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Abstract

We introduce a method to deal with the problem of
learning from imbalanced data sets, where examples
of one class significantly outnumber examples of other
classes. Our method selects minority examples from
misclassified data given by an ensemble of classifiers.
Then, these instances are over-sampled to create new
synthetic examples using a variant of the well-known
SMOTE algorithm. To build the ensemble we use
the bagging method and locally weighted linear regres-
sion as the machine learning algorithm. We tested our
method using several data sets from the UCI machine
learning repository. Our experimental results show that
our approach obtains very good results, in fact it showed
better recall and precision than SMOTE.

Introduction
The class imbalance problem has received more attention
in recent years, because many real-world data sets are im-
balanced, i.e. some classes have a lot more examples than
others. This situation makes the learning task difficult, as
learning algorithms based on optimizing accuracy over all
training examples will tend to classify all examples as be-
longing to the majority class.

Some examples of applications with imbalanced data sets
include text classification (Zheng, Wu, and Srihari 2004),
cancer detection (Chawla et al. 2002), searching for oil
spills in radar images (Kubat and Matwin 1997), detection
of fraudulent telephone calls (Fawcett and Provost 1997),
astronomical object classification (de la Calleja and Fuentes
2007), and many others. In these applications we are more
interested in the minority class rather than the majority class.
Thus, we want accurate predictions for the positive class,
perhaps at the expense of slightly higher error rates for the
majority class.

In this paper we present a method to select minority exam-
ples from misclassified data given by an ensemble of classi-
fiers. We use those examples that belong to the minority
class to create synthetic examples with a variant of the well-
known SMOTE method. We use bagging as the ensemble
method and locally weighted linear regression as the ma-
chine learning algorithm.
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The paper is organized as follows: Section 2 gives a brief
description of related work. In Section 3 we describe our
proposed method for dealing with imbalanced data sets. In
Section 4 we show experimental results, and finally, in Sec-
tion 5 conclusions are presented.

Related Work
The problem of imbalanced data sets has been addressed
from two main approaches. The first one consists of sam-
pling data, i.e. under-sampling the majority class exam-
ples or over-sampling the minority class examples, in or-
der to create balanced data sets (Chawla et al. 2002;
Japkowicz 1997; Kubat and Matwin 1997). The second
is the algorithm-based approach, which focuses on cre-
ating or modifying extisting algorithms (Domingos 1999;
Pazzani et al. 1994).

We now describe some methods based on on the data
sampling approach. Kubat and Matwin (Kubat and Matwin
1997) presented an heuristic under-sampling method to bal-
ance the data set eliminating the noisy and redundant ex-
amples of the majority class, and keeping the original pop-
ulation of the minority class. Japkowicz (Japkowicz 1997)
experimented with random re-sampling which consisted of
re-sampling the positive class at random until it contained
as many examples as the majority class; another method
consisted of re-sampling only those minority examples that
were located on the boundary between the minority and ma-
jority classes. Chawla et al. (Chawla et al. 2002), devised a
method called Synthetic Minority Over-sampling Technique
(SMOTE). This technique creates new synthetic examples
from the minority class; its nearest positive neighbors are
identified and new positive instances are created and placed
randomly in between the instance and its neighbors. Ak-
bani et tal. (Akbani, Kwek, and Japkowicz 2004) proposed
a variant of the SMOTE algorithm combined with Veropou-
los et al’s different error costs algorithm, using support vec-
tor machines as the learning method. SMOTEBoost is an
approach introduced by Chawla et al (Chawla et al. 2003)
that combines SMOTE and the boosting ensemble. Hui
Han et al. (Han, Wang, and Mao 2005) presented two new
minority over-sampling methods: borderline-SMOTE1 and
borderline-SMOTE2, in which only the minority examples
near the borderline are over-sampled. Recently, Liu et al
(Liu, An, and Huang 2006), proposed an ensemble of SVMs
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with an integrated sampling technique, which combines both
over-sampling and under-sampling. They first re-balance the
data using over-sampling and under-sampling. Then, each
bootstrap sample is combined with the over-sampled posi-
tive instances to form a training set to train an SVM. There-
fore, N SVMs can be obtained fromN different training
sets. Finally, theN SVMs are combined to make a predic-
tion on a test example by casting a majority vote from the
ensemble of SVMs.

Our Method: SMMO
Ensembles of classifiers are often used to improve the accu-
racy of single learning algorithms (Dietterich 1997). How-
ever, we have used them in a different way, i.e. instead of
identifying those examples correctly classified, we find the
misclassified examples.

We adopt this strategy because those examples closer to
the boundary are frequently misclassified, that is they are
more difficult to identify, and then more important for clas-
sification. Therefore, these examples may contribute to train
better classifiers that alow us to correctly classify more mi-
nority class examples.

The main idea of our approach is to use an ensemble of
n classifiers to select those misclassified examples that be-
long to the minority class with the purpose of creating new
examples by over-sampling.

Our proposed method performs as follows. We first train
n classifiers to create an ensemble, combining their individ-
ual decisions by voting to obtain the classification of the ex-
amples. Then, we select those misclassified examples,m,
that belong to the positive class to create a data setM . Then,
we only use the examples inM to create new instances in
order to obtain a more dense positive space. Figure 1 shows
our proposed method calledSMMO(Selecting Minority ex-
amples from Misclassified data for Over-sampling) to select
misclassified minority examples.
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Figure 1: SMMO algorithm.

Because under-sampling the majority class leads to infor-
mation loss, we decide to create new data by over-sampling
the minority examples. To generate the synthetic examples

Table 1: M-SMOTE algorithm.

D is the original data set
P is the set of positive examples
M is the set of positive misclassified examples
for each examplem in M

- Find then closest examples tom in P
using the weighted distance

- ObtainA, the mean ofn
- δ = m - A
- η = m + δ ∗ σ(0, 1)
Add η to D

endfor

we use a variant of SMOTE that we have employed in pre-
vious work (?). This method performs as follows: separate
positive and negative examples from the original data set.
Find then closest examples to each positive example using
the weighted distance. For doing this, we only consider the
positive data set. Then, average thesen closest instances to
obtain the mean example. Take the difference between the
minority example and the mean instance. After that, multi-
ply this difference by a random number between0 and1, to
select a random point. Finally, add the new synthetic posi-
tive instance to the original data set. In Table 1 we outline
our over-sampling algorithm, calledM-SMOTE.

Ensemble method
An ensemble of classifiers consists of a set of classifiers
whose individual decisions are combined in some way, nor-
mally by voting. Ensembles often yield better results than
individual classifiers. We usedbagging(Dietterich 1997) to
create the ensemble.

The idea of bagging is to randomly generaten subsets
with examples from the original training set, and then use
each of these subsets to create a classifier. Each subset is
obtained by random sampling, with replacement, from the
original training set.

Locally Weighted Linear Regression
Locally Weighted Linear Regression (LWLR) is an instance-
based learning method. This algorithm simply stores all
available training examples, and when it has to classify a
new example, it finds similar examples to them. In this work
we use a linear model around the query point to approximate
the target function.

Given a query pointxq, to predict its output parameters
yq, we assign to each example in the training set a weight
given by the inverse of the distance from the training point
to the query point:

wi =
1

|xq − xi|
(1)

Let W , the weight matrix, be a diagonal matrix with en-
tries w1, . . . , wn. Let X be a matrix whose rows are the
vectorsx1, . . . , xn, the input parameters of the examples in
the training set, with the addition of a ”1” in the last column.
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Table 2: Description of Data sets.

Data set Examples % Minority % Majority Features
balance 625 7 93 4

car 1728 4 96 6
chess 3196 47 53 36
glass 214 13 87 10

ionosphere 351 35 65 34
nursery 12960 2 98 8
thyroid 215 13 87 5

tic-tac-toe 958 34 66 9
wine 178 26 74 13
yeast 484 3 97 10

LetY be a matrix whose rows are the vectorsy1, . . . , yn, the
output parameters of the examples in the training set. Then
the weighted training data are given byZ = WX and the
weighted target function isV = WY . Then we use the esti-
mator for the target function defined asyq = xT

q Z∗V , where
Z∗ is the pseudoinverse ofZ.

Although LWLR is normally applied to regression prob-
lems, it is easy to adapt it to perform classification tasks. For
an n-class classification problem, we supply as output pa-
rameter for each example a vector withn-elements, where
the ith element of the vector is 1 if the example belongs to
classi and 0 otherwise. When we classify a test example, we
assign it to the class with the highest corresponding value in
the output vector.

Experimental Results
In order to evaluate the effectiveness of the proposed
method, we experimented on some different data sets from
the UCI Machine Learning Repository1. Given that most of
these data sets have more than two classes, we selected those
that have the fewest examples to be the minority class, while
the other instances were grouped to create the majority class
(See Table 2 for details).

In all the experiments reported here we used 10-fold
cross-validation. We also varied the amount of over-
sampling from 100% to 1000%. In the results we show
later correspond to the average of five runs of 10-fold cross-
validation.

For creating the ensemble we use bagging and three clas-
sifiers of locally weighted linear regression. Also, for the ex-
periments using M-SMOTE and SMOTE we use five nearest
neighbors to create new examples.

Since accuracy is not a good metric for imbalanced data
sets we evaluate our method using two metrics:precision
andrecall, defined as follows:

Recall = TP/(TP + FN) (2)

Precision = TP/(TP + FP ) (3)

WhereTP denotes the number of positive examples that
are classified correctly, whileFN andFP denote the num-

1http://www.ics.uci.edu/∼ mlearn/MLRepository.html

ber of misclassified positive and negative examples, respec-
tively.

In Table 3 we show the performance of our proposed
method varying the amount of over-sampling. First, we can
note that in seven data sets the best result for recall is over
.900, and also for precision in six results is over .900. We
can also notice that when we increase the amount for over-
sampling the results for recall are better than for precision.
The data sets chess, glass and nursery always obtained re-
sults over .900 for both measure metrics. From these three
data sets, we can remark that nursery, for example, is the
data set with the highest degree of imbalance and also has
more examples than the others. On the other side, chess is
the most balanced data set and also has more features than
the other data sets.

In Figures 2 and 3 we compare the performance of our
approach SMMO with M-SMOTE and SMOTE using the
recall and precision measures. We can see that our proposed
method outperforms the other two methods in all data sets.
In some of them the difference is significative, for example
in balance, car, tic-tac-toe and yeast.

Conclusions
We have presented in this work a method for selecting mi-
nority examples from misclassified data using an ensemble
of classifiers, with the purpose of over-sampling them. Our
experimental results show that our approach obtains very
good results, in fact it has better performance than SMOTE
in all our experiments.

Future work includes testing the method in real-world ap-
plications. For example, classifying astronomical objects or
biological structures, where the imbalanced class problem is
very common.
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Figure 2: Comparison Recall graphs for the datasets.
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Figure 3: Comparison Precision graphs for the datasets.
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Table 3: The table below shows the performance of our proposedmethod using different amount of over-sampling.

100% 200% 400% 1000%
Recall Precision Recall Precision Recall Precision Recall Precision

balance .800 .743 .880 .612 .967 .545 .988 .517
car .974 .882 1 .800 1 .692 1 .616

chess .995 .988 .997 .984 .997 .980 .997 .974
glass .952 .921 .952 .914 .952 .903 .917 .945

ionosphere .636 .730 .693 .720 .698 .727 .709 .774
nursery .944 .992 .983 .994 .994 .980 1 .812
thyroid .933 .880 .906 .862 .953 .967 .920 .842

tic-tac-toe .985 .999 .979 .975 .959 .873 .973 .774
wine .879 .736 .896 .712 .825 .701 .841 .746
yeast .603 .656 .641 .616 .692 .621 .736 .514
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