
Using Genetic Programming to Increase Rule Quality

Rikard König

1
, Ulf Johansson

1
, Lars Niklasson

2

1School of Business and Informatics, University of Borås, Sweden
2School of Humanities and Informatics, University of Skövde, Sweden

rikard.konig@hb.se, ulf.johansson@hb.se, lars.niklasson@his.se

Abstract

Rule extraction is a technique aimed at transforming highly
accurate opaque models like neural networks into
comprehensible models without losing accuracy. G-REX is
a rule extraction technique based on Genetic Programming
that previously has performed well in several studies. This
study has two objectives, to evaluate two new fitness
functions for G-REX and to show how G-REX can be used
as a rule inducer.
The fitness functions are designed to optimize two
alternative quality measures, area under ROC curves and a
new comprehensibility measure called brevity. Rules with
good brevity classifies typical instances with few and simple
tests and use complex conditions only for atypical
examples. Experiments using thirteen publicly available
data sets show that the two novel fitness functions
succeeded in increasing brevity and area under the ROC
curve without sacrificing accuracy. When compared to a
standard decision tree algorithm, G-REX achieved slightly
higher accuracy, but also added additional quality to the
rules by increasing their AUC or brevity significantly.

Introduction

Most high-accuracy techniques for predictive classification
produce opaque models like neural networks, ensembles or
support vector machines. Opaque predictive models make
it impossible for decision-makers to follow and understand
the logic behind a prediction, which, in some domains,
must be deemed unacceptable. In domains where models
need to be interpretable (or even comprehensible) accuracy
is often sacrificed for comprehensibility by using simpler
but transparent models; most typically decision trees. This
tradeoff between predictive performance and
interpretability is normally termed the accuracy vs.
comprehensibility tradeoff. With this tradeoff in mind,
several researchers have suggested rule extraction
algorithms where the opaque models are transformed into
comprehensible models, keeping an acceptable accuracy.
 Most significant are the many rule extraction algorithms
suggested for extracting rules from trained neural

Copyright © 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

networks; see e.g. RX (Hongjun, Setiono and Huan 1995)
and TREPAN (Craven and Shavlik 1996). Several authors
have discussed key demands on a reliable rule extraction
method; see e.g. (Andrews, Diederich and Tickle 1995)
and (Craven and Shavlik 1999). The most common criteria
are: accuracy (the ability of extracted representations to
make accurate predictions on previously unseen data),
comprehensibility (the extent to which extracted
representations are humanly comprehensible) and fidelity
(the extent to which extracted representations accurately
model the opaque model from which they were extracted).
 The accuracy of an extracted rule set is evaluated similar
to all predictive models; i.e. typically measuring error rates
using either a hold-out set or some cross-validation
scheme. Comprehensibility, on the other hand is harder to
assess. In most studies, comprehensibility is measured as
the size of the extracted representation. This is an obvious
simplification, chosen with the motivation that it makes
comparisons between techniques fairly straightforward. In
addition, size could be calculated in a number of ways.
Some typical choices (for tree structures) include number
of questions, total number of tests, number of nodes and
number of interior nodes. Furthermore, comprehensibility
is in practice, clearly not linear, making all measures based
on size slightly dubious. All in all, though, the choice to
evaluate comprehensibility using the size of the model
must be regarded as the most accepted.
 In this study we use a rule extraction algorithm called G-
REX (Genetic Rule EXtraction). G-REX was initially
suggested in (Johansson, Konig and Niklasson 2003) but
has after that been extended and thoroughly evaluated, for
a summary see (Johansson, 2007). G-REX uses an
extraction strategy based on Genetic Programming (GP)
making it straightforward to use a variety of representation
languages, just by varying the function and terminal sets.
G-REX also explicitly targets the accuracy vs.
comprehensibility tradeoff by using a fitness function
where accuracy is balanced against the size of the extracted
representation.
 In this study we use G-REX as a rule inducer instead of
as a rule extraction algorithm. The only difference to the
normal use of G-REX is that the target of the GP is the
actual target value instead of predictions of an opaque
model. There are two reasons for this approach, first the

Proceedings of the Twenty-First International FLAIRS Conference (2008)

288

aim of this study is to evaluate two new fitness functions
and for this an opaque model is an extra step that will only
add unnecessary complexity to the study. The second,
more important reason, is that this approach also allows us
to demonstrate the advantages of a rule inducer based on
GP. Most rule inducers producing comprehensible models
only optimize accuracy. This is a fundamental design
choice that is built into the algorithms, making it hard or
impossible to change the optimization criteria. GP on the
other hand is very flexible and can optimize arbitrary
functions. G-REX is an excellent GP technique to use for
this evaluation as it allows fitness function to be added and
combined as buildings block for more complex
optimization criterions. Another strength of G-REX is that
it can use arbitrary representation languages facilitating a
tailored solution consisting of an optimal representation
language and an optimal fitness function for each problem.

 Method

The purpose of this study is to evaluate the effect of
different fitness functions when using GP for rule
induction. Although accuracy is the standard criterion
when evaluating predictive models, there are several other
criteria that could be used. Here, area under the ROC curve
(AUC), and a special fitness function called brevity is
evaluated. Brevity is aimed at producing compact rule sets,
thereby increasing the comprehensibility. During
experimentation, comparisons are made against both the
standard G-REX fitness function, primarily optimizing
accuracy and against MatLabs decision tree algorithm
Treefit.

G-REX fitness functions

One of G-REX main strengths is that an arbitrary fitness
function can be used to optimize one or more criteria. In
previous G-REX studies the fitness function here called
ACCFitness has been used. In this study two new fitness
functions AUCFitness and BREFitness are introduced. All
three fitness functions are described in detail below.

ACCFitness

In previous studies the fitness function ACCFitness was
used to optimize accuracy while keeping evolved G-REX
rules fairly compact. The (training or validation) accuracy
is simply calculated by dividing the number of correctly
classified instances with the total number of instances. To
encourage smaller rule sets, a punishment is given in
relation to the length of the rule. Rule length is calculated
as the number of elements (functions and terminals) in the
rule.

#
100 * *

#

i

i

correct
ACCFitness length p

instances
= − (1)

A parameter p is used to balance the size of the length
punishment against accuracy. It should be noted that this

use of accuracy in the fitness function ensures that the
length punishment will affect the evolved rules in the same
way regardless of the number of instances in the data set.

AUCFitness

Provost, Fawcett and Kohavi (1998) argues that using
accuracy for evaluating classifiers has two serious flaws;
i.e. it is presumed that the true class distribution is known
and that the misclassification cost is equal for all classes.
This is regarded as a problem as these assumptions rarely
are true for real world problems. Instead the Receiver
Operating Characteristic (ROC) curve is suggested as a
more appropriate metric for comparing classification
performance. Specifically, ROC curves are insensitive to
changes in class distributions. ROC graphs are commonly
used in medical decision making, and have in recent years
been used increasingly in machine learning and data
mining research; see e.g.(Fawcett 2006). ROC curves
measure the relationship between hit rate and false alarm
rate and are based on estimations of the probability that an
instance belongs to a certain class. For a detailed
description of how ROC curves are constructed see
(Fawcett 2006). To compare classifiers using ROC curves,
the curve has to be converted into a single scalar value,
normally the area under the ROC curve (AUC). Since ROC
curves are projected onto the unit square, AUC will always
be bounded by 0 and 1. An AUC of 1 means that the
predictive model is perfect, while random guessing
corresponds to an AUC of 0.5.
 Since G-REX uses GP to evolve rules, it does not, just
like standard decision trees, provide explicit probability
distributions for the classifications. The number of correct
and incorrect training classifications are, however,
recorded for each leaf in the tree, making it possible to
produce probability distributions if needed.

Figure 1 –Correct classifications/instance reaching node

The relative frequencies are normally not used directly for
probability estimations since they do not consider the
number of training instances supporting a classification.
The Laplace estimate is a common technique to produce
probability distributions based on the support (Margineantu
and Dietterich 2002). Equation 2 below shows how
probability estimates p are calculated when using Laplace.
N is the total number of instances, C is the number of
classes and k is the number of training instances supporting
the predicted class A.

Negative [42/59] IF(insu > 177.82)

Negative [2/3] Positive [8/15]

IF(plas > 177.82)

289

1
classA

k
p

N C

+
=

+
(2)

In the example above, the probability estimate for the
lower right node would be calculated as 8/15 without
Laplace and 9/17 ((8+1)/(15+2)) using Laplace.
 When employing AUCFitness, G-REX uses Laplace
estimates for ranking the instances during the ROC
analysis. Overall, AUCFitness balances the AUC and the
length of the rule in the same way that ACCFitness
balances accuracy and length.

100* *

i i
AUCFitness AUC length p= − (3)

BREFitness

The fitness function BREFitness is aimed at optimizing
rule brevity. Instead of just using the length of the rules as
a base for punishment BREFitness evaluates how the rule
is actually used when classifying instances. The idea is that
a tree must not only be relatively small but also should
classify as many instances as possible using only a few
tests i.e. the rule brevity should be high. The overall
principle is that a typical instances should be classified
using a few simple tests, while more complex rules should
be used for more atypical patterns only. Although brevity
could be measured using different metrics, we suggest that
brevity should be calculated as the average number of tests
needed to be checked in order to classify all instances in
the data set, i.e. the brevity for a rule set r when classifying
the instances k=1..n is:

 1

#

#

k n

k

r

k

conditions
BRE

instances

=

=

=

(4)

If the numbers in the leaves in Figure 1 show test set
instances, the corresponding brevity is calculated as:
(59*1+3*2+15*2)/(59+3+15)=1.1234. Note that using
this definition, brevity does not consider accuracy at all. A
rule with the best (lowest) possible brevity (1.0) could
classify all instances incorrectly. Brevity should therefore
only be used to evaluate rules with comparable accuracy.
Because of this, BREFitness functions uses accuracy as a
reward and brevity as a punishment (a lower BRE means
that the rule has better brevity). The size of the punishment
is adjusted, again using a parameter p .

#
100 * *

#

i

i

correct
BREFitness BRE p

instances
= − (5)

Treefit

The Treefit algorithm in MatLab is a decision tree
algorithm for regression and classification which is based
on CART(Breiman et al. 1983). Treefit produces a binary
tree with splits based on the input variables. For continuous
variables the relational operators < and > are used.
Categorical variables are split using the = operator

(variable = category list) which is true if the current
variable is one of the listed categories. Gini diversity index
(GDI) is used as splitting criterion and each node is set to
contain at least five instances. GDI measures the class
impurity in the node and is calculated by equation 6. Given
a node t with estimated class probabilities p2

(j|t), j=1,…,J
(for J classes) the GDI is given by:

()

2
1 |

j

GDI p j t= −

(6)

When pruned, the tree is first evaluated on the training data
using 10-fold cross validation and then pruned to the
minimal subtree that is within one standard error of the
minimal cross validation error.

Experiments

The following section describes the details of the
experiments.

Data sets

This study uses 13 data sets publicly available from the
UCI – repository (Blake and Merz, 1998) All data sets are
binary problems; i.e. two-class problems. Table 1 below
presents the characteristics of each data set. Ins. is the
number of instances; Con. is the number of continuous
inputs and Cat. is the number of categorical input
variables.

Data set Ins. Con. Cat.

Breast-w 699 9 0

Colic 368 7 15

Credit-a 690 6 9

Credit-g 1000 7 13

Diabets 768 8 0

Heart-cleveland 303 6 8

Heart-statlog 270 13 0

Hepatitis 155 6 13

Ionosphere 351 24 0

Labor 57 8 8

Liver-disorders 345 6 0

Sonar 208 60 0

Vote 435 0 16

Table 1 - Characteristics of data sets

Preprocessing

Missing values are, for continuous input variables,
replaced with the mean value of all none missing values for
the variable. Categorical missing values are, similarly,
replaced with the type value of the variable. When missing
values have been handled, each data set is divided into ten
folds which are stratified to ensure that each fold will have
a representative class distribution. For evaluation, standard
10-fold cross validation is used in the experiments.

290

G-REX

In this study G-REX executes in a batch of ten runs for
each fold. The rule with the highest fitness is selected as
the winner and is then evaluated on the test set. All fitness
functions use p = 0.05 , which should produce short and
comprehensible rules. G-REX used the GP settings
presented in Table 2.

Number of generations 100

Population size 1000

Crossover probabillity 0.8

Mutation probabillity 0.001

Creation type Ramped half and half

Maximum creation depth 6

Length punishment (p) 0.05

Table 2 - G-REX settings used in all experiments

G-REX can use arbitrary representations languages but in
this study the simple if-else representation languages
presented using Backus-Naur form in Figure 2 was deemed
to be sufficient.

The tree displayed in Figure 1 is an example of this
representation; if an if-statment is true, the left sub- tree is
evaluated, if not the right. An instance is classified as the
value of the leaf it reaches, following the if-statements.

Evaluation

For actual evaluation, all G-REX fitness function and
Treefit are evaluated using accuracy, AUC and brevity.
These evaluations are done regardless of optimization
criterion to investigate whether AUCFitness or BREFitness
perform better than the standard accuracy fitness function.
The results are averaged over all folds and reported
individually for each dataset. Overall performance of the
different techniques are compared using Wilcoxon signed-
ranks tests (Wilcoxon, 1945). The signed ranks test is a
(two-sided) test of the hypothesis that the difference
between the matched samples in the vectors X and Y
comes from a distribution with median zero. The tests are
performed at the 0.05 significance level, so a p-values
larger than 0.05 indicates that the null hypothesis (median
is zero) cannot be rejected at the 5% level; a p-value
smaller than 0.05 indicates that the results are significantly
different.

Results

In the following section the results of the experiments are
presented. Each table shows a different metric for the same
rule set; i.e. accuracy, AUC, and brevity are calculated for
one rule set per technique and dataset, but the results are
presented in three different tables. All results are averaged
values for ten stratified folds. The result for the best
technique on each data set is presented in bold letters. To
allow comparisons of the techniques the average result for
all dataset are presented on the last row of each table.
Wilcoxon tests are used to judge if the differences between
the techniques are significant. p-values that are significant
are presented in bold letters.
 Table 3 below shows the achieved accuracy for the
different techniques on each dataset.

Data set Treefit ACCFit. BREFit. AUCFit.

Breast-w 0.943 0.963 0.943 0.941

Colic 0.853 0.824 0.788 0.848

Credit-a 0.855 0.846 0.855 0.852

Credit-g 0.740 0.715 0.707 0.707

Diabets 0.756 0.750 0.737 0.737

Heart-cleveland 0.758 0.788 0.725 0.749

Heart-statlog 0.774 0.804 0.804 0.726

Hepatitis 0.769 0.819 0.814 0.787

Ionosphere 0.897 0.932 0.880 0.877

Labor 0.747 0.783 0.803 0.817

Liver-disorders 0.661 0.655 0.678 0.626

Sonar 0.725 0.711 0.721 0.687

Vote 0.954 0.949 0.956 0.956

Average 0.802 0.811 0.801 0.793

Table 3 - Average accuracy over 10-folds

All techniques produce comparable results. ACCFitness
achieves slightly higher accuracy than the other techniques,
but as seen in Table 4, none of the techniques are
significantly better or worse than another.

 ACCFit. BREFit. AUCFit.

Treefit 0.2986 0.7832 0.0835

ACCFit. 0.3911 0.0803

BREFit. 0.3613

Table 4 - p-values from Wilcoxon tests for accuracy

Table 5 shows the AUC values for the same rule sets that
were used to calculate the accuracy in Table 3. AUCFitness
clearly outperforms the other techniques using this metric,
achieving the highest AUC on 9 of 13 data sets. The
second best technique is ACCFitness followed by Treefit
and BREFitness.

Figure 2 - Used representation language

F = {if, =, <, >}

T = {i
1
, i

2
, ..., i

n
, c

1
, c

2
, ..., c

m
, }

DTree :- (if RExp Dtree Dtree) | Class
RExp :- (ConInp ROp ConConst) |

(CatInp = CatConst)
ROp :- < | >
CatInp :- Categorical input variable
ConInp :- Continuous input variable
Class :- Class label
CatConst :- Categorical attribute value

ConConst :-

291

Data set Treefit ACCFit. BREFit. AUCFit.

Breast-w 0.933 0.962 0.947 0.972

Colic 0.853 0.819 0.777 0.883

Credit-a 0.862 0.891 0.862 0.922

Credit-g 0.719 0.669 0.534 0.705

Diabets 0.720 0.724 0.681 0.798

Heart-cleveland 0.780 0.837 0.724 0.838

Heart-statlog 0.771 0.844 0.762 0.834

Hepatitis 0.496 0.755 0.567 0.781

Ionosphere 0.902 0.920 0.876 0.918

Labor 0.740 0.806 0.781 0.833

Liver-disorders 0.642 0.653 0.652 0.640

Sonar 0.725 0.745 0.737 0.791

Vote 0.950 0.968 0.959 0.977

Average 0.776 0.815 0.758 0.838

Table 5 - Average AUC over 10-folds

If the performance is compared using a Wilcoxon test, it is
clear that AUCFitness is significantly better than all other
techniques. This is no surprise since AUCFitness is the
only techniques explicitly optimizing AUC. However, it is
still a strong result for AUCFitness since the same rule sets
also obtained accuracies comparable to the other fitness
functions.

 ACCFit. BREFit. AUCFit.

Treefit 0.0457 0.583 0.0012

ACCFit. 2.44E-04 0.0178

BREFit. 4.88E-04

Table 6 - p-values from Wilcoxon test for AUC

When evaluating the rule sets against brevity, the results
for Treefit is not reported as the representation languages is
slightly different.

Data set ACCFit. BREFit. AUCFit.

Breast-w 3.04 1.54 2.83

Colic 7.51 3.09 9.61

Credit-a 6.56 3.00 7.03

Credit-g 6.60 1.06 12.55

Diabets 2.04 1.11 3.95

Heart-cleveland 7.65 1.18 10.73

Heart-statlog 2.91 1.89 3.69

Hepatitis 5.44 1.14 9.77

Ionosphere 4.37 1.77 4.82

Labor 7.67 2.23 6.54

Liver-disorders 2.48 1.58 4.00

Sonar 3.06 1.62 3.84

Vote 5.87 3.00 9.77

Average 5.02 1.86 6.86

Table 7 - Average brevity over 10-folds

In Table 7 it is clear that BREFitness produces rules with
much lower brevity. Again, it is worth noting that the same
rule sets also performed rather well when evaluated using
accuracy. It is natural that BREFitness does not perform as

well when evaluated against AUC since it produces very
short rule sets leading to quite rough probability
estimations.
 A Wilcoxon test also shows that BREfitness produces
significantly smaller rule sets than the other techniques.
Another interesting result is that AUCFitness is
significantly worse than all other techniques when
compared on brevity. AUCFitness shortcomings is
probably explained using the same argument as above; i.e.
to achieve a high AUC it is necessary to have good
probability estimations, which can only be produced by
more complex rule sets.

 ACCFit. AUCFit.

BREFit. 0.000244 0.000244

ACCFit 0.0225

Table 8 - p-values from Wilcoxon tests for brevity

Conclusions

This study had two objectives, to evaluate two new fitness
functions for the G-REX rule extraction algorithm and to
show the advantages of using GP as a rule inducer.
 Both fitness functions perform well as they retain the
same accuracy as the original fitness function while
optimizing yet another other criteria. AUCFitness produces
rules that have high accuracy and significantly higher AUC
than Treefit and the other evaluated fitness functions.
BREFitness uses the proposed comprehensibility measure
brevity to create rules which classifies the typical instances
with simple conditions and only uses complex condition
for atypical instances. The fitness function outperforms the
AUCFitness and ACCFitness regarding brevity without
losing significantly in accuracy.
 The experiments show that when G-REX is used as a
rule inducer it is clearly a better alternative than Treefit and
similar decision trees algorithms. G-REX achieves the
same or slightly higher accuracy than Treefit, but adds
additional quality to the same rules by increasing their
AUC or brevity. A decision maker could certainly benefit
from this extra rule quality, especially by directing G-REX
to produce rules optimized on the quality measure best
suited for the problem at hand. Another strength of a GP
based rule inducer is that the representation language can
be tailored for the problem and thereby possibly increase
comprehensibility, accuracy or both.
 Overall the experiments show that G-REX is well suited
for classification tasks and should certainly be considered
when a high quality transparent model is needed.

Acknowledgement

This work was supported by the Information Fusion
Research Program (University of Skövde, Sweden) in
partnership with the Swedish Knowledge Foundation under
grant 2003/0104 (URL: http://www.infofusion.se).

292

References

Andrews, R., Diederich, J. and Tickle, A. B. 1995. "Survey

and critique of techniques for extracting rules from trained

artificial neural networks." Knowledge-Based Systems

8(6):373-389.

Blake, C. L. and Merz, C. J. 1998. "UCI Repository of

machine learning databases." University of California,

Department of Information and Computer Science.

Breiman, L., Friedman, J. H., Olshen, R. A. and Stone., C.

J. 1983. Classification and Regression Trees: Wadsworth.

Craven, M. and Shavlik, J. 1999. "Rule Extraction: Where

Do We Go from Here?",Technical Report, University of

Wisonsin, Machine Learning Research Group.

Craven, M. W. and Shavlik, J. W. 1996. "Extracting Tree-

Structured Representations of Trained Networks."

Advances in Neural Information Processing Systems 8:24-

30.

Fawcett, T. 2006. "An introduction to ROC analysis."

Pattern Recognition Letters 27(8):861-874.

Hongjun, L., Setiono, R. and Huan, L. 1995. "NeuroRule: a
connectionist approach to data mining." In proceedings of

the 21st International Conference on Very Large Data

Bases, Zurich, Switzerland: Morgan Kaufmann Publishers

Johansson, U. 2007. Obtaining accurate and

comprehensible data mining models : an evolutionary

approach., Department of Computer and Information

Science, Linköpings universitet.

Johansson, U., Konig, R. and Niklasson, L. 2003. "Rule

Extraction from Trained Neural Networks using Genetic

Programming." In Joint 13th International Conference on

Artificial Neural Networks and 10th International

Confernce on Neural Information Processing,

ICANN/ICONIP 2003. Istanbul, Turkey.

Margineantu, D. and Dietterich, T. 2002. "Improved Class

Probability Estimates from Decision Tree Models."

Nonlinear Estimation and Classification; Lecture Notes in

Statistics 171:169-184.

Provost, F., Fawcett, T. and Kohavi, R. 1998. "The case

against accuracy estimation for comparing induction

algorithms.", Machine Learning. Proceedings of the

Fifteenth International Conference (ICML'98) Madison,

WI, USA: Morgan Kaufmann Publishers.

Wilcoxon, F. 1945. "Individual comparisons by ranking

models." Biometrics(1):80-83.

293

