005) compared an un-
supervised expectation maximization learning system with
current supervised learning methods and found their per-
formance almost equal, proving thus that unsupervised ap-
proaches are viable for pronoun resolution.

The approach presented in this paper is most similar to
the one reported by (Bergsma & Lin 2006), because both
systems take advantage of syntactic path information in
pronominal resolution, but there are marked differences be-
tween the two approaches. First, Bergsma and Lin work
with dependency paths obtained by the minimalist parser
Minipar (Lin 1998), while CANDEL makes use of parse
tree paths obtained by Collins’ parser (Collins 1999). Ad-
ditionally, they treat path coreference as just one of the fea-
tures used by anSV M light classifier (Joachims 1999) for
pronominal resolution, whereas our approach is solely based
on parse path information, and the learning algorithm is an
adaptation of CANDIDATE -ELIMINATION (Mitchell 1997).
They calculate the coreference of millions of paths in a boot-
strapping framework, while CANDEL is a supervised learn-
ing based on a sparse corpus. Bergsma and Lin treat paths as
a whole and obtain their likelihood of coreference by count-
ing their appearances; in contrast, our approach ‘looks in-
side’ the paths in order to learn patterns of coreference and
their likelihoods. Finally, CANDEL does not treat the case of

177

Proceedings of the Twenty-First International FLAIRS Conference (2008)

pronouns with antecedents in another sentence, as opposed
to Bergsma and Lin’s algorithm.

Same-Sentence Pronominal Resolution
One way to resolve the coreference of the mentions in a
text through machine learning is to cluster them by using
the more clear-cut cases (e.g. pronouns, names) as seeds
(in the vein of (Cardie & Wagstaff 1999)). The initial
clusters are formed by the most confident pairs pronoun-
antecedent or name-antecedent. Clustering proceeds by in-
crementally adding to each cluster new mentions that are
the most strongly connected to the ones that are already in
the cluster. This addition can be stopped after a confidence
threshold is reached, that is when mentions outside a cluster
are sufficiently weakly linked to the ones inside.

Pronominal resolution is an important step in the above
method. The method relies on correct seeding; otherwise,
the errors introduced right at the beginning can multiply and
negatively affect performance. The more confident the de-
tection of the pronouns’ antecedents is, the less chances the
subsequent clustering has for wrong starts.

An analysis of the MUC-6 (MUC-6 1995) training data
reveals that out of 292 total pronouns, 187 have an an-
tecedent in the same sentence, 129 have one in the previous
sentence, and 81 pronouns have antecedents both in the same
and the previous sentences. This sums up to 236 pronouns
who have an antecedent in either the same or the previous
sentence. This sum constitutes approximately 80% of the
total number of pronouns. Therefore, focusing just on the
pronouns that resolve in the same and the previous sentences
would solve a large majority of the task. This paper presents
a novel method for resolving pronouns with same-sentence
antecedents, leaving pronouns with candidates in the previ-
ous sentence to be resolved by a naive algorithm that links
each pronoun to its closest candidate.

Pronouns are resolved through a syntactic pattern-based
approach. The starting points for this approach are the syn-
tactic paths between each pronoun and its candidate an-
tecedent. The learning algorithm, the training instances,
and the choice of candidate are all built to handle these
paths. In particular, the learning algorithm employed (CAN-
DEL) is a variation on the classic machine learning algorithm
CANDIDATE -ELIMINATION . This algorithm was chosen for
its relatively easy adaptability to a pattern-based approach,
compared to popular machine learning methods like deci-
sion trees or maximum entropy.

Training instances
A training instance consisting of a feature vector and an out-
come is created for each pair pronoun-candidate, where the
pronoun and the candidate are in the same sentence. Can-
didates are all the nouns and pronouns that appear before
the pronoun. If the two corefer according to the annotation,
the outcome associated is positive; otherwise, the outcome
associated is negative.

Learning with CANDEL

The original CANDIDATE -ELIMINATION algorithm com-
putes a set of hypotheses (version space), all of which are

consistent with an observed sequence of training examples.
The version space is specified through two boundary hy-
potheses sets, the most specific (S) and the most general
(G), and comprises all the hypotheses in the two sets plus
the ones between them in generality. During the course of
the algorithm, each new training example seen brings the
two boundaries closer through generalization and special-
ization, respectively, such that the version space remains
consistent throughout with all the training examples. For
a more in-depth understanding of the algorithm, please refer
to (Mitchell 1997) page 32.

The CANDEL algorithm is an adaptation of CANDIDATE -
ELIMINATION to the case of pattern-based pronoun resolu-
tion. Our method differs from the original algorithm in three
main points: (1) it is specifically designed for this task rather
than a general machine learning technique; (2) it introduces
statistical values attached to hypotheses; and (3) it changes
the order in which the training examples are presented to the
algorithm. All three points make the algorithm suitable for
pronoun resolution, which cannot be said of the original one,
so a performance comparison between them is not possible.

To elaborate on the three points, first CANDEL instanti-
ates the original hypotheses into sentential parse tree paths,
and their attributes into the nodes of these paths, which rep-
resent mentions that appear in the same sentence. The oper-
ations of generalization and specialization are adapted for
parse tree paths. Secondly, in the original algorithm the
hypotheses that are inconsistent with a new training exam-
ple are eliminated. This tactic would be short-lived in our
task, where the amount of training data and its inconsis-
tency would reduce the version space to void in just a few
steps. The original algorithm had to be changed to intro-
duce a probabilistic approach. Each path (hypothesis) is as-
sociated with a confidence value throughout the running of
the algorithm. The more examples it is consistent with, the
greater its confidence is, while inconsistencies decrease con-
fidence. In this way, we can keep a large version space at any
time, and also prevent the elimination of useful hypotheses
because of noise in the training data. Finally, all the posi-
tive examples are treated first, followed by all the negative
examples. The reasoning behind this is presented in the sub-
section dedicated to describing the algorithm.
Extended parse paths A parse tree path that plays the role
of hypothesis is denoted by a sequence of pairs sign-node
extracted from the path between the pronoun and the can-
didate antecedent in the syntactic tree. To compose such a
path from the tree, the tree is traversed from right to left,
starting at the later occurring word of the pair. In our no-
tation, the first node is preceded by the ’#’ sign. After-
wards, whenever the path goes upwards on a branch in the
tree, a ’+’ sign is added to the path notation, and when-
ever the path descends, a ’-’ sign is added. All nodes en-
countered are added to the path. An example of a parse
tree path is #PRP$ + NP + PP + V P + S − NP ,
which has been extracted as the path between antecedent
Dawn Capital and pronounits from the first parse tree il-
lustrated in Figure 1(a). All the sign-node pairs in this path
(#PRP$, +NP, +PP, +V P, +S,−NP) are attributes of

178

Figure 1: An example of two parse tree paths.

the hypothesis.
The parse paths have been extended in two ways: (a) each

node can correspond to multiple mentions (connected by
OR); and (b) a path can contain special nodes: ’*’, which
replaces an unspecified set of nodes (which can be empty),
and ’?’, which is a placeholder forexactly one unspecified
node. These extensions give a pattern quality to the parse
paths, which enables the operations performed on them by
the learning algorithm.

To understand the rationale for this extension, consider
the two sentences in Figure 1:

S1 Dawn Capital negotiates withits clients.

S2 Dawn Capital intends changingits name.

In both S1 andS2, the pronounits refers to the named
entity Dawn Capital. The parse paths (highlighted in the
figure) between the pronoun and its antecedent are:

P1 = #PRP$ +NP +PP +VP +S -NP
P2 = #PRP$ +NP +VP +VP +S -NP

If the system treated these two paths (and the others) just
as different strings, on a small corpus it would learn a num-
ber of unique paths comparable to the count of the training
examples. Thus it would overfit on the training data, and any
new variation on the paths already met would be classified
as negative. The paths seen as black boxes are not sufficient;
we need to search inside them for patterns. If, in the current
example, a new (extended) path is generated out of the two:

G = #PRP$ +NP +(PP|VP) +VP +S -NP

this generalization will cover both situations.

Operations on paths Given two extended pathsP1 and
P2, three main operations can be performed on them: match-
ing, generalization, and specialization. For the sake of sim-
plicity in expression, let us call a path that can contain ’*’
nodes a starred path, and one that cannot– a non-starred
path. Note that a non-starred path can still contain ’?’ nodes.
Furthermore, lowercase single letters will be used instead of
part of speech tags in the examples, but these letters stand
for part of speech tags like ’NP’.

Matching
This operation verifies if starred pathP1 matches non-

starred pathP2 in the spirit of regular expressions. PathP1

is converted into a regular expression pattern, while pathP2

is converted into a text that will be compared against the
pattern. For an example, the following are two paths that
match.

P1 = #a| b | c +* +a | d -b -*
P2 = #a +b +? +d -b

Generalization
For starred pathP1 and non-starred pathP2 that do not

match, this operation obtains the minimal generalization G
of P1 such that G matchesP2. Preconditions for this op-
eration are: (a) the paths have the same number of non-’*’
nodes; and (b) the paths have the same tree structure. Nodes
from pathP1 are coupled with nodes at the same position
in pathP2. The generalization performs unions between the
two sets of mentions inside the corresponding nodes. The
resulting path will matchP2 by the definition of this opera-
tion. As an example, consider the following two paths:

P1 = #a| b +a| c +* -d
P2 = #a +d -e

The two paths do not match, and they satisfy the precon-
ditions for generalization. The generalized path is:

G = #a| b +a| c | d +* -d | e

Specialization
For starred pathP1 and non-starred pathP2 that match,

this operation obtains the minimal specializations ofP1 such
that none of them matchesP2. Since they match, the two
hypotheses can be padded with null nodes or ’?’ nodes in
order to align. After that, the specialization is done in two
different ways according to the type of the node inP1 that is
being specialized:

i. For a nodeP1i that was not obtained through expanding a
’*’, P1 is specialized by two new paths that differ from it
only by nodei:

a. S1 with sign(S1i) = sign(P1i) and tags(S1i) =
tags(P1i) − tags(P2i);

b. (only if sign(S1i) is unspecified)S2 with sign(S2i) =
oppositeof sign(P2i) andtags(S2i) = tags(P1i).

ii. For a sequence ofn nodes that were obtained through ex-
panding a ’*’,P1 is specialized by replacing the sequence
with two sets of subpaths:

179

1. subpaths that have a length different fromn, no matter
what nodes they contain:
a. length < n: hypotheses made up only of ’?’ nodes,
with lengths between 1 andn − 1;

b. length > n: a hypothesis withn + 1 ’?’ nodes and
a ’*’ at the end;

2. subpaths that can have lengthn that differ from the
corresponding sequence inP2 by one node (as de-
scribed in (i.)).

A simple example is in order. Consider the following two
paths that match:

P1 = #a| b ? * -c | d
P2 = #a +b +d +e -c

They are padded as follows:

P1 = #a| b ? ? ? -c| d
P2 = #a +b +d +e -c

The specialization hypotheses, in which∧a means any-
thing buta, and ’ ’ stands for any sign, will be:

S1 = #b ? * -c | d
S2 = #a | b +∧b * -c | d
S3 = #a | b -b * -c | d
S4 = #a | b ? * -d
S5 = #a | b ? ? -c| d
S6 = #a | b ? ? ? ? * -c | d
S7 = #a | b ? +∧d * -c | d
S8 = #a | b ? -d * -c | d
S9 = #a | b ? ? +∧e * -c | d
S10 = #a| b ? ? -e * -c | d
S11 = #a| b ? * +∧e -c | d
S12 = #a| b ? * -e -c | d
S13 = #a| b ? * +∧d ? -c| d
S14 = #a| b ? * -d ? -c| d

The set generated in (i) containsS1−S4; the one in (ii.1.a)
containsS5; the one in (ii.1.b) containsS6; andS7 − S14

are generated in (ii.2). None of these hypotheses matchP2.
Note that in the end the sequence of + and - must have only
one inflection.

The CANDEL algorithm The initial step of the algorithm
is to insert a ’*’ hypothesis into G (the general boundary
set) and a null hypothesis into S (the specific boundary set).
Then, for all positive examples S changes through gener-
alizations; after that, for all negative examples G changes
through specializations. S and G change to keep the version
space as consistent as possible with all training examples.
For each training example considered, all hypotheses con-
sistent with it increase their confidence, while some of the
inconsistent ones decrease it and others are generalized or
specialized– hypotheses in S are generalized to include posi-
tive examples and hypotheses in G are specialized to exclude
negative examples. In the case of a positive example, a con-
sistent hypothesis is one that matches it, while in the case of
a negative example a consistent hypothesis is one that does
not match it.

The order in which the training examples are fed to the
algorithm is motivated by the specifics of the task. In the
original algorithm, the order didn’t matter; in our case, all
the positive examples are presented first, followed by all the

negative examples. This change was introduced because a
few positive examples at the beginning, coupled with nega-
tive examples, can reduce G very fast, in a Greedy style. At
each step, the hypotheses in G that are inconsistent with the
current training example decrease their confidence. If the
value becomes negative, they are eliminated. Because the
confidence values start out low, a single positive example
after some previous negative example modified G can delete
at one step many hypotheses in G that might be consistent
with a later positive example. By presenting all the positive
examples first, this does not happen, since during this first
half G will always contain a ’*’ hypothesis that will not be
deleted.

The algorithm works in the following steps:

CANDEL

* Initialize G to the set of maximally
general hypotheses in H.

* Initialize S to the set of maximally
specific hypotheses in H.

* For each positive training example d, do

1. Increase the confidence of any
hypotheses in S or G consistent with
d.

2. Decrease the confidence of any
hypotheses in G inconsistent with
d. Remove the ones with negative
confidence.

3. For each hypothesis s in S that is not
consistent with d do

a. Remove s from S.
b. Add to S all minimal generalizations
h of s such that h is consistent with
d and some member of G is more general
than h. Associate initial confidence
with h.

4. Remove from S any hypothesis that is
more general than another hypothesis in
S.

* For each negative training example d, do

1. Increase the confidence of any
hypotheses in S or G consistent with
d.

2. Decrease the confidence of any
hypotheses in S inconsistent with
d. Remove the ones with negative
confidence.

3. For each hypothesis g in G that is not
consistent with d do

a. Remove g from G.
b. Add to G all minimal specializations
h of g such that h is consistent with d
and some member of S is more specific
than h. Associate initial confidence
with h.

4. Remove from G any hypothesis that is
less general than another hypothesis in
G.

180

Pronoun type Patterns

personal #P + S + SBAR + V P − N

#P + S + V P + hV P + hS − NP − P

#P + S | V P + hS | hV P − hS | hV P − NP | S − N

#O ∧ hS ∧ SBAR + ∧(S | SBAR) + ∧S − O ∧ (N | NP | S) ∗

possessive #P + hNP + NP + PP + N

#P + NP | hNP + NP | V P + V P | hV P + S | hS | hV P − N | P

#P + NP + N

#O O O − ∧(N | V P) ∧ N O

reflexive #P + hV P + hS − N

#P + PP + V P + V P + hV P + S − P

#P + hS − N

#∗ + ∧(NP | S | V P) O

Table 1: Patterns from final version spaces. P and N are used at the ends to stand for pronoun and noun, respectively. hS means
an S node with the role of head for its parent node.

Version space For the purpose of using regular expression
matching, the members of the version space of hypotheses
obtained at the end of CANDEL must be spelled out. In
order to do this, a queue structure is used. For each pair (s,
g) with s in S, g in G, and g more general than S, the queue
(which initially contains s) is updated with all minimal
generalizations of its first element, which is moved to the
version space set. At the end, the queue is empty and the
version set contains all hypotheses in the version space
bordered by S and G.

Version space set

For all hypotheses g in G do

For all hypotheses s in S less general
than g do

1. Initialize queue to contain s

2. While queue is not empty do

a. Pop s’ from head of queue and insert
it into the version space set

b. Introduce all minimal
generalizations of s’ at the end of
queue.

Choosing a candidate For each pronoun in the testing
data, the program generates testing examples from the paths
between it and all its candidate antecedents that appear in
the same sentence. For each of these paths, the program
searches for all the patterns in the learned version space that
match it. Every pattern has associated the number of pos-
itive and negative training examples it matches. (Note that
the patterns from G will not match any negative example at
the end of CANDEL, but the patterns from S might.) The
score of the candidate is the total number of positive exam-
ples minus the total number of negative examples, over the
patterns that match it. Constraints apply: agreement in gen-
der and number is required, and only certain entity types can
corefer with certain pronouns (e.g.PERSONSandORGANI-
ZATIONS with possessive pronouns). The entity types are
automatically detected at preprocessing by a separate mod-
ule. The valid candidate with the highest score is designated
the antecedent of the pronoun.

Experimental Results

It might be interesting to see some examples of the pat-
terns in the version space that emerged from the execution
of CANDEL. Some of them, grouped according to pronoun
type (personal, possessive, and reflexive), are presented in
Table 1. Even if without the whole parse tree they are not
exactly intuitive, we can observe certain preferences about
the parts of speech, depending on the type of pronoun. Per-
sonal pronouns appear to resolve mostly with antecedents
in other clauses, while possessive pronouns resolve in the
same clause, in patterns that contain mostly noun phrases or
pronominal phrases; and reflexive pronouns have short, sim-
ple patterns that keep them close to the noun they modify.

Experimenting was performed on the MUC-6 (MUC-6
1995) and MUC-7 (MUC-7 1997) datasets. The two cor-
pora are annotated with coreference information and easily
accommodate pronominal resolution by considering just the
pronouns detected in the texts. MUC-6 contains 30 “dryrun”
training files and 30 “formal” testing files, while MUC-7
contains 30 dryrun and 20 formal files. We trained our clas-
sifier on the dryrun texts and tested it on the formal texts.

Three types of pronouns were considered, taken sepa-
rately and all together: personal, possessive, and reflexive.
The scoring was calculated as precision P, recall R, and F-
factorF = 2∗P∗R

P+R
. The results are summarized in Table 2.

From the numbers of instances presented in the table it can
be observed that the two corpora are sparse for this task. In-
deed, the worst performance was recorded on the reflexive
pronouns (F = 40% and F = 0% on the two corpora, respec-
tively) that are 12 in total. The best performance was ob-
tained in both cases on personal pronouns, which are also the
greatest in number, followed by the possessives. The overall
score, including all types of pronouns, was F = 78.6% and F
= 75.7% respectively. The precision is always much higher
than the recall, denoting that, even if not all antecedents were
detected, the ones that were detected were correct in high
proportions.

In order to compare our system against a challenging
baseline, we implemented Hobbs’ algorithm for pronom-
inal resolution (Hobbs 1978). Some adaptation was re-
quired. First, Hobbs’ algorithm only handles third person

181

MUC-6 MUC-7
Pronoun type P R F instances P R F instances

personal 93.6 73.0 82.0 278 93.1 74.1 82.6 201
possessive 85.1 70.8 77.3 137 67.9 49.3 57.1 73
reflexive 50.0 33.3 40.0 9 0.00 0.00 0.00 3
all types 88.7 70.5 78.6 424 87.2 66.9 75.7 277

Table 2: The experimental results for CANDEL’s pronominal resolution.

personal pronouns (he, she, it, andthey), therefore, for fair-
ness’ sake, both systems were tested only on this type of pro-
nouns. Furthermore, Hobbs’ syntactic parse tree notations
were not 1-to-1 mappable to the notations of Collins’ parser
used by CANDEL, so some rules from Hobbs’ algorithm had
to be slightly modified according to the new tree structure.
Hobbs’ algorithm has a part that searches for an antecedent
in the previous sentence, which was ignored in the testing
to match CANDEL ’s resolution. The world knowledge se-
lectional constraints in Hobbs’ algorithm were replaced by
the more accessible gender-number agreement and entity
type constraints that were used by CANDEL. Finally, Hobbs
tested his algorithm on perfect parse trees, while this testing
was done using the parse trees detected by Collins’ parser
with less than perfect accuracy.

MUC-6 MUC-7
Algorithm P R F P R F
CANDEL 95.9 70.0 80.9 95.5 69.1 80.2
Hobbs 70.2 62.5 66.1 58.9 51.2 54.8

Table 3: Comparison with Hobbs’ algorithm on third person
personal pronouns only.

As Table 3 illustrates, CANDEL significantly outperforms
the adapted Hobbs algorithm on both datasets. The dif-
ference in performance stems mainly from the way Hobbs
searches for antecedents– his algorithm will almost always
pick an antecedent for a pronoun because it also looks in
the parse tree to the right of the pronoun, something CAN-
DEL does not do. Thus, the amount of incorrectly found an-
tecedents is larger in Hobbs’ algorithm, and that contributes
to the smaller scores.

Conclusions

We have presented CANDEL, an algorithm that learns pat-
terns out of paths in syntactic parse trees, and uses them to
identify the correct antecedents for pronouns that resolve in
the same sentence. Syntactic paths are treated as hypothe-
ses with sequences of nodes as their attributes, and the al-
gorithm maintains a version space of hypotheses consistent
with the training examples seen. The version space is de-
limited by a specific set and a general set that draw closer
with every iteration, through generalization and specializa-
tion, respectively. Experiments on the MUC-6 and MUC-7
datasets show that the method is adequate in the case of spar-
sity of data, and thus offers an alternative to acquiring large
amounts of data.

References
Bergsma, S., and Lin, D. 2006. Bootstrapping path-based
pronoun resolution. InProceedings of the 21st Interna-
tional Conference on Computational Linguistics and 44th
Annual Meeting of the Association for Computational Lin-
guistics, 33–40. Sydney, Australia: Association for Com-
putational Linguistics.
Cardie, C., and Wagstaff, K. 1999. Noun phrase corefer-
ence as clustering. InJoint Conference on Empirical Meth-
ods in Natural Language Processing and Very Large Cor-
pora, Association for Computational Linguistics, 82–89.
Cherry, C., and Bergsma, S. 2005. An expectation maxi-
mization approach to pronoun resolution. InNinth Confer-
ence on Natural Language Learning, 88–95.
Collins, M. 1999. Head-Driven Statistical Models for
Natural Language Parsing. PhD Dissertation, University
of Pennsylvania.
Hobbs, J. R. 1978. Resolving pronoun references. In
Grosz, B.; Sparck-Jones, K.; and Webber, B., eds.,Read-
ings in Natural Language Processing. Morgan Kaufmann.
339–352.
Joachims, T. 1999. Making large-scale svm learning prac-
tical. In Scholkopf, B., and Burges, C., eds.,Advances in
Kernel Methods. MIT-Press.
Kehler, A.; Appelt, D.; Taylor, L.; and Simma, A. 2004.
The (non)utility of predicate-argument frequencies for pro-
noun interpretation. InProceedings of the Human Lan-
guage Technology Conference/North American chapter of
the Association for Computational Linguistics, 2004.
Lappin, S., and Leass, H. J. 1994. An algorithm for
pronominal anaphora resolution. volume 20, 535–561.
Lin, D. 1998. Dependency-based evaluation of minipar. In
Workshop on the Evaluation of Parsing Systems, First In-
ternational Conference on Language Resources and Eval-
uation.
Mitchell, T. E. 1997.Machine Learning. McGraw-Hill.
MUC-6. 1995. Coreference task definition.
MUC-7. 1997. Coreference task definition.
Yang, X.; Su, J.; Zhou, G.; and Tan, C. L. 2004. Improving
pronoun resolution by incorporating coreferential informa-
tion of candidates. InProceedings of the 42nd Meeting of
the Association for Computational Linguistics.
Yang, X.; Su, J.; and Tan, C. 2005. Improving pronoun
resolution using statistics-based semantic compatibility in-
formation. InProceedings of the 43rd Meeting of the As-
sociation for Computational Linguistics.

182

