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Abstract 
In the paper, we investigate the use of reinforcement learn-
ing in CBR for estimating and managing a legacy case base 
for playing the game of Tetris. Each case corresponds to a 
local pattern describing the relative height of a subset of 
columns where pieces could be placed. We evaluate these 
patterns through reinforcement learning to determine if sig-
nificant performance improvement can be observed. For es-
timating the values of the patterns, we compare Q-learning 
with a simpler temporal difference formulation.  Our results 
indicate that training without discounting provides slightly 
better results than other evaluation schemes. We also ex-
plore how the reinforcement values of the patterns can help 
reduce the size of the case base. We report on experiments 
we conducted for forgetting cases. . 

1. Introduction  

Game AI has been growing in the last few years as a topic 
of interest both for the industrial and academic communi-
ties.  Most games have some kind of decision components, 
and AI techniques are increasingly used to implement 
them. Case based reasoning (CBR) is foreseen as a candi-
date approach as it would provide an efficient mean to 
memorize gaming experiences that could later be reused by 
some non-player characters (NPC).  

However this introduces some challenges to the cur-
rent state of the art of CBR. Cases usually represent indi-
vidual episodes of problem solving instances.  As most of 
the games are sequential in nature, a purely episodic repre-
sentation would only depict partial situations. Also many 
tactical and reactive games impose some forms of time de-
pendent limitations on a game AI component. Very few 
initiatives have been taken to introduce time constraints in 
CBR reasoning. Efficient management of the case base 
would be one of the main issues to impact on the perform-
ance of CBR systems due to its nearest-neighbor style of 
retrieval. Management policies would be required to tackle 
these problems.  

In this paper, we investigate to what extent reinforce-
ment learning (RL) can contribute to the management of a 
legacy case base containing local patterns for playing a se-
quential game. We use the game of Tetris as an application 
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due to the dimensionality of the decision space which 
makes it a complex but tractable problem to solve. Also 
this game present the interesting property of being subject 
to time limitations as decisions must be taken before a 
dropping figure reaches the surface of the board.  

 Our interest for this work is on the evaluation of prior 
cases. We assume that cases are already provided to the 
CBR system either by an external program or by some hu-
man player.  Through offline training, we make use of the 
reinforcement values to assess the quality of the cases and 
to guide the forgetting of cases to control the size of the 
case base. This differs from reinforcement learning efforts 
in CBR assuming online learning without prior knowledge 
(Sharma et al., 2007) (Gabel et al., 2005).  

In the next sections of this paper, we propose a repre-
sentation for structuring local patterns for playing Tetris 
with a CBR component. We then assess the contribution of 
reinforcement learning to evaluate the quality of the pat-
terns. We compare Q-learning with a simple temporal dif-
ference formulation without discounting to estimate the 
value of each individual pattern. We finally perform some 
experiments for forgetting cases and estimating what level 
of degradation can be observed by reducing the size of the 
case base using reinforcement values as a pruning crite-
rion.  

2. Playing Tetris with Local Pattern Cases 

Tetris is one of the oldest video games. It consists of plac-
ing a dropping piece onto a set of columns to complete 
rows and avoid accumulation of pieces. Seven different 
shapes of pieces exist in the game. Placing each of them 
involves various combinations of rotation and sliding.  

From a computational point of view, Tetris is an inter-
esting laboratory for experimenting with CBR as it is a 
complex game with a solution space of 10 columns and 20 
lines. The problem space is estimated to 2200 and its solving 
through analytic methods is NP-complete (Breukalaar et 
al., 2004).  Moreover, this game presents interesting time 
constraints as a decision must be made before the piece 
touches the upper row of cubes.   

In our initial experiments, we cumulated examples us-
ing the Tieltris extension of the TIELT testbed (Molineaux 
et al., 2005) and tried to apply these in a CBR fashion by 
comparing the heights of all the 10 columns. As reported in 
section 6.1, this global approach reveals inefficient, mainly 
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due to the large number of situations that might arise in 
this game. However we make use of these results as a base-
line for our work. 

 An interesting observation is that when someone 
plays Tetris, he sweeps through the surface and tries to lo-
cate an adequate subset of columns where the dropping 
figure could be placed. This is representative of a local 
scheme to play this game. Local assessment approaches 
have been proposed for games, and more specifically for 
complex board games such as Chess (Campbell et al., 
2002), Checkers (Schaeffer, 2005) and Go (Silver et al., 
2007). They offer the advantage of reducing the complex-
ity of the problem space while providing good approxima-
tion for potential solutions.  

 
 
Figure 1 – Using local patterns for playing Tetris. 
      

To reproduce such a local approach in CBR, we con-
verted our legacy cases as a set of patterns indicating 
where blocks would be placed on a set of columns.  These 
represent height patterns that can be used for deciding 
where to place blocks on a new configuration.  

In this setting, a case describing a local pattern is rep-
resented as follows (Figure 1):   

• Problem: it consists of the type of piece, its orienta-
tion and the local pattern where the piece was 
placed.  The width of the patterns corresponds to 
those of the figures to be placed.   

• Solution: the rotation that should be applied to the 
piece to fit it in the local pattern. For instance, a 
piece could be turned clockwise and moved 2 col-
umns on the left.  

• Value: the improvement to be expected by applying 
to the piece on the columns according to the solu-
tion. This can either correspond to the reward ob-
tained from Tetris or be estimated by some other 
evaluation scheme. 

In the paper, we try to get insights on the following 
three questions: 

- What CBR performance can be expected from a set 
of local patterns?  

- What level of play can be reached by estimating the 
value of the patterns through some reinforcement 
scheme?  

- As Tetris is a real-time game, what degradation of 
performance can be expected by reducing the size of 
case base in order to meet time constraints imposed 
by the game?   

To address these issues, we adopt a reinforcement 
learning approach to assign values to case and to make use 
of them during the case management phase.  

3. General Approach  

The problem solving CBR cycle we used for playing Tetris 
is described in Figure 2.  This cycle contains the usual 
phases of CBR, i.e. retrieval, reuse and revision.  The case 
maintenance phase is not elicited in the cycle as it is cur-
rently deployed as an offline process. This issue is further 
discussed in Section 5 of the paper.   
 
choose-CBR-Move(P, O, CB) { 
   inputs: P, a new piece presented with orientation O 
               CB, the pattern case base used by the CBR cycle. 
   local variables: Cols, the height of the columns of the game 
               k, the number of nearest neighbors being considered 
               Candidates, some similar patterns 
               Pattern-Case, one specific local pattern  
               New-solution, rotation and translation of the piece P. 
    // Retrieval 
   Cols  current configuration of columns on the board 
   Candidates  find-Knn(k, P, O, Cols, CB) 
    
   // Reuse 
   Pattern-Case  select-Best-Pattern(Candidates, P, O, Cols) 
   New-solution  adapt(Pattern-Case, P, O, Cols) 
   R  Reward obtained by applying New-solution to P on Cols 
 
   // Revise  
   Pattern-Case.Value  update-Case-Value(Pattern-Case, R) 
} 

 
Figure 2 - CBR approach for the reuse of local patterns. 

3.1 Representation of Local Patterns 
We constructed an initial CBR system by playing multiple 
games with Tieltris, thereby cumulating over 60 000 
moves. Following our decision to adopt a local representa-
tion, we converted each case into a local pattern. A pattern, 
depicting local information on where a figure is dropped, is 
represented by the following features:  

• Restricted pattern: A pattern is represented as the 
heights of a sequence of N columns, N being the size 
of the figure being placed on these columns. The 
heights are all relative to the lowest column in the 
pattern (see Figure 3). 

• Local depth: the depth of the restricted pattern, i.e. 
the difference between the lowest part of the pattern 
and the highest column adjacent to the pattern.  

• Global height: the global height of the pattern with 
respect to the lowest column in the whole surface.  

• Degree of intrusion: we memorize the number of 
empty squares on the row corresponding to the low-
est level of the local pattern (Figure 4). It is an esti-
mation of the possibility to complete a row if a piece 
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is applied to this position. This is important as filling 
rows is the only way in Tetris to create additional 
room on the board to place figures.  

This local representation scheme reduces the problem 
space to less than 70 millions possible states.  
 
 
 
 
  
 
 
 
 

 
 
Figure 3 – Pattern features. A case contains information 
about the height of the columns where the figure is placed 
(restricted pattern) as well as the position if this pattern 
relative to the global surface of columns.  
 
 
 
 
 
 
 

 
 
Figure 4 – Degree of intrusion. This corresponds to the 
number of empty cells at the bottom of the pattern.  

3.1 Retrieval of cases 
In order to estimate the similarity between a board configu-
ration and a local case pattern, the function find-knn trav-
erses the surface of columns and estimates the similarity 
between the case pattern and each sequence of N columns 
in the surface (N being the size of the pattern).  

Similarity with a restricted pattern is obtained from the 
Manhattan distance between the cells of the board and the 
heights of the pattern. For the other features (local depth, 
global height, degree of intrusion), the distance corre-
sponds to the absolute difference of value. Each distance is 
then converted into a similarity measure using the inverse 
function 

                       . 

Global similarity is estimated as the weighted sum of 
the similarity between these four features. The retrieval 
function returns the k nearest local patterns applying to the 
type of piece to be placed on the surface board. In our ex-
periments, k was arbitrarily set to 5 cases.  

3.2 Reuse of cases  
For selecting a case to be reused (select-Best-Pattern func-
tion), we tried different linear combinations of similarity 
and case value. For small values of k, the best results were 

obtained with case value as the only selection criteria.  And 
we noted that adding similarity as a selection criterion ei-
ther brings degradation or no significant contribution. So 
the selection function consists of choosing the most valued 
case of the nearest neighbors.  

Using a local representation, the adaptation of the se-
lected case is rather simple and consists of determining two 
parts:  

• the rotation of the piece to be placed;  
• how many columns the piece has to be moved 

sideways (translation).  
Each case solution already contains a rotation to be 

applied to the figure. So the resulting rotation is a composi-
tion of the initial orientation of the piece and the manipula-
tion proposed in the case. For translation, a piece is always 
moved sideways to the left-most position of a pattern. 
Hence reuse corresponds to applying the solution of a re-
trieved case (a rotation) to the piece, followed by a shift to 
the appropriate position corresponding to the location of 
the pattern in the global surface.  

3.3 Case Revision 
When dropping a figure on the board, the system assigns a 
gain to this move. Revision consists of adjusting the value 
of a case based on the payoff of new playing episodes. This 
adjustment can be made from two different perspectives: 

• the value of a case is only modified according to the 
new gain obtained for its application to a new board 
configuration;  

• the value of a case is discounted according to the 
payoff obtained from the application of subsequent 
cases. This interpretation captures the sequential na-
ture of the game as the value accounts for the ex-
pected payoff of the next moves.  

These are discussed in section 4. It is important to note that 
at this stage, we do not consider adding new patterns to the 
case base or replace existing ones in this phase as our goal 
is primarily to study the evaluation of available cases.   

4. Evaluating Cases through Reinforcement 

The game of Tetris can be considered as a sequential deci-
sion making process under uncertainty. Moreover Tetris is 
a Markovian process as the next configuration of a board 
only depends on the current surface of columns and the 
move applied to the dropping figure.   

Reinforcement learning (Sutton & Barto, 1998) is a 
practical approach to learn consistent evaluations from ob-
served rewards for complex Markov decision processes 
(MDPs).  Some authors (Carr, 2005) (Mairal et al., 2006) 
have applied approximate techniques of RL to Tetris, but 
not in a CBR setting. 

RL can be used to estimate the value of a state through 
temporal difference techniques or to evaluate action-state 
pairs through Q-learning. For our application, we adopt a 
Q-learning approach.  
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The training procedure goes as follows. We start with 
some initial evaluations V corresponding to the rewards as-
signed by Tetris to each of the local patterns of the case 
base.  Then we let the CBR component play games during 
which cases are selected using the general approach de-
scribed in section 3. For each selected case Ct at time t, a 
revision of its value is performed using the following up-
date function  

   (1) 

where R is the reward obtained by applying the move 
adapted from Ct to the new target surface at time t and γ is 
a discount factor assigning some importance to future 
moves.  

In the update equation (1), Ct+1 corresponds to the case 
selected by the CBR system at the iteration t+1. This cap-
tures the idea that an efficient CBR system should seek the 
maximum payoff expected from future moves. Hence the 
value of future moves should be backed up in the value of 
Ct. As the CBR cycle always chooses the most valued local 
pattern present in the case base, we assume that the next 
selected case Ct+1 is a good approximation of the maximum 
solution to be applied to surfacet+1. From an implementa-
tion point of view, the value of Ct is updated during the 
CBR cycle at time t+1. 

In order to prevent falling into local optima regions, 
the training process is allowed to explore the search space 
by selecting non maximal cases from the set of nearest 
neighbors. This is captured by a softmax rule (Sutton & 
Barto, 1998) where the probability of selecting one of the 
nearest neighbors is given by  

                                             (2) 

where τ is an exploration factor (or temperature) and V is 
the value of a local pattern case. This factor is reduced 
progressively with time to bring the training algorithm to 
adopt a greedy exploitation behavior (i.e. select the most 
valued pattern).  

To compare Q-learning to a baseline, we also imple-
mented a simplified version of temporal difference, re-
ferred to as every-visit Monte Carlo method by Sutton and 
Barto, to train retrieved cases.  This approach can be inter-
preted as follows for our application: 

 (3) 

In fact, from an implementation point of view, this is 
equivalent to applying Q-learning without discounting. But 
for simplicity, we refer to this update function as TD(0) 
later in this work. 

5. Controlling the Size of the Case Base  

Tetris is a time-constrained game as one must take an ac-
tion before the dropping figure reaches the surface of the 
board.  The problem gets also more complex as the avail-
able time to place a figure reduces with the level of the 
game. In our general CBR approach, most of the reasoning 

time is dedicated to retrieval, i.e. matching patterns with a 
surface. As execution time of a CBR cycle is linearly pro-
portional to the size of the case base, one should learn how 
to manage this parameter to efficiently build a system.  

   We have made some trials to evaluate the relevance 
of reinforcement values for deleting cases from the case 
base. For comparison purposes, we have introduced a us-
age degree U to the specification of a case indicating the 
contribution of the case during the training process. The 
usage degree is an increasing factor defined as   

 
where n is the number of times the case was invoked dur-
ing reinforcement training.  We selected a value of τ = 0.6 
for our experiments. The description of a case becomes: 

C = <Piece, Orientation, Pattern, Solution, V, U>.  

6. Experiments  

For conducting our experiments, we adopted the following 
procedure for each of our trials. We first generated ap-
proximately 60 000 cases using Tieltris and 5000 of these 
cases were picked at random to form a case base. Then a 
number of games were played either for training purpose 
(> 500 games) or performance assessment (~100 games). 
Results presented in the tables are the average values ob-
tained during performances assessment games.  

6.1 Performance with a case base of local patterns 
Figure 5 presents our initial performance estimation of the 
general CBR approach described in Section 3. We com-
pared three different CBR configurations: 

a. Global: Case similarity is based on the distance be-
tween two global surfaces and the results shown 
here are for a Manhattan distance1. The solution of 
the case with the most similar global surface is ap-
plied without any modification.   

b. Local with k = 1: Case problems are represented as 
local patterns. The selected move always corre-
sponds to the most similar case. Hence the value of 
a case does not intervene in the selection process. 
The solution is adapted in rotation and translation.  

c. Local with k = 5: The same as previous but the se-
lected case is the most valued among 5 nearest 
neighbors. Case value corresponds to the gain at-
tributed by Tieltris for each move.  

 
 # of pieces 

played 
Game 
Score 

Game 
level 

# of lines 
removed 

  a. Global 38.2 375.8 1.0   1.8 
  b. Local (k=1) 70.8 702.0 1.0 13.7 
  c. Local (k=5) 97.9 973.6 1.08 23.8 
 
Figure 5 – Global vs. local similarity. 

                                     
1 We also estimated similarity from a Euclidian distance but we 
observed no significant difference in the results.  
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Our results clearly indicate that the global approach (con-
fig. a) performs poorly.  As it fails to remove lines from the 
board due to its incapability to adapt to slightly varying 
situations, it has little potential for improvement.  Using 
patterns based on similarity (config. b) offers a better ca-
pability to target where a figure should be placed. This 
translates in a significant increase in the number of lines 
being removed.  Finally, using reward values assigned by 
Tieltris (config. c) further improves the performance of 
system by providing better discrimination among compet-
ing patterns.  However some additional experiments (not 
shown here) indicate that behavior degrades when we in-
crease the number of nearest neighbors considered for case 
selection.    

6.2 Value estimation using reinforcement training 
To determine if reinforcement learning can contribute to 
the evaluation of cases, we performed training on a case 
base of approximately 5275 cases using a local pattern 
configuration with k=5 (config. c).  We arbitrarily chose 
the following parameters to update the value of a retrieved 
case: 

• The learning rate α = 0.6.  
• The exploration factor τ = 0.7. 

 
Learning # of pieces 

played 
Game 
score 

Game 
level 

# of lines 
removed 

  TD(0) 116.5 1159.4 1.42 32.0 
 γ = 0.1 104.7 1041.6 1.16 26.2 

  γ = 0.5   98.6   979.5 1.06 23.8 
  γ = 0.9   98.9   982.7 1.13 24.2 
Figure 6 – CBR performance after estimation of case value 
using reinforcement learning without exploration.   
 
 

 # of pieces 
played 

Game 
score 

Game 
level 

# of lines 
removed 

  TD(0) 147.8 1466.8 1.90 44.1 
 γ = 0.1   91.7    911.0 1.08 21.7 

  γ = 0.5 100.3    996.5 1.14 24.7 
  γ = 0.9   94.7 1055.9 1.18 27.2 
Figure 7 – CBR performance after estimation of case value 
using reinforcement learning with exploration.  

  
Results obtained by playing 100 games with the result-

ing case base are presented in Figure 6.  These were gener-
ated without exploration, i.e. by always selecting the most 
valued pattern.  We generated results with different value 
of γ to evaluate the impact of discounting future moves. 
From Figure 6, we note that a significant improvement is 
made when training is performed without discounting. 
However this progressively vanishes when we assign more 
importance to the expected payoff from future moves.  We 
repeated this experiment by retraining the system and al-
lowing the exploration of non maximal pattern (Figure 7).  
As expected, letting the system explore brings further 

benefits when no discounting is applied. For the TD(0) 
formulation, we get an increase of 26.5% in game score 
and 37.5% more lines being removed per game.  
 

 
Figure 8 – Score per game with respect to future discount.  

 
Figure 9 – Tendencies of score during training. The upper 
line corresponds to a discount factor of γ=0, the lower one 
to γ=0.9.  
 
However, as we increase γ, Q-learning reveals unstable and 
it becomes difficult to ensure that the benefits of explora-
tion are always obtained. Figure 8 clearly shows there is no 
improvement made by using discounting values.  As men-
tioned in (Carr, 2005), this could be attributed to the sto-
chastic nature of Tetris which limits the accuracy of the es-
timates. By increasing the look ahead window, we might 
introduce noise in the estimation of the patterns. Another 
possible explanation, as illustrated by the tendency lines in 
Figure 9, is that while TD(0) seems to have converged 
within 500 trials, higher discounting would require longer 
training to efficiently provide useful values. Finally dis-
counted updates could be applied only when successive 
pieces are placed beside or above each other as moves be-
ing far apart can be considered independent. 

6.3 Forgetting Patterns from the Case Base 
For this experiment, we try to determine if case values 

obtained through reinforcement training are a good indica-
tor for reducing the size of the case base. We compared 2 
case reduction criteria: usage degree and case value.  For 
both approaches, we start with a case base of 5000 patterns 
trained with TD(0) and softmax exploration. We progres-
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sively removed cases from the case base in increasing or-
der to evaluate what performance variation can be ob-
served. As for previous experiments, 100 games were 
played for each trial. Comparative results are presented in 
Figure 10.   

 
 
Figure 10 – Reducing case base size.  The graphics pre-
sents game score obtained by removing cases with increas-
ing reinforcement value or usage degree.  
 

Our results indicate that removing cases based on their 
reinforcement value prematurely yield an important degra-
dation of performance (see Case Value curve). By deleting 
the least valued 200 cases from the initial case base, the 
CBR component looses 38% in game score and removes 
on average 50% fewer lines during a game.  We conjecture 
that these cases are those applied to difficult moves offer-
ing little payoff. By removing them from the case base, the 
CBR system is left with no guidance on how to manage 
these situations. However if we progressively remove addi-
tional cases, performance stagnates and even slightly im-
proves around 1000 cases.    

Removal based on the case usage results in a far better 
behavior (see Case Usage curve). Removing the 2000 
lesser used cases (40% of the initial case base) has no sig-
nificant effect on performance (a diminution of 1.7%).  
And it even increases further as we reached an optimum 
for a case base size of approximately 1000 cases.  This is 
quite unexpected as we did not anticipate that such a small 
number of cases would maintain the initial level of play.  

Hence, from these results, we conclude than forgetting 
unused cases is a better tactic than removing bad valued 
cases. Reinforcement value is not by itself an informative 
criterion for reducing the size of a case base. And our re-
sults also suggest that it is possible to significantly reduce 
the size of the case base without too much impact on CBR 
performance.  

7. Conclusions and Future work  

Our goal was to explore how cases can be valued with re-
inforcement learning and determine if the learnt values 
would impact on the performance the CBR component.  
We made use of the game of Tetris to conduct our study. 

Our experiments indicate that performance of a CBR com-
ponent can significantly be improved through reinforce-
ment training of the cases. However discounting for future 
moves in our Tetris CBR approach does not provide any 
improvements. We also established that case value is not 
an efficient criterion for downsizing a case base.  

Many aspects remain to be investigated for this work. 
We are currently comparing tactics for removing patterns 
from the case base combining criteria such as usage, value 
and density. Modifying existing patterns or adding new 
ones should also be considered. Our goal was not to build a 
fully-optimized version of CBR Tetris but we should de-
vote efforts to improve the performance beyond the level 
of an intermediate human player. Finally constraining the 
size of the case base with respect to the game level or the 
width of the board would provide an opportunity for study-
ing real-time control in CBR.      
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