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Abstract

We describe an effort to train a RoboCup soccer-playing
agent playing in the Simulation League using case-
based reasoning. The agent learns (builds a case base)
by observing the behaviour of existing players and de-
termining the spatial configuration of the objects the ex-
isting players pay attention to. The agent can then use
the case base to determine what actions it should per-
form given similar spatial configurations. When observ-
ing a simple goal-driven, rule-based, stateless agent, the
trained player appears to imitate the behaviour of the
original and experimental results confirm the observed
behaviour. The process requires little human interven-
tion and can be used to train agents exhibiting diverse
behaviour in an automated manner.

Introduction
A software agent’s behaviour can be characterized by its
reaction to a sequence of inputs over a period of time
(Wooldridge 2002) given a configuration of surrounding en-
tities (Murakami et al. 2003). Creating and inputting such
behaviour can be very time-consuming, and involves a sig-
nificant amount of technical knowledge (for example, pro-
gramming skills) and domain expertise.

Instead, we want to make our agent learn its behaviour by
observing and imitating another agent. Imitation is a useful
technique when one wants to recreate existing behaviour for
which the code is not available, and/or when one lacks the
time or skills to do it manually. Our goal is to address the
problem of training an agent in the RoboCup domain, as we
believe that it is a good environment to obtain data easily
and experiment with agents that require spatial and tempo-
ral knowledge representation and reasoning. Imitation in the
RoboCup domain can be used to quickly create “sparring
partners” with specific behaviour of interest to train against,
or one could even create a new agent from scratch by putting
the user “in the agent’s shoes”, guiding the agent during
practice, recording the traces of such a run and using it as
the reference behaviour to imitate.

By using a case-based reasoning approach we are able
to store the agent’s spatial knowledge as cases and apply
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a cyclical reasoning method (Aamodt & Plaza 1994) to de-
termine the actions the agent will perform.

There is a known set of competent teams from the annual
Robot World Cup games, and it should ideally be possible
emulate existing teams with as little human intervention as
possible during the training process. Our goal is not to win
the competition but to evaluate the feasibility of quickly de-
veloping agents through this approach. We could then take
the imitative techniques we have developed and apply them
in various other domains (robotics, game development, etc.).

RoboCup
The RoboCup (Robot World Cup) Simulation League
(RoboCup 2007) is a unique testbed for the design of au-
tonomous software agents, where agents represent players
on a soccer team. Typical RoboCup agents collaborate with
teammates, use high-level strategies such as goaltending, de-
fence or offensive plays, and work toward a team goal while
also thwarting the opponents’ goals. There is a wide body
of existing research to draw from, which implies much avail-
able data for case-based reasoning approaches.

RoboCup is a real-time, dynamic and non-deterministic
environment. Client agents in RoboCup must deal with tem-
poral events as well as with an environment consisting of a
2-D space (the soccer field) with objects and other agents
within that space. During each time period in a game, the
server provides clients with world view and state informa-
tion (subject to a noise model) using one of see, hear,
or sense body messages. Objects described in see mes-
sages may be players, the ball, goals, or the numerous lines
and flags located on the field. Objects have attributes such
as distance, direction, and identifying labels (e.g., a player’s
team and uniform number).

Clients then send a command to the server in response,
typically to perform an action such as a dash, kick, or
turn.

Current Approaches
Current attempts to use case-based reasoning for RoboCup
agents (Ros et al. 2007; Wendler & Lenz 1998; Marling et
al. 2003; Steffens 2004) have focused on using CBR for
high-level team activities, like executing set plays given the
configuration of players on the field. The major limitation of
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these approaches is that they require a complete view of the
soccer field and therefore they make domain-dependent as-
sumptions and do not have to deal with an incomplete world
model. As well, they require extensive expert knowledge,
for both defining the features that compose a case and the
creation of cases. The most promising use of CBR for a sin-
gle agent has been with the goalie agent (Berger, Hein &
Burkhard 2007; Marling et al. 2003) although other tech-
niques are usually used in combination with CBR (Berger,
Hein & Burkhard 2007).

Existing attempts at generating an agent’s behaviour from
direct observation such as Matsui’s ILP agent (Matsui, In-
uzuka & Seki 2000) require prior processing including gen-
eration of predicates or other knowledge, and properly clas-
sified examples from which to train. Typically, agent obser-
vation is only used to match previously-generated profiles,
but methods for on-line opponent modelling exist (Drucker
et al. 2002).

Imitation learning has also been applied to imitating re-
active behaviour in first person shooter style games (Bauck-
hage, Thurau & Sagerer 2004).

Contributions
We have developed an extensible framework for research
in RoboCup agent imitation, which includes the following
components:

• a RoboCup client agent that uses the case-based reasoning
framework to imitate the behaviour of other agents;

• a set of algorithms that enable case-based reasoning to be
performed by individual imitative agents;

• an automated process for acquiring case data, learning
feature weights and performing imitative behaviour.

We provide experimental and reproducible results that
demonstrate an agent’s ability to imitate the high-level be-
haviour of an agent (and its limitations), with minimal hu-
man intervention.

The currently implemented agent is stateless, which im-
poses limits on the extent of which the algorithm can imitate
other agent behaviours. This work addresses the challenges
that must be addressed first, while future work will take on
the learning of context and state-based behaviour that would
further improve the effectiveness of this approach.

Methodology
Our case-based imitation framework follows a process that
includes the following objectives:

1. Perform data capture from logs generated by existing
RoboCup clients. Logs describe games as seen from each
player’s point of view.

2. Store the captured data in a spatial knowledge representa-
tion format, capturing “cases” — snapshots of an agent’s
vision and behaviour at discrete times.

3. Preprocessing phase, which can include feature weight-
ing, case reduction or other offline processing of the data.
In this paper we present an automated feature weighting
scheme.

4. Apply a similarity algorithm to compare real-time situ-
ations with previously-stored ones. The new RoboCup
agent responds to each situation by using the same actions
that other RoboCup clients used in “similar” situations.

The resulting agent should exhibit behavioural similari-
ties with the training agents, which are measured both quali-
tatively (observed similarity) and by using strict quantitative
statistical measures (something that other related work often
lacked).

A Case Representation For RoboCup
A case represents a discrete-time snapshot of a given agent’s
view and the associated actions taken by the agent. Each
case c is then an aggregation of all visible objects (repre-
sented by their type, position, velocity and direction) and
the subsequently performed action.

Conveniently, the RoboCup server provides a see mes-
sage that describes the player’s visual information. Players
send commands back to the server in response. A case can
then be built using the player’s visual information as well
as the corresponding action command they send back to the
server. An entire game is thus represented as a sequence of
cases C = {c0, c1, c2, · · · , cn}.

Graphically, a case depicts the objects visible to a
RoboCup player, as in Figure 1. Cases provide a convenient
atomic unit through which data can potentially be further
manipulated.

Figure 1: Visual data in a RoboCup case (dashed lines rep-
resent the field of vision).

Case Recognition
Given a new situation N and a set of observed cases C =
{c0, c1, · · · , cn}, if any case ci ≈ N , then the recorded ac-
tion from that case can be reused.

Case Recognition Algorithm
We use a k-nearest-neighbour search to find the k best case
matches (in tie situations, the first encountered case is given
priority); these are then evaluated using a separate action
selection algorithm to decide which action will ultimately
be chosen. The case recognition process follows the general
algorithm shown below:
load the stored cases from disk
while(game on):

get new incoming ‘‘see’’ data from server
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convert data to case object N
for each stored case x:

d = DistanceCalculation(N, x)
S = keep k most similar results

end loop
a = ActionSelection(S)
send action a to server

end loop

Note that, in RoboCup, for the action to be taken into ac-
count within a single time cycle, the agent must send an ac-
tion before the end of the time cycle (30 ms). In order to
ensure the agent always sends an action in time, the number
of cases in the case base must therefore be below a certain
threshold. The case base size threshold is determined by
calculating the mean time to perform a single distance cal-
culation (the estimated cost per case) and then computing
how many cases could be examined in a single time cycle.
This threshold (in our case, about 3000 cases per cycle) will
limit the diversity of the case base that is used and affect the
accuracy of the imitative behaviour (we have noted a 5 to 8
percentage point degradation).

The algorithm relies on two important functions, namely
DistanceCalculation and ActionSelection.
They are described in the following sections.

Distance Calculation
The DistanceCalculation(N, x) function deter-
mines a value of “similarity” between two cases. Since cases
are collections of multiple objects in space, the objects are
paired, and their distances are summed.

Objects on the field are all described with a distance r
and a direction θ relative to the observing agent. This can
be represented by a polar coordinate P (r, θ), and distances
between similar objects in two distinct cases can readily be
calculated.

Figure 2: Two closely-matching cases.

Object Matching
The main complexity of the distance calculation algorithm
actually lies in mapping pairs of objects between scenes
when there are more than one object of the same type in
a scene, as in Figure 2. The problem is that of minimum-
weight matching in a bipartite graph, where the cost function
to be minimized is the distance between each pair of objects.

In other approaches to applying CBR to RoboCup (Ros
et al. 2007) and agent imitation (Bauckhage, Thurau &

Sagerer 2004), the object matching problem was simplified
by considering a fixed subset of objects (that were always
visible to the agent) or by artificially ensuring that the agent
possessed a complete world model. These simplifications
pose two main problems. Firstly, in most domains an agent
will not have a complete world model so it may not be ac-
curate to assume such (even in RoboCup a complete world
model is not available and had to be artificially created by
having opponent players provide their identification and lo-
cation). Secondly, using a subset of objects (that are always
visible to the agent) may lead to a decrease in performance
because the number of features that the agent can use for
reasoning is severely limited.

We implemented two different algorithms that address ob-
ject matching. The first one, known as the “blossom” algo-
rithm (Cook & Rohe 1999) provides the optimal matching
but doesn’t perform fast enough given our real-time con-
straints. The other one is a faster heuristic (i.e. sacrificing
matching optimality) that sorts objects in each scene based
on their distance to the agent and greedily matches them
pair-wise (Lam, Esfandiari & Tudino 2006).

Objects “missing” from one scene must also be taken into
consideration. One approach is to apply a “penalty” distance
for objects in one set that have no corresponding object in
the other. This penalty should be inversely proportional to
the distance; intuitively, this is a measure of the importance
of a missing object.

Object Weighting
Finally, different types of objects may be weighted accord-
ing to their perceived importance in a case. For example, to
ignore a set of objects (i.e. lines on the field may be irrele-
vant to a given player), weights can be set to 0.

The distance calculation for n objects present in both
cases may thus be expressed as:

d(c1, c2) =
∑

n

[wn ∗ d (objn,mat (objn))] (1)

c1 = {obj1, obj2, · · · , objn},
c2 = {mat (obj1) ,mat (obj2) , · · · ,mat (objn)}

mat(obj) : returns the object that matches with obj, or nil
if there is no matching object (in which case a penalty is
applied)

Action Selection and Adaptation
The result of the k-nearest-neighbour search is a set of k
cases, each a potential match. Each has an associated ac-
tion (e.g., dash, kick, turn) and parameters (power,
direction, etc). When k > 1, the most common action (ma-
jority vote) is used here.

Parameters must also be chosen for selected actions (e.g.,
which direction to kick in and at what strength). The sim-
plest approach would be to just reuse the values originally
stored in the matching case. Averages could also be taken:
if there are n different instances of a kick, the average kick
power and direction could be taken over the n results. But
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so far we have simply reused the action of the closest neigh-
bour.

A possible improvement that we are currently implement-
ing is for the agent to attempt to bind variables in the stored
case together — i.e. was the {kick, turn, dash}
aimed at a particular object?

Weight Calculation
When using a k-nearest neighbour classifier, using equal
feature weights can result in poor performance when irrele-
vant or redundant features are present (Wettschereck & Aha
1995). Even if two agents use the same set of objects for
reasoning they may place different levels of importance on
each type of object. Using appropriate feature weights for
an imitative agent is vitally important for the accuracy of the
imitative behaviour of the agent.

We assume no prior knowledge of the agent that is being
imitated, so feature weights must be determined automati-
cally using the data that is available (the case base). Deter-
mining feature weights in an automated fashion has been
successful in other case-based reasoning domains (Stahl
2005; Stahl & Gabel 2003) and we apply a similar method-
ology to imitation learning.

In particular, we use a genetic algorithm (Koza 1992) for
the task of determining feature weights. A population of
possible solutions (individuals) is maintained and at discrete
time intervals (generations) the best solutions are kept for
the next generation (and may be modified with genetic op-
erators) while the remaining solutions are discarded. For
our application, a possible solution is composed of the set
of weights to be used by the k-nearest neighbour classifier
(with one weight for each type of object).

We measure the fitness of each solution using the global
f-measure, which is a function of the f-measures for each
type of action. This helps to ensure that we are maximizing
the ability of the agent to perform each type of action and
not just actions that occur a disproportional number of times
in the case base. We define the f-measure, F, for a single
action, i, as:

Fi =
2 ∗ precisioni ∗ recalli
precisioni + recalli

(2)

precisioni =
ci

ti
(3)

recalli =
ci

ni
(4)

In the above equations, ci is the number of times the ac-
tion was correctly chosen, ti is the total number of times the
action was chosen and ni is the number of times the action
should have been chosen. The global f-measure, combining
the f-measures for all N actions, as:

Fglobal =
1
N

N∑
i=1

Fi (5)

After a number of generations the system will evolve leav-
ing only solutions that result in higher fitness, and therefore
higher imitative performance.

Implementation
We developed an implementation of the case format and a
RoboCup client based on the matching algorithms described
previously. Krislet (Langner 1999) was used as a starting
point. Krislet uses simple decision-tree logic to express its
behaviour, namely that the agent will always search for the
ball, attempt to run towards it, and then attempt to kick it
toward the goal. The main benefit of using Krislet is that it
is coded in Java, is easy to extend, and all its client-server
communications and message parsing functions are already
implemented.

To capture logs from existing games, the LogServer proxy
utility (Marlow 2004) is inserted into the communications
path between existing RoboCup agents and the server. We
have verified experimentally that the use of LogServer does
not introduce a “probe effect” in the results. The captured
log files can then be directly converted into a case base.

Experimental Results

Table 1: Accuracy and Recall Results for Basic Agents

Accuracy Recall
dash/turn

LineRun 93.51% 0.96/0.72
SquareRun 87.36% 0.94/0.46
ChaseBall 83.22% 0.84/0.58

Our experiments aim to determine to what extent exist-
ing agents can be imitated and what characteristics of such
agents are particularly problematic. We also want to deter-
mine the impact of our automatic weight calculation scheme
(as described previously) on the performance of the imita-
tion agent.

Imitation Tests
In initial experiments, we examined agents that performed
basic behaviours:

• LineRun: Runs from one end of the field to the other end,
turns around, and runs back.

• SquareRun: Runs in a square pattern.

• ChaseBall: Follows the ball around the field.

These agents were run with equal weighting for all objects
on the field and performed quite well without attempting any
sort of optimization. A summary of the results can be seen
in Table 1 (note that there are no recallkick values because
these agents never attempt to kick).

For further experiments, we selected three different
RoboCup agents of varying complexity:

• Krislet

• NewKrislet (Huang & Swenton 2003), which uses a state
machine model to express goals; we consider a specific
team implementation called the AntiSimpleton, which
uses a simple attacker/defender strategy. The Attacker
waits near the midfield line until the defenders pass the
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Table 2: Average Weights Calculated by Genetic Algorithm

Ball Goal Flag Line Team Opponent Unknown
Krislet 0.40 0.18 0.00 0.05 0.37 0.00 0.00
NewKrislet 0.38 0.10 0.00 0.22 0.30 0.00 0.00
CMUnited 0.19 0.03 0.39 0.28 0.01 0.08 0.02

Table 3: Accuracy and Recall Results for Soccer Agents

Accuracy
(Calculated)

Accuracy
(Equal)

Accuracy
(Expert)

Recall
kick/dash/turn
(Calculated)

Recall
kick/dash/turn
(Equal)

Recall
kick/dash/turn
(Expert)

Krislet 72.83% 68.37% 70.27% 0.51/0.84/0.52 0.11/0.80/0.32 0.16/0.82/0.39
NewKrislet 71.13% 65.70% 69.07% 0.46/0.83/0.53 0.23/0.80/0.43 0.43/0.80/0.46
CMUnited 53.93% 41.90% 51.23% 0.28/0.40/0.63 0.06/0.23/0.41 0.16/0.38/0.41

ball toward it, then attempts to score a goal (much like
Krislet) before returning to its home position to await
more passes from Defenders.

• CMUnited (Stone, Veloso & Riley 1999), a RoboCup
Champion team which uses a layered learning architec-
ture and a number of strategies including formation strate-
gies. This team is chosen not because of any realistic hope
of properly emulating the team but to determine how far
we are from such a goal.

Automation Tests
In the experiments that follow, we will evaluate the perfor-
mance of the imitating agent use three different weighting
schemes:

1. Equal weights for all features/objects

2. Weights determined by a human expert

3. Weights determined automatically (see section on weight
calculation)

Data was obtained by observing the agents play several
complete games (with five players per team). From this, 350
cases were randomly selected for the case base and 3000
cases were randomly selected for testing. A 1-nearest neigh-
bour search was used to select the most appropriate case and
the action associated with that case was used without modi-
fication.

The genetic algorithm used a population of 50 solutions
and ran for 1000 generations. Selection of solutions to
keep for the next generation was performed using a tourna-
ment selection method (Koza 1992). Standard mutation and
crossover genetic operators are used to evolve the solutions.
The fitness, the f-measure, of a solution was determined by
using that solution (a set of weights) as the weights used by
the case-based reasoning algorithm on a set of test cases.

The average weights calculated by the genetic algorithm
can be found in Table 2. The average accuracy and recall
( listed as recallkick / recalldash / recallturn ) using the
calculated weights, equal weights and expert weights can be
found in Table 3 (the precision and f-measure statistics were

also generated but have been omitted due to space limita-
tions).

We can see that for all three agents the metrics statistics
are noticeably higher using the calculated weights (com-
pared to both the equal weights and expert weights). The
mean values were analyzed using a single-sample t-test and
the improvements were found to be statistically significant
compared to the values for both the expert and equal weights
(p-values <0.05).

Although we were already quite confident that using equal
weights would not produce the optimum results, it is inter-
esting to note that the expert weights (proposed by the au-
thors of the agent or someone with knowledge of the inner
workings of the agent) did not produce optimum results ei-
ther. Often hidden factors play an important role in the im-
itative process. For example, in the Krislet agent there is a
noticeable weight applied to the teammates. We know that
Krislet does not pay any attention to these objects, but when
performing imitation they prove to be important. In the case
of the teammates, they are important because teammates are
usually dashing in the direction of the ball and taking them
into consideration helps the imitative agent track the ball lo-
cation. Similar observations can be made for the NewKrislet
agent weights as well.

Limitations and Future Work
The current case recognition framework is subject to the fol-
lowing limitations:

• Does not consider some visual information such as object
velocity and direction or non-visual information such as
body state, game state, or memory of previous conditions.

• Unable to utilize inter-agent communication.

Future work will address a number of the above limita-
tions, including the following:

• Detection of “stateful behaviour” by examining the ob-
served data and looking for cases with the same inputs
yet different outputs, i.e. ∃x1, x2|C(x1) = C(x2) but
a(x1) 6= a(x2). Large numbers of such cases would sug-
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gest different states or other hidden factors influencing the
outputs.

• Looking beyond individual cases, toward finding patterns
or trends over sequences of cases —the agent should also
be able to trigger high-level actions that occur over a se-
quence of time.

Conclusions
The case-based imitation methodology described here rep-
resents initial steps toward an automated process for obser-
vation and imitation of other agents.

Our results suggest that it is possible to learn the be-
haviour of a RoboCup player if its behaviour can be captured
in a simple logical construct such as a decision tree. As well,
machine learning techniques can be applied to the case-base
in order to learn the importance of different objects and in-
crease the overall imitative accuracy. This allows such sim-
ple agents to be imitated with minimal human interaction.

Although the players imitated are stateless, single-layered
agents, they are fairly representative of at least some of
the behaviours of more complex agents. These results are
encouraging and suggest that with further development it
may be possible to further increase the accuracy of imitative
agents and allow them to imitate more complex behaviour.
Source code of the described algorithms, data sets, complete
results and videos showing our imitating agents in action can
be found at http://rcscene.sourceforge.net .
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