
QueSTS: A Query Specific Text Summarization System

M Sravanthi, C R Chowdary and P Sreenivasa Kumar
Department of Computer Science and Engineering

Indian Institute of Technology Madras
Chennai, India 600 036.

{sravanti,chowdary and psk}@cse.iitm.ac.in

Abstract

Effective extraction of query relevant information
present within documents on the web is a nontriv-
ial task. In this paper we present our system called
QueSTS, which does the above task by filtering and ag-
gregating important query relevant sentences distributed
across a set of documents. Our approach captures
the contextual relationships among sentences of all in-
put documents and represents them as an “integrated
graph”. These relationships are exploited and several
subgraphs of integrated graph which consist of sen-
tences that are highly relevant to the query and that are
highly related to each other are constructed. These sub-
graphs are ranked by our scoring model. The highest
ranked subgraph which is rich in query relevant infor-
mation and also has sentences that are highly coherent
is returned as a query specific summary.

Introduction

Huge amounts of information is being added to the World
Wide Web (WWW) continuously. So, information overload
has become a problem. Information Retrieval (IR) systems
such as Google, Yahoo etc. address the problem of informa-
tion overload by identifying documents relevant to the user’s
query, ranking them and presenting them as an ordered list.
But the number of search results is very high and informa-
tion pertaining to a query might be distributed across several
sources. So it is a tedious task for a user to sift through the
search results and find the information she needs. It would
be very useful to have a system which could filter and ag-
gregate information relevant to the user’s query from var-
ious sources and present it as a digest or summary. This
summary would help in getting an overall understanding of
the query topic. Our query specific text summarization sys-
tem (QueSTS) fulfills this objective by generating a sum-
mary that is specific to the given query on a set of related
documents.

The query biased summarization of general purpose arti-
cles available on web poses significant challenges like main-
taining coherence, intelligibility and non-redundancy. Co-
herence determines the readability and information flow,

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

while intelligibility/responsiveness is the property that de-
termines if the summary satisfies user’s needs or not. In
this paper, we present a novel multidocument summariza-
tion approach that generates a query specific summary that
is concise, coherent, intelligible and complete (covering all
query terms). Each document in the input is represented as
a Contextual Graph (CG) and CG’s of all documents in the
input are merged incrementally to form an Integrated Graph
(IG). Each sentence in the documents is represented by a
node and contextual similarity between sentences is repre-
sented by an edge. Integrated Graph reflects inter and intra
document contextual similarities present between sentences
of the input. We use “node” and “sentence” interchangeably
hereafter.

In these graphs, neighbourhood of a node represents a
context. Each edge is given a contextual similarity weight
and a node is given a relevance weight w.r.t each query term
in IG. Based on these weights we explore neighbourhood
of all nodes in IG to construct a contextual tree(CTree) and
a summary graph(SGraph). The CTree contains informa-
tion relevant to a particular query term and a SGraph con-
tains information relevant to the whole query. A SGraph
rich in information(high node weights) and coherence (high
edge weights) is given as a query specific summary.

Our approach is domain independent and doesn’t use any
linguistic processing, making it a flexible and general ap-
proach that can be applied to unrestricted set of articles
found on WWW. Experimental results prove the strength of
our system.

Related Work

We focus on extraction based query specific summariza-
tion approach. Extraction based approaches use a scoring
function which considers statistical and linguistic features
like term frequency, cue words, title, position(Luhn 1958;
Edmundson 1969; Hovy & Lin 1997), lexical chains(Barzi-
lay & Elhadad 1997) etc. and assigns each sentence a
salience score. Several clustering based approaches(Radev,
Jing, & Budzikowska 2000) were tried where similar sen-
tences are clustered and a representative sentence of each
cluster is chosen as a digest. MEAD(Radev, Jing, &

219

Proceedings of the Twenty-First International FLAIRS Conference (2008)

Budzikowska 2000) is a centroid based multidocument sum-
marizer. It uses features like cluster centroids, position etc.,
to summarize documents. The documents are clustered to-
gether apriori by a topic detection system. We have used
query specific version of MEAD for comparision in our eval-
uations. Some other machine learning approaches other than
clustering have also been tried out in (Chuang & Yang 2000;
John M. Conroy & Stewart 2005; Fisher et al. 2005).

Recently, graph based models are being used to represent
text. They use measures like degree centrality (Salton et al.
1997) and eigen vector centrality (Erkan & Radev 2004;
Mihalcea & Tarau 2004) to rank sentences. Inspired by
PageRank these methods build a network of sentences and
then determine the importance of each sentence based on its
connectivity with other sentences. Highly ranked sentences
form a summary. Wan et.al. (Wan, Yang, & Xiao 2007) does
topic focused multidocument summarization by exploiting
relationships between sentences based on manifold ranking
process. Bosma et.al. (Bosma 2006) generates a query spe-
cific coherent summary by including supporting sentences
and uses an entailment algorithm to avoid redundancy.

Efforts reported in DUC1 also address query specific mul-
tidocument summarization. The queries considered there
are long questions, typically having 20 to 30 words. But in
the context of a search engine, the keywords given are few.
Hence we do not compare our system with DUC efforts. We
propose a novel algorithm that does statistical processing to
exploit the dependencies between sentences and generates
a summary by balancing both coherence and query respon-
siveness in it.

QueSTS Framework

Contextual Graph

We use a graph model to appropriately represent the inher-
ent structure present in the document. The documents are
initially preprocessed to remove non-textual elements like
images, tables etc. Then the text is segmented using de-
limiter based approach. We use “.” as a delimiter for our
experiments and documents are segmented into sentences.
These set of sentences of each document are represented
as a graph where related sentences are connected to each
other. Therefore each document is represented as a contex-
tual graph which is defined as:

Definition 1 Contextual Graph(CG): A contextual graph
for a document d is defined as a weighted graph, CG(d) =
(V (d), E(d)) where V (d) is a finite set of nodes where each
node is a sentence in the document d and E(d) is a finite
set of edges where an edge eij ∈ E(d) is incident on nodes
i, j ∈ V (d) and is assigned a weight reflecting the degree of
similarity between nodes i and j. An edge exists if its weight
exceeds a threshold µ. Edges connecting adjacent sentences
in a document are retained, irrespective of the threshold.

1http://duc.nist.gov/

An edge weight w(eij) quantifies contextual similarity
between sentences si and sj . It is computed using cosine
similarity measure(sim(−→si ,

−→sj)). The weight of each term
t is calculated using tft ∗ isft where tft is the term fre-
quency and isft is inverse sentential frequency i.e., log(n

nt
)

where n is the total number of sentences and nt is number
of sentences containing the term t in the graph under consid-
eration. Stop words are removed and remaining words are
stemmed before computing these weights. A low similar-
ity value reflects a weak context (i.e. sentences that are not
related) and such edges with an edge weight below a thresh-
old µ(=0.001) are discarded. These edges and their weights
reflect the degree of coherence in the summary.

Integrated Graph

For multidocument summarization, the input is a set of doc-
uments related to a topic. Let χ = (D,T) be a set of docu-
ments D on a topic T . Contextual graphs for each document
in this set χ are merged incrementally to form a graph called
as integrated graph. As the documents in the input set χ
are related to a topic T , they will be similar and may con-
tain some sentences which are redundant. These redundant
sentences are identified and only one of them is placed in
the integrated graph. To reflect the similarities between doc-
uments, we establish edges across nodes of different docu-
ments and the edge weights of IG are computed. Thus the
integrated graph reflects inter as well as intra document sim-
ilarity relationships present in document set χ. Algorithm
for integrated graph construction is given in later sections.

When a query related to the topic T is given, we com-
pute relevancy scores of each node w.r.t each query term.
During this process, we have to deal with sentences that
are not related to query directly (by having terms), but are
relevant. We call these as supporting sentences. To han-
dle this we compute centrality based query biased sentence
salience weights that not only consider the local informa-
tion i.e., whether the node contains the query terms, but also
global information like the nodes to which it is connected
to. We use a mixture model proposed by Otterbacher et.al.
in (Otterbacher, Erkan, & Radev 2005) to define importance
of a node w.r.t a query term in two aspects: the relevance
of sentence to the query term and the kind of neighbours it
is connected to. Initially each node is initialized to query
similarity weight and then these weights are spread to their
neighbours via the weighted graph IG. This process is iter-
ated until the weights converge to a steady state. Adapting
this idea, the node weights for each node w.r.t each query
term qi ∈ Q where Q = {q1, q2, ..., qt} are computed using
the following equation.

wq(s) = d
sim(s, q)

∑

m∈N sim(m, q)
(1)

+ (1 − d)
∑

v∈adj(s)

sim(s, v)
∑

u∈adj(v) sim(u, v)
wq(v)

where wq(s) is node weight of node s with respect to
query term q, d is bias factor, N is number of nodes and

220

sim(si, sj) is cosine similarity between sentences si and sj .
First part of equation computes relevancy of nodes to the
query and second part considers neighbours’ node weights.
The bias factor d gives trade-off between these two parts and
is determined empirically. For higher values of d, more im-
portance is given to the similarity of node to the query when
compared to the similarity between neighbours. The denom-
inators in both terms are for normalization. When a query Q
is given to the system, each word is assigned weight based
on tf ∗ isf metric and node weights for each node w.r.t each
query term are calculated.

Intuitively a node will have a high score value if: 1) it has
information relevant to the query and 2) it is connected to
similar context nodes which share query relevant informa-
tion. If a node doesn’t have any query term but is linked to
nodes having it, then it’s neighbour weights are propagated
in proportion to the edge weight such that it gets a weight
greater than zero. Thus high node weight indicates a highly
relevant node present in a highly relevant context and is used
to indicate the richness of query specific information in the
node.

CTree and SGraph

For each query word, the neighbourhood of each node in the
graph IG is explored and a tree rooted at each node is con-
structed from the explored graph. These trees are called as
contextual trees(CTrees) and they contain nodes and edges
that are prominent in the context. A CTree is formally de-
fined as follows.

Definition 2 Contextual Tree(CTree): A CTreei =
(Ni, Ei, r, qi) is defined as a quadruple where Ni and Ei

are set of nodes and edges respectively. qi is ith term in the
query. It is rooted at r with atleast one of the nodes having
the query term qi. Number of children for each node is at-
most b(beam width). It has atmost (1 + bd) nodes where d
is the maximum depth. CTree is empty if there is no node
with query term qi within depth d.

CTrees corresponding to each query term that are rooted
at a particular node, are merged to form a summary
graph(SGraph) which is defined as follows:

Definition 3 Summary Graph(SGraph). For each node r
in IG, if there are t query terms, we construct a summary

graph SGraph = (N
′

, E
′

, Q) where N
′

and E
′

are union
of the set of nodes and edges of CTreei rooted at r respec-
tively and Q = {q1, q2, ..., qt}.

Scoring Model

CTrees formed from each node in IG are assigned a score
that reflects the degree of coherence and information rich-
ness in the tree. It is defined as:

Definition 4 CTreeScore: Given an integrated graph IG
and a query term q, score of the CTreeq rooted at node r is
calculated as

CTreeScoreq =

βwq(r) +
∑

(u,v)∈CTreeq

u is parent of v

[
αw(eu,v) + βwq(v)

(
√

level(v))
] (2)

α =
a

b
∗ 1.5 (3)

where a is average of top three node weights among the
neighbours of u excluding parent of u and b is maximum
edge weight among nodes incident on u.

The SGraphs formed from each node by merging
CTrees for all query terms are ranked using following
equation and the highest ranked graph is retained as sum-
mary.

Definition 5 SGraphScore. Given an integrated graph IG
and a query Q = {q1, q2, ..., qt}, score of the SGraph SG
is calculated as

SGraphScore =
1

√

size(SG)

∑

q∈Q

CTreeScoreq (4)

The function size(SG) is defined as number of nodes in
SGraph. Using both edge weights representing contextual
similarity and node weights representing query relevance for
selecting a node connected to root node, has never been tried
before. Our summary graph construction is a novel approach
which tries to effectively balance both coherence and infor-
mativeness in a summary.

QueSTS Summarization Methodology

Based on the data model and scoring model presented in the
above section, we design efficient algorithms to automati-
cally generate query biased summaries from text.

Integrated Graph Construction

Integrated graph represents the relationships present among
sentences of the input set. As a long document(the docu-
ment with maximum number of sentences) tends to contain
more number of subtopics than others it’s CG is chosen as a
base graph and is added to IG which is empty initially. The
documents in the input set are ordered in decreasing order of
their size(number of sentences) and CG′s of each document
in the ordered list is added incrementally to IG (nodes in a
CG are considered in their respective document order).

There are two important issues that need to be addressed
in multidocument summarization. They are redundant sen-
tences and ordering of sentences in summary. Redundant
sentences are identified as those sentences which have sim-
ilarity exceeding a threshold λ. This similarity is computed
using cosine similarity and experimentally it was found that

221

λ = 0.7 is sufficient in most of the cases. During the con-
struction of IG, if the sentence in consideration is found to
be highly similar to any sentence of a document other than
document being considered in IG, then it is discarded. Oth-
erwise it is added as a new node and is connected to exist-
ing nodes with which its similarity is above the threshold
µ. Sentence ordering in summary affects readability. For
this purpose, we follow a encoding strategy and assign an
“id” to each node in IG such that there is information flow
in summary when nodes are put in increasing order of their
ids.

Encoding Strategy: Initially all nodes in the base graph
are assigned ids as follows. The ith sentence is assigned
(i − 1) ∗ η as id2. This interval η is used to insert all the
nodes from other documents that are closer to i (i.e. the
inserted node has maximum edge weight with i among all
nodes adjacent to it). The sentences in an interval are or-
dered in decreasing order of their edge weights with i. When
a new node is added to IG, an id is assigned to it. Pseudo
code for IG construction is given in Algorithm 1.

Algorithm 1 Integrated Graph Construction

1: Input: Contextual Graphs CGi in the decreasing order of
number of nodes

2: Output: Integrated graph IG
3: Integrated Graph IG = CG0 {//base graph}
4: Set id of each node in IG as described in IG Construction
5: i = 1
6: while i ≤ number of CG′s do
7: for each node n ∈ CGi considered in the document order

do
8: if parent(n) precedes n in the ith document then

{//parent is the maximum weighted adjacent node in
CG}

9: Let p = node representing parent(n) in IG
10: if there is no neighbour x of p such that sim(n, x) > λ

then
11: for all y in IG, if sim(n, y) > µ then add an edge

(n, y)
12: Set id of n as described in IG Construction
13: end if
14: else if there is no node x in IG such that sim(n, x) > λ

then
15: for all y in IG, if sim(n, y) > µ then add an edge

(n, y)
16: Set id of n as described in IG Construction
17: end if
18: end for
19: i + +
20: end while

If the input document set is singleton set then the inte-
grated graph is equivalent to the contextual graph of that
document. Addition of a any new document to the set can be
reflected in IG by adding its CG as described above and the

2η is number of id’s available for sentences from other docu-
ments. We use η = total number of sentences in all documents.

edge weights are updated accordingly. The integrated graph
for the set of documents can also be computed offline and
stored. When a query is posed on a document set, its IG can
be loaded into memory and CTrees and SGraphs can be
constructed as described below.

CTree Construction

CTrees rooted at each node in Integrated Graph are con-
structed as described below. The neighbourhood of a node r
is explored and prominent nodes in it are included in CTree
rooted at r. This exploration is done in breadth first fashion.
Only b(beamwidth) prominent nodes are considered for fur-
ther exploration at each level. The prominence of a node j is
determined by taking the weight of the edge connecting j to
it’s parent i and it’s node score with respect to the query term
q into consideration. It is computed as (αw(eij)+βwq(j)).
These two factors specify the contribution of the node to
the coherence of the summary and the amount of query re-
lated information. α is the scaling factor defined in Equation
3. This scaling brings edge weights into the range of node
weights and β determines trade-off between coherence and
importance of query relevant information.

The exploration from selected prominent nodes (atmost
b) is continued until a level which has a node containing a
query term (anchor node) or maximum depth d is reached.
All nodes along the path from root to anchor node, along
with their siblings are added to the CTree. When query
term is not found until maximum depth d then CTree for
that query term remains empty. If a root node has the query
term then root and its adjacent “b” nodes are added to CTree
and no further exploration is done.

SGraph Construction

In CTree construction, the direction of the exploration
of the graph is determined by the node weights and edge
weights. These CTrees formed for each query term rooted
at a particular node r are merged to form a SGraph. The
SGraph at a node, contains all nodes and edges that appear
in any one of the CTrees rooted at that node. As CTrees of
all query terms are merged to form a SGraph, completeness
is ensured. As we are merging CTrees rooted at a node, we
will have inter connected set of sentences in the summary
and hence coherence is preserved.

The SGraphs formed are ranked based on the score com-
puted as per Equation 4. Sentences from the highly ranked
SGraph are returned as summary. These sentences are
placed in the increasing order of their id’s.

Experimental Results

In the experiments, QueSTS was compared with two query
specific systems - a baseline and MEAD(Radev, Jing, &
Budzikowska 2000). Our baseline system generates sum-
maries by considering only centrality based node weights
as per Equation 1 using incremental graph, without gen-
erating CTrees and SGraphs. Nodes which have high

222

weights are included in summary. Second system, MEAD3

is a publicly available feature-based multidocument sum-
marization toolkit. It computes a score for each sentence
from a cluster of related documents, as a linear combination
of several features. For our experiments, we used centroid
score, position and cosine similarity with query as features
with 1,1,10 as their weights respectively in MEAD system.
Maximal Marginal Relevance (MMR) reranker(Carbonell &
Goldstein 1998) provided in the MEAD toolkit was used
for redundancy removal with a similarity threshold as 0.6.
Equal number of sentences as generated by QueSTS were
extracted from the above two systems.

We have experimentally evaluated the summaries gener-
ated for 28 queries on wide variety of articles collected from
WWW and ProQuest4, which is a collection of more than
1500 magazines, newspapers, scientific journals, trade mag-
azines, dissertations etc. Top 10 results for a search query
from ProQuest and Google were made as a cluster and 11
clusters were taken. Our dataset had a heterogeneous col-
lection of news and technical articles.

We used four criteria to evaluate the generated summaries.
They are non-redundancy, responsiveness, coherence and
overall performance. Redundancy is defined as unnecessary
repetition of facts in summary, responsiveness is measured
in terms of the amount of information in the summary that
actually helps user to satisfy the information need expressed
in the query and coherence determines the information flow
in the summary. In our experiments we used β = 1, b = 3,
λ = 0.7 and µ = 0.001 values. Summaries generated by
three systems QueSTS, baseline and MEAD were evaluated
by a group of 10 volunteers. They were given a set of in-
structions defining the task and criteria and were asked to
rate each summary on a scale of 1(bad) to 10(good) for each
criteria without actually seeing the original documents. An
average of these ratings for each query was computed and
mean of them was calculated. The graph in figure shows
that QueSTS performs better when compared to other sys-
tems.

MEAD uses MMR principle to handle redundancy, so it
does well. As node weights based on centrality are consid-
ered to compute query relevance, responsiveness is high for
both baseline and QueSTS when compared to MEAD. Sup-
porting sentences were considered in CTree construction,
improving QueSTS performance over baseline. As we ex-
plore strong contextual relationships in summary construc-
tion, coherence is preserved. On the whole QueSTS per-
formed better than others in terms of user satisfaction. Sam-
ple summary generated by our system and MEAD is given
in Table 1.

3www.summarization.com/mead/
4http://proquest.umi.com/login

Figure 1: Evaluation Results

Conclusions

In this paper, we presented a novel framework for multi-
document summarization system which generates a coher-
ent and intelligible summary. We propose the notion of an
integrated graph that represents inherent structure present in
a set of related documents by removing redundant sentences.
We generate query term specific contextual trees (CTrees)
which are merged to form query specific summary graph
(SGraph). We have introduced an encoding strategy to or-
der sentences in summary using integrated graph structure.
This process of computation has indeed improved quality of
summary. We experimentally prove that our approach is fea-
sible and it generates satisfactory summaries.

References

Barzilay, R., and Elhadad, M. 1997. Using lexical chains
for text summarization. In In Proceedings of the Intel-
ligent Scalable Text Summarization Workshop (ISTS’97),
ACL, Madrid, Spain.

Bosma, W. 2006. Query-based extracting: how to support
the answer? In Document Understanding Conference.

Carbonell, J., and Goldstein, J. 1998. The use of mmr,
diversity-based reranking for reordering documents and
producing summaries. In SIGIR ’98: Proceedings of the
21st annual international ACM SIGIR conference on Re-
search and development in information retrieval, 335–336.
New York, NY, USA: ACM Press.

Chuang, W. T., and Yang, J. 2000. Extracting sentence
segments for text summarization: a machine learning ap-
proach. In SIGIR ’00: Proceedings of the 23rd annual in-
ternational ACM SIGIR conference on Research and devel-
opment in information retrieval, 152–159. New York, NY,
USA: ACM Press.

Edmundson, H. P. 1969. New methods in automatic ex-
tracting. J. ACM 16(2):264–285.

Erkan, G., and Radev, D. R. 2004. LexPageRank: Prestige
in multi-document text summarization. In EMNLP.

Fisher, S.; Roark, B.; Yang, J.; and Hersh, B.
2005. OGI/OHSU Baseline Query-directed Multi-

223

document Summarization System for DUC-2005. Pro-
ceedings of the Document Understanding Conference
(DUC).

Hovy, E., and Lin, C. 1997. Automated text summarization
in summarist. In In Proceedings of the Workshop on Intel-
ligent Scalable Text Summarization, pages 18–24, Madrid,
Spain.

John M. Conroy, J. D. S., and Stewart, J. G. 2005.
CLASSY query-based multi-document summarization.
Proceedings of the Document Understanding Conference
(DUC).

Luhn, H. P. 1958. The automatic creation of literature ab-
stracts. IBM Journal of Research Development 2(2):159–
165.

Mihalcea, R., and Tarau, P. 2004. TextRank: Bringing
order into texts. In Lin, D., and Wu, D., eds., Proceedings
of EMNLP 2004, 404–411. Barcelona, Spain: Association
for Computational Linguistics.

Otterbacher, J.; Erkan, G.; and Radev, D. R. 2005. Using
random walks for question-focused sentence retrieval. In
HLT ’05: Proceedings of the conference on Human Lan-
guage Technology and Empirical Methods in Natural Lan-
guage Processing, 915–922. Morristown, NJ, USA: Asso-
ciation for Computational Linguistics.

Radev, D. R.; Jing, H.; and Budzikowska, M. 2000.
Centroid-based summarization of multiple documents:
sentence extraction, utility-based evaluation, and user stud-
ies. In NAACL-ANLP 2000 Workshop on Automatic sum-
marization, 21–30. Morristown, NJ, USA: Association for
Computational Linguistics.

Salton, G.; Singhal, A.; Mitra, M.; and Buckley, C. 1997.
Automatic text structuring and summarization. Inf. Pro-
cess. Manage. 33(2):193–207.

Wan, X.; Yang, J.; and Xiao, J. 2007. Manifold-ranking
based topic-focused multi-document summarization. In IJ-
CAI, 2903–2908.

Table 1: Query: “Chlorine effects on ozone”
QueSTS Summary: At that height, above 10 kilometers,
CFCs and some other gases split apart and loose their de-
structive chlorine or bromine in the midst of the ozone layer-
the shield that protects Earth’s surface by absorbing harmful
ultraviolet light. That is, chlorine (Cl) reacted with ozone
(O3), generating chlorine monoxide (ClO), which in turn
reacted with an oxygen atom to release another chlorine;
the net result was that the chlorine was destroying ozone
without depleting itself. Yet chlorine was still increasing
in the most important place, the stratospheric layer where
ozone resides. CFCs nibble away at the layer of ozone that
stops most harmful ultraviolet radiation from reaching the
earth. But once they reached the mid-stratosphere, above
most of the protective layer of ozone, the intense solar ra-
diation broke the CFC molecules apart, releasing chlorine.
Foams made with CFC substitutes are less effective as insu-
lators than those made with CFCs.

MEAD (Query Specific Summary): ENVIRONMEN-
TAL REGULATION, Remembering the Montreal Protocol:
As its 20th anniversary approaches, what can the landmark
agreement on controlling CFCs teach those who want to
control greenhouse gases? That changed in dramatic fashion
with a series of discoveries concerning the global effects of
a family of chemicals called chlorofluorocarbons, or CFCs.
Ozone Diplomacy: This September will mark the 20th an-
niversary of the Montreal Protocol on Substances that De-
plete the Ozone Layer, an international agreement that set
a schedule for freezing and then phasing out the production
of CFCs the 1987 treaty, which mandated halving CFC pro-
duction in industrial countries by 1998, was subsequently
revised; CFC production was ended in the United States
by 1996. ”There is more reason to act on limiting ozone-
destroying chemicals now than ever, but there is a sense of
sluggishness about doing anything further,” says John Pas-
sacantando, director of the Washington-based environmen-
tal group Ozone Action. The precise make-up of the re-
vitalised ozone layer, especially the vertical distribution of
ozone, will depend on three variables: global warming, pat-
terns of air circulation and concentrations of non-CFC gases
such as nitrous oxide, which also damages ozone. Further
evidence that the chlorofluorocarbons 11 and 12 area greater
threat to the ozone layer in the stratosphere than any other
chemical compound is citeyeard in a report published by the
Department of the Environment’s Central Unit on Environ-
mental Pollution CUEP.

224

