
Reinforcement of Local Pattern Cases for Playing Tetris

Houcine Romdhane & Luc Lamontagne

Department of Computer Science and Software Engineering
Université Laval

Pavillon Adrien-Pouliot, Québec (Québec), Canada, G1K 7P4
{houcine.romhdane, luc.lamontagne}@ift.ulaval.ca

Abstract
In the paper, we investigate the use of reinforcement learn-
ing in CBR for estimating and managing a legacy case base
for playing the game of Tetris. Each case corresponds to a
local pattern describing the relative height of a subset of
columns where pieces could be placed. We evaluate these
patterns through reinforcement learning to determine if sig-
nificant performance improvement can be observed. For es-
timating the values of the patterns, we compare Q-learning
with a simpler temporal difference formulation. Our results
indicate that training without discounting provides slightly
better results than other evaluation schemes. We also ex-
plore how the reinforcement values of the patterns can help
reduce the size of the case base. We report on experiments
we conducted for forgetting cases. .

1. Introduction

Game AI has been growing in the last few years as a topic
of interest both for the industrial and academic communi-
ties. Most games have some kind of decision components,
and AI techniques are increasingly used to implement
them. Case based reasoning (CBR) is foreseen as a candi-
date approach as it would provide an efficient mean to
memorize gaming experiences that could later be reused by
some non-player characters (NPC).

However this introduces some challenges to the cur-
rent state of the art of CBR. Cases usually represent indi-
vidual episodes of problem solving instances. As most of
the games are sequential in nature, a purely episodic repre-
sentation would only depict partial situations. Also many
tactical and reactive games impose some forms of time de-
pendent limitations on a game AI component. Very few
initiatives have been taken to introduce time constraints in
CBR reasoning. Efficient management of the case base
would be one of the main issues to impact on the perform-
ance of CBR systems due to its nearest-neighbor style of
retrieval. Management policies would be required to tackle
these problems.

In this paper, we investigate to what extent reinforce-
ment learning (RL) can contribute to the management of a
legacy case base containing local patterns for playing a se-
quential game. We use the game of Tetris as an application

.Copyright © 2008 Association for the Advancement of Artificial Intellli-
gence (www.aaai.org). All rights reserved.

due to the dimensionality of the decision space which
makes it a complex but tractable problem to solve. Also
this game present the interesting property of being subject
to time limitations as decisions must be taken before a
dropping figure reaches the surface of the board.

 Our interest for this work is on the evaluation of prior
cases. We assume that cases are already provided to the
CBR system either by an external program or by some hu-
man player. Through offline training, we make use of the
reinforcement values to assess the quality of the cases and
to guide the forgetting of cases to control the size of the
case base. This differs from reinforcement learning efforts
in CBR assuming online learning without prior knowledge
(Sharma et al., 2007) (Gabel et al., 2005).

In the next sections of this paper, we propose a repre-
sentation for structuring local patterns for playing Tetris
with a CBR component. We then assess the contribution of
reinforcement learning to evaluate the quality of the pat-
terns. We compare Q-learning with a simple temporal dif-
ference formulation without discounting to estimate the
value of each individual pattern. We finally perform some
experiments for forgetting cases and estimating what level
of degradation can be observed by reducing the size of the
case base using reinforcement values as a pruning crite-
rion.

2. Playing Tetris with Local Pattern Cases

Tetris is one of the oldest video games. It consists of plac-
ing a dropping piece onto a set of columns to complete
rows and avoid accumulation of pieces. Seven different
shapes of pieces exist in the game. Placing each of them
involves various combinations of rotation and sliding.

From a computational point of view, Tetris is an inter-
esting laboratory for experimenting with CBR as it is a
complex game with a solution space of 10 columns and 20
lines. The problem space is estimated to 2200 and its solving
through analytic methods is NP-complete (Breukalaar et
al., 2004). Moreover, this game presents interesting time
constraints as a decision must be made before the piece
touches the upper row of cubes.

In our initial experiments, we cumulated examples us-
ing the Tieltris extension of the TIELT testbed (Molineaux
et al., 2005) and tried to apply these in a CBR fashion by
comparing the heights of all the 10 columns. As reported in
section 6.1, this global approach reveals inefficient, mainly

Proceedings of the Twenty-First International FLAIRS Conference (2008)

263

due to the large number of situations that might arise in
this game. However we make use of these results as a base-
line for our work.

 An interesting observation is that when someone
plays Tetris, he sweeps through the surface and tries to lo-
cate an adequate subset of columns where the dropping
figure could be placed. This is representative of a local
scheme to play this game. Local assessment approaches
have been proposed for games, and more specifically for
complex board games such as Chess (Campbell et al.,
2002), Checkers (Schaeffer, 2005) and Go (Silver et al.,
2007). They offer the advantage of reducing the complex-
ity of the problem space while providing good approxima-
tion for potential solutions.

Figure 1 – Using local patterns for playing Tetris.

To reproduce such a local approach in CBR, we con-
verted our legacy cases as a set of patterns indicating
where blocks would be placed on a set of columns. These
represent height patterns that can be used for deciding
where to place blocks on a new configuration.

In this setting, a case describing a local pattern is rep-
resented as follows (Figure 1):

• Problem: it consists of the type of piece, its orienta-
tion and the local pattern where the piece was
placed. The width of the patterns corresponds to
those of the figures to be placed.

• Solution: the rotation that should be applied to the
piece to fit it in the local pattern. For instance, a
piece could be turned clockwise and moved 2 col-
umns on the left.

• Value: the improvement to be expected by applying
to the piece on the columns according to the solu-
tion. This can either correspond to the reward ob-
tained from Tetris or be estimated by some other
evaluation scheme.

In the paper, we try to get insights on the following
three questions:

- What CBR performance can be expected from a set
of local patterns?

- What level of play can be reached by estimating the
value of the patterns through some reinforcement
scheme?

- As Tetris is a real-time game, what degradation of
performance can be expected by reducing the size of
case base in order to meet time constraints imposed
by the game?

To address these issues, we adopt a reinforcement
learning approach to assign values to case and to make use
of them during the case management phase.

3. General Approach

The problem solving CBR cycle we used for playing Tetris
is described in Figure 2. This cycle contains the usual
phases of CBR, i.e. retrieval, reuse and revision. The case
maintenance phase is not elicited in the cycle as it is cur-
rently deployed as an offline process. This issue is further
discussed in Section 5 of the paper.

choose-CBR-Move(P, O, CB) {
 inputs: P, a new piece presented with orientation O
 CB, the pattern case base used by the CBR cycle.
 local variables: Cols, the height of the columns of the game
 k, the number of nearest neighbors being considered
 Candidates, some similar patterns
 Pattern-Case, one specific local pattern
 New-solution, rotation and translation of the piece P.
 // Retrieval
 Cols current configuration of columns on the board
 Candidates find-Knn(k, P, O, Cols, CB)

 // Reuse
 Pattern-Case select-Best-Pattern(Candidates, P, O, Cols)
 New-solution adapt(Pattern-Case, P, O, Cols)
 R Reward obtained by applying New-solution to P on Cols

 // Revise
 Pattern-Case.Value update-Case-Value(Pattern-Case, R)
}

Figure 2 - CBR approach for the reuse of local patterns.

3.1 Representation of Local Patterns
We constructed an initial CBR system by playing multiple
games with Tieltris, thereby cumulating over 60 000
moves. Following our decision to adopt a local representa-
tion, we converted each case into a local pattern. A pattern,
depicting local information on where a figure is dropped, is
represented by the following features:

• Restricted pattern: A pattern is represented as the
heights of a sequence of N columns, N being the size
of the figure being placed on these columns. The
heights are all relative to the lowest column in the
pattern (see Figure 3).

• Local depth: the depth of the restricted pattern, i.e.
the difference between the lowest part of the pattern
and the highest column adjacent to the pattern.

• Global height: the global height of the pattern with
respect to the lowest column in the whole surface.

• Degree of intrusion: we memorize the number of
empty squares on the row corresponding to the low-
est level of the local pattern (Figure 4). It is an esti-
mation of the possibility to complete a row if a piece

264

is applied to this position. This is important as filling
rows is the only way in Tetris to create additional
room on the board to place figures.

This local representation scheme reduces the problem
space to less than 70 millions possible states.

Figure 3 – Pattern features. A case contains information
about the height of the columns where the figure is placed
(restricted pattern) as well as the position if this pattern
relative to the global surface of columns.

Figure 4 – Degree of intrusion. This corresponds to the
number of empty cells at the bottom of the pattern.

3.1 Retrieval of cases
In order to estimate the similarity between a board configu-
ration and a local case pattern, the function find-knn trav-
erses the surface of columns and estimates the similarity
between the case pattern and each sequence of N columns
in the surface (N being the size of the pattern).

Similarity with a restricted pattern is obtained from the
Manhattan distance between the cells of the board and the
heights of the pattern. For the other features (local depth,
global height, degree of intrusion), the distance corre-
sponds to the absolute difference of value. Each distance is
then converted into a similarity measure using the inverse
function

 .

Global similarity is estimated as the weighted sum of
the similarity between these four features. The retrieval
function returns the k nearest local patterns applying to the
type of piece to be placed on the surface board. In our ex-
periments, k was arbitrarily set to 5 cases.

3.2 Reuse of cases
For selecting a case to be reused (select-Best-Pattern func-
tion), we tried different linear combinations of similarity
and case value. For small values of k, the best results were

obtained with case value as the only selection criteria. And
we noted that adding similarity as a selection criterion ei-
ther brings degradation or no significant contribution. So
the selection function consists of choosing the most valued
case of the nearest neighbors.

Using a local representation, the adaptation of the se-
lected case is rather simple and consists of determining two
parts:

• the rotation of the piece to be placed;
• how many columns the piece has to be moved

sideways (translation).
Each case solution already contains a rotation to be

applied to the figure. So the resulting rotation is a composi-
tion of the initial orientation of the piece and the manipula-
tion proposed in the case. For translation, a piece is always
moved sideways to the left-most position of a pattern.
Hence reuse corresponds to applying the solution of a re-
trieved case (a rotation) to the piece, followed by a shift to
the appropriate position corresponding to the location of
the pattern in the global surface.

3.3 Case Revision
When dropping a figure on the board, the system assigns a
gain to this move. Revision consists of adjusting the value
of a case based on the payoff of new playing episodes. This
adjustment can be made from two different perspectives:

• the value of a case is only modified according to the
new gain obtained for its application to a new board
configuration;

• the value of a case is discounted according to the
payoff obtained from the application of subsequent
cases. This interpretation captures the sequential na-
ture of the game as the value accounts for the ex-
pected payoff of the next moves.

These are discussed in section 4. It is important to note that
at this stage, we do not consider adding new patterns to the
case base or replace existing ones in this phase as our goal
is primarily to study the evaluation of available cases.

4. Evaluating Cases through Reinforcement

The game of Tetris can be considered as a sequential deci-
sion making process under uncertainty. Moreover Tetris is
a Markovian process as the next configuration of a board
only depends on the current surface of columns and the
move applied to the dropping figure.

Reinforcement learning (Sutton & Barto, 1998) is a
practical approach to learn consistent evaluations from ob-
served rewards for complex Markov decision processes
(MDPs). Some authors (Carr, 2005) (Mairal et al., 2006)
have applied approximate techniques of RL to Tetris, but
not in a CBR setting.

RL can be used to estimate the value of a state through
temporal difference techniques or to evaluate action-state
pairs through Q-learning. For our application, we adopt a
Q-learning approach.

265

The training procedure goes as follows. We start with
some initial evaluations V corresponding to the rewards as-
signed by Tetris to each of the local patterns of the case
base. Then we let the CBR component play games during
which cases are selected using the general approach de-
scribed in section 3. For each selected case Ct at time t, a
revision of its value is performed using the following up-
date function

 (1)

where R is the reward obtained by applying the move
adapted from Ct to the new target surface at time t and γ is
a discount factor assigning some importance to future
moves.

In the update equation (1), Ct+1 corresponds to the case
selected by the CBR system at the iteration t+1. This cap-
tures the idea that an efficient CBR system should seek the
maximum payoff expected from future moves. Hence the
value of future moves should be backed up in the value of
Ct. As the CBR cycle always chooses the most valued local
pattern present in the case base, we assume that the next
selected case Ct+1 is a good approximation of the maximum
solution to be applied to surfacet+1. From an implementa-
tion point of view, the value of Ct is updated during the
CBR cycle at time t+1.

In order to prevent falling into local optima regions,
the training process is allowed to explore the search space
by selecting non maximal cases from the set of nearest
neighbors. This is captured by a softmax rule (Sutton &
Barto, 1998) where the probability of selecting one of the
nearest neighbors is given by

 (2)

where τ is an exploration factor (or temperature) and V is
the value of a local pattern case. This factor is reduced
progressively with time to bring the training algorithm to
adopt a greedy exploitation behavior (i.e. select the most
valued pattern).

To compare Q-learning to a baseline, we also imple-
mented a simplified version of temporal difference, re-
ferred to as every-visit Monte Carlo method by Sutton and
Barto, to train retrieved cases. This approach can be inter-
preted as follows for our application:

 (3)

In fact, from an implementation point of view, this is
equivalent to applying Q-learning without discounting. But
for simplicity, we refer to this update function as TD(0)
later in this work.

5. Controlling the Size of the Case Base

Tetris is a time-constrained game as one must take an ac-
tion before the dropping figure reaches the surface of the
board. The problem gets also more complex as the avail-
able time to place a figure reduces with the level of the
game. In our general CBR approach, most of the reasoning

time is dedicated to retrieval, i.e. matching patterns with a
surface. As execution time of a CBR cycle is linearly pro-
portional to the size of the case base, one should learn how
to manage this parameter to efficiently build a system.

 We have made some trials to evaluate the relevance
of reinforcement values for deleting cases from the case
base. For comparison purposes, we have introduced a us-
age degree U to the specification of a case indicating the
contribution of the case during the training process. The
usage degree is an increasing factor defined as

where n is the number of times the case was invoked dur-
ing reinforcement training. We selected a value of τ = 0.6
for our experiments. The description of a case becomes:

C = <Piece, Orientation, Pattern, Solution, V, U>.

6. Experiments

For conducting our experiments, we adopted the following
procedure for each of our trials. We first generated ap-
proximately 60 000 cases using Tieltris and 5000 of these
cases were picked at random to form a case base. Then a
number of games were played either for training purpose
(> 500 games) or performance assessment (~100 games).
Results presented in the tables are the average values ob-
tained during performances assessment games.

6.1 Performance with a case base of local patterns
Figure 5 presents our initial performance estimation of the
general CBR approach described in Section 3. We com-
pared three different CBR configurations:

a. Global: Case similarity is based on the distance be-
tween two global surfaces and the results shown
here are for a Manhattan distance1. The solution of
the case with the most similar global surface is ap-
plied without any modification.

b. Local with k = 1: Case problems are represented as
local patterns. The selected move always corre-
sponds to the most similar case. Hence the value of
a case does not intervene in the selection process.
The solution is adapted in rotation and translation.

c. Local with k = 5: The same as previous but the se-
lected case is the most valued among 5 nearest
neighbors. Case value corresponds to the gain at-
tributed by Tieltris for each move.

 # of pieces

played
Game
Score

Game
level

of lines
removed

 a. Global 38.2 375.8 1.0 1.8
 b. Local (k=1) 70.8 702.0 1.0 13.7
 c. Local (k=5) 97.9 973.6 1.08 23.8

Figure 5 – Global vs. local similarity.

1 We also estimated similarity from a Euclidian distance but we
observed no significant difference in the results.

266

Our results clearly indicate that the global approach (con-
fig. a) performs poorly. As it fails to remove lines from the
board due to its incapability to adapt to slightly varying
situations, it has little potential for improvement. Using
patterns based on similarity (config. b) offers a better ca-
pability to target where a figure should be placed. This
translates in a significant increase in the number of lines
being removed. Finally, using reward values assigned by
Tieltris (config. c) further improves the performance of
system by providing better discrimination among compet-
ing patterns. However some additional experiments (not
shown here) indicate that behavior degrades when we in-
crease the number of nearest neighbors considered for case
selection.

6.2 Value estimation using reinforcement training
To determine if reinforcement learning can contribute to
the evaluation of cases, we performed training on a case
base of approximately 5275 cases using a local pattern
configuration with k=5 (config. c). We arbitrarily chose
the following parameters to update the value of a retrieved
case:

• The learning rate α = 0.6.
• The exploration factor τ = 0.7.

Learning # of pieces

played
Game
score

Game
level

of lines
removed

 TD(0) 116.5 1159.4 1.42 32.0
 γ = 0.1 104.7 1041.6 1.16 26.2

 γ = 0.5 98.6 979.5 1.06 23.8
 γ = 0.9 98.9 982.7 1.13 24.2
Figure 6 – CBR performance after estimation of case value
using reinforcement learning without exploration.

 # of pieces
played

Game
score

Game
level

of lines
removed

 TD(0) 147.8 1466.8 1.90 44.1
 γ = 0.1 91.7 911.0 1.08 21.7

 γ = 0.5 100.3 996.5 1.14 24.7
 γ = 0.9 94.7 1055.9 1.18 27.2
Figure 7 – CBR performance after estimation of case value
using reinforcement learning with exploration.

Results obtained by playing 100 games with the result-

ing case base are presented in Figure 6. These were gener-
ated without exploration, i.e. by always selecting the most
valued pattern. We generated results with different value
of γ to evaluate the impact of discounting future moves.
From Figure 6, we note that a significant improvement is
made when training is performed without discounting.
However this progressively vanishes when we assign more
importance to the expected payoff from future moves. We
repeated this experiment by retraining the system and al-
lowing the exploration of non maximal pattern (Figure 7).
As expected, letting the system explore brings further

benefits when no discounting is applied. For the TD(0)
formulation, we get an increase of 26.5% in game score
and 37.5% more lines being removed per game.

Figure 8 – Score per game with respect to future discount.

Figure 9 – Tendencies of score during training. The upper
line corresponds to a discount factor of γ=0, the lower one
to γ=0.9.

However, as we increase γ, Q-learning reveals unstable and
it becomes difficult to ensure that the benefits of explora-
tion are always obtained. Figure 8 clearly shows there is no
improvement made by using discounting values. As men-
tioned in (Carr, 2005), this could be attributed to the sto-
chastic nature of Tetris which limits the accuracy of the es-
timates. By increasing the look ahead window, we might
introduce noise in the estimation of the patterns. Another
possible explanation, as illustrated by the tendency lines in
Figure 9, is that while TD(0) seems to have converged
within 500 trials, higher discounting would require longer
training to efficiently provide useful values. Finally dis-
counted updates could be applied only when successive
pieces are placed beside or above each other as moves be-
ing far apart can be considered independent.

6.3 Forgetting Patterns from the Case Base
For this experiment, we try to determine if case values

obtained through reinforcement training are a good indica-
tor for reducing the size of the case base. We compared 2
case reduction criteria: usage degree and case value. For
both approaches, we start with a case base of 5000 patterns
trained with TD(0) and softmax exploration. We progres-

267

sively removed cases from the case base in increasing or-
der to evaluate what performance variation can be ob-
served. As for previous experiments, 100 games were
played for each trial. Comparative results are presented in
Figure 10.

Figure 10 – Reducing case base size. The graphics pre-
sents game score obtained by removing cases with increas-
ing reinforcement value or usage degree.

Our results indicate that removing cases based on their
reinforcement value prematurely yield an important degra-
dation of performance (see Case Value curve). By deleting
the least valued 200 cases from the initial case base, the
CBR component looses 38% in game score and removes
on average 50% fewer lines during a game. We conjecture
that these cases are those applied to difficult moves offer-
ing little payoff. By removing them from the case base, the
CBR system is left with no guidance on how to manage
these situations. However if we progressively remove addi-
tional cases, performance stagnates and even slightly im-
proves around 1000 cases.

Removal based on the case usage results in a far better
behavior (see Case Usage curve). Removing the 2000
lesser used cases (40% of the initial case base) has no sig-
nificant effect on performance (a diminution of 1.7%).
And it even increases further as we reached an optimum
for a case base size of approximately 1000 cases. This is
quite unexpected as we did not anticipate that such a small
number of cases would maintain the initial level of play.

Hence, from these results, we conclude than forgetting
unused cases is a better tactic than removing bad valued
cases. Reinforcement value is not by itself an informative
criterion for reducing the size of a case base. And our re-
sults also suggest that it is possible to significantly reduce
the size of the case base without too much impact on CBR
performance.

7. Conclusions and Future work

Our goal was to explore how cases can be valued with re-
inforcement learning and determine if the learnt values
would impact on the performance the CBR component.
We made use of the game of Tetris to conduct our study.

Our experiments indicate that performance of a CBR com-
ponent can significantly be improved through reinforce-
ment training of the cases. However discounting for future
moves in our Tetris CBR approach does not provide any
improvements. We also established that case value is not
an efficient criterion for downsizing a case base.

Many aspects remain to be investigated for this work.
We are currently comparing tactics for removing patterns
from the case base combining criteria such as usage, value
and density. Modifying existing patterns or adding new
ones should also be considered. Our goal was not to build a
fully-optimized version of CBR Tetris but we should de-
vote efforts to improve the performance beyond the level
of an intermediate human player. Finally constraining the
size of the case base with respect to the game level or the
width of the board would provide an opportunity for study-
ing real-time control in CBR.

References

Breukelaar, R., Demaine, E.D., Hohenberger, S., Hooge-
boom, H.J., Kosters, W.A., Liben-Nowell, D. (2004).
Tetris is Hard, Even to Approximate. International
Journal of Computational Geometry and Applications,
vol 14, pp. 41-68.

Campbell, M., Hoane, A., Hsu, F. (2002). Deep Blue, Arti-
ficial Intelligence, Vol. 134, pp. 57-83.

Carr, D. (2005). Applying reinforcement learning to Tetris;
Technical report, Rhodes University, 15 pages.

Gabel, T., Riedmiller. M. (2005). CBR for State Value
Function Approximation in Reinforcement Learning.
Proceedings of ICCBR’05, Springer, pp. 206-220.

Molineaux, M., Aha, D. (2005). TIELT: A testbed for
gaming environments. Proceedings of AAAI’05, AAAI
Press, pp. 1690-1691.

Mairal, J., Jacob, L. (2006). Apprentissage par renforce-
ment: Intelligence artificielle pour un jeu de Tetris.
Technical report, University of Cachan, 22 page.

Sutton, R., Barto, A. (1998). Reinforcement Learning: An
Introduction. MIT Press, Cambridge,MA.

Schaeffer, J., Bjornsson, Y., Burch, N., Kishimoto, A.,
Muller, M., Lake, R., Lu, P., Sutphen, S. (2005). Solv-
ing Checkers, Proceedings of IJCAI’05, pp. 292-297.

Sharma, M., Holmes, M., Santamaria, J., Irani, A., Isbell,
C., Ram, A. (2007). Transfer Learning in Real-Time
Strategy Games Using Hybrid CBR/RL; Proceedings of
IJCAI’07, pp. 1041-1046.

Silver, D., Sutton, R., Mueller, M. (2007). Reinforcement
Learning of Local Shape in the Game of Go, Proceed-
ings of IJCAI’07, pp. 1053-1058.

268

