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Abstract 

Rule extraction is a technique aimed at transforming highly 
accurate opaque models like neural networks into 
comprehensible models without losing accuracy. G-REX is 
a rule extraction technique based on Genetic Programming 
that previously has performed well in several studies. This 
study has two objectives, to evaluate two new fitness 
functions for G-REX and to show how G-REX can be used 
as a rule inducer.  
The fitness functions are designed to optimize two 
alternative quality measures, area under ROC curves and a 
new comprehensibility measure called brevity. Rules with 
good brevity classifies typical instances with few and simple 
tests and use complex conditions only for atypical 
examples.  Experiments using thirteen publicly available 
data sets show that the two novel fitness functions 
succeeded in increasing brevity and area under the ROC 
curve without sacrificing accuracy.  When compared to a 
standard decision tree algorithm, G-REX achieved slightly 
higher accuracy, but also added additional quality to the 
rules by increasing their AUC or brevity significantly. 

Introduction   

Most high-accuracy techniques for predictive classification 
produce opaque models like neural networks, ensembles or 
support vector machines. Opaque predictive models make 
it impossible for decision-makers to follow and understand 
the logic behind a prediction, which, in some domains, 
must be deemed unacceptable. In domains where models 
need to be interpretable (or even comprehensible) accuracy 
is often sacrificed for comprehensibility by using simpler 
but transparent models; most typically decision trees. This 
tradeoff between predictive performance and 
interpretability is normally termed the accuracy vs. 
comprehensibility tradeoff. With this tradeoff in mind, 
several researchers have suggested rule extraction 
algorithms where the opaque models are transformed into 
comprehensible models, keeping an acceptable accuracy. 
 Most significant are the many rule extraction algorithms 
suggested for extracting rules from trained neural 
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networks; see e.g. RX (Hongjun, Setiono and Huan 1995) 
and TREPAN (Craven and Shavlik 1996). Several authors 
have discussed key demands on a reliable rule extraction 
method; see e.g. (Andrews, Diederich and Tickle 1995) 
and (Craven and Shavlik 1999). The most common criteria 
are: accuracy (the ability of extracted representations to 
make accurate predictions on previously unseen data), 
comprehensibility (the extent to which extracted 
representations are humanly comprehensible) and fidelity 
(the extent to which extracted representations accurately 
model the opaque model from which they were extracted).  
 The accuracy of an extracted rule set is evaluated similar 
to all predictive models; i.e. typically measuring error rates 
using either a hold-out set or some cross-validation 
scheme. Comprehensibility, on the other hand is harder to 
assess. In most studies, comprehensibility is measured as 
the size of the extracted representation. This is an obvious 
simplification, chosen with the motivation that it makes 
comparisons between techniques fairly straightforward. In 
addition, size could be calculated in a number of ways. 
Some typical choices (for tree structures) include number 
of questions, total number of tests, number of nodes and 
number of interior nodes. Furthermore, comprehensibility 
is in practice, clearly not linear, making all measures based 
on size slightly dubious. All in all, though, the choice to 
evaluate comprehensibility using the size of the model 
must be regarded as the most accepted. 
 In this study we use a rule extraction algorithm called G-
REX (Genetic Rule EXtraction). G-REX was initially 
suggested in (Johansson, Konig and Niklasson 2003) but 
has after that been extended and thoroughly evaluated, for 
a summary see (Johansson, 2007). G-REX uses an 
extraction strategy based on Genetic Programming (GP) 
making it straightforward to use a variety of representation 
languages, just by varying the function and terminal sets. 
G-REX also explicitly targets the accuracy vs. 
comprehensibility tradeoff by using a fitness function 
where accuracy is balanced against the size of the extracted 
representation. 
 In this study we use G-REX as a rule inducer instead of 
as a rule extraction algorithm. The only difference to the 
normal use of G-REX is that the target of the GP is the 
actual target value instead of predictions of an opaque 
model. There are two reasons for this approach, first the 
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aim of this study is to evaluate two new fitness functions 
and for this an opaque model is an extra step that will only 
add unnecessary complexity to the study. The second, 
more important reason, is that this approach also allows us 
to demonstrate the advantages of a rule inducer based on 
GP. Most rule inducers producing comprehensible models 
only optimize accuracy. This is a fundamental design 
choice that is built into the algorithms, making it hard or 
impossible to change the optimization criteria. GP on the 
other hand is very flexible and can optimize arbitrary 
functions. G-REX is an excellent GP technique to use for 
this evaluation as it allows fitness function to be added and 
combined as buildings block for more complex 
optimization criterions. Another strength of G-REX is that 
it can use arbitrary representation languages facilitating a 
tailored solution consisting of an optimal representation 
language and an optimal fitness function for each problem. 

 Method 

The purpose of this study is to evaluate the effect of 
different fitness functions when using GP for rule 
induction. Although accuracy is the standard criterion 
when evaluating predictive models, there are several other 
criteria that could be used. Here, area under the ROC curve 
(AUC), and a special fitness function called brevity is 
evaluated. Brevity is aimed at producing compact rule sets, 
thereby increasing the comprehensibility. During 
experimentation, comparisons are made against both the 
standard G-REX fitness function, primarily optimizing 
accuracy and against MatLabs decision tree algorithm 
Treefit. 

G-REX fitness functions 

One of G-REX main strengths is that an arbitrary fitness 
function can be used to optimize one or more criteria. In 
previous G-REX studies the fitness function here called 
ACCFitness has been used. In this study two new fitness 
functions AUCFitness and BREFitness are introduced. All 
three fitness functions are described in detail below.  

ACCFitness 

In previous studies the fitness function ACCFitness was 
used to optimize accuracy while keeping evolved G-REX 
rules fairly compact. The (training or validation) accuracy 
is simply calculated by dividing the number of correctly 
classified instances with the total number of instances. To 
encourage smaller rule sets, a punishment is given in 
relation to the length of the rule. Rule length is calculated 
as the number of elements (functions and terminals) in the 
rule. 

 

#
100 * *

#

i

i

correct
ACCFitness length p

instances
= −  (1) 

A parameter p  is used to balance the size of the length 
punishment against accuracy. It should be noted that this 

use of accuracy in the fitness function ensures that the 
length punishment will affect the evolved rules in the same 
way regardless of the number of instances in the data set. 

AUCFitness  

Provost, Fawcett and Kohavi (1998) argues that using 
accuracy for evaluating classifiers has two serious flaws; 
i.e. it is presumed that the true class distribution is known 
and  that the misclassification cost is equal for all classes. 
This is regarded as a problem as these assumptions rarely 
are true for real world problems. Instead the Receiver 
Operating Characteristic (ROC) curve is suggested as a 
more appropriate metric for comparing classification 
performance. Specifically, ROC curves are insensitive to 
changes in class distributions. ROC graphs are commonly 
used in medical decision making, and have in recent years 
been used increasingly in machine learning and data 
mining research; see e.g.(Fawcett 2006). ROC curves 
measure the relationship between hit rate and false alarm 
rate and are based on estimations of the probability that an 
instance belongs to a certain class. For a detailed 
description of how ROC curves are constructed see 
(Fawcett 2006). To compare classifiers using ROC curves, 
the curve has to be converted into a single scalar value, 
normally the area under the ROC curve (AUC). Since ROC 
curves are projected onto the unit square, AUC will always 
be bounded by 0 and 1. An AUC of 1 means that the 
predictive model is perfect, while random guessing 
corresponds to an AUC of 0.5. 
 Since G-REX uses GP to evolve rules, it does not, just 
like standard decision trees, provide explicit probability 
distributions for the classifications. The number of correct 
and incorrect training classifications are, however, 
recorded for each leaf in the tree, making it possible to 
produce probability distributions if needed.  

Figure 1 –Correct classifications/instance reaching node 

The relative frequencies are normally not used directly for 
probability estimations since they do not consider the 
number of training instances supporting a classification. 
The Laplace estimate is a common technique to produce 
probability distributions based on the support (Margineantu 
and Dietterich 2002). Equation 2 below shows how 
probability estimates p are calculated when using Laplace. 
N is the total number of instances, C is the number of 
classes and k is the number of training instances supporting 
the predicted class A. 

Negative [42/59] IF(insu > 177.82) 

Negative [2/3] Positive [8/15] 

IF(plas > 177.82) 
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In the example above, the probability estimate for the 
lower right node would be calculated as 8/15 without 
Laplace and 9/17 ((8+1)/(15+2)) using Laplace.    
 When employing AUCFitness, G-REX uses Laplace 
estimates for ranking the instances during the ROC 
analysis. Overall, AUCFitness balances the AUC and the 
length of the rule in the same way that ACCFitness 
balances accuracy and length.  

 
100* *

i i
AUCFitness AUC length p= −  (3) 

BREFitness 

The fitness function BREFitness is aimed at optimizing 
rule brevity. Instead of just using the length of the rules as 
a base for punishment BREFitness evaluates how the rule 
is actually used when classifying instances. The idea is that 
a tree must not only be relatively small but also should 
classify as many instances as possible using only a few 
tests i.e. the rule brevity should be high. The overall 
principle is that a typical instances should be classified 
using a few simple tests, while more complex rules should 
be used for more atypical patterns only. Although brevity 
could be measured using different metrics, we suggest that 
brevity should be calculated as the average number of tests 
needed to be checked in order to classify all instances in 
the data set, i.e. the brevity for a rule set r when classifying 
the instances k=1..n is:  
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If the numbers in the leaves in Figure 1 show test set 
instances, the corresponding brevity is calculated as: 
(59*1+3*2+15*2)/(59+3+15)=1.1234. Note that using 
this definition, brevity does not consider accuracy at all. A 
rule with the best (lowest) possible brevity (1.0) could 
classify all instances incorrectly. Brevity should therefore 
only be used to evaluate rules with comparable accuracy. 
Because of this, BREFitness functions uses accuracy as a 
reward and brevity as a punishment (a lower BRE means 
that the rule has better brevity). The size of the punishment 
is adjusted, again using a parameter p . 
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Treefit 

The Treefit algorithm in MatLab is a decision tree 
algorithm for regression and classification which is based 
on CART(Breiman et al. 1983). Treefit produces a binary 
tree with splits based on the input variables. For continuous 
variables the relational operators < and > are used. 
Categorical variables are split using the = operator 

(variable = category list) which is true if the current 
variable is one of the listed categories. Gini diversity index 
(GDI) is used as splitting criterion and each node is set to 
contain at least five instances. GDI measures the class 
impurity in the node and is calculated by equation 6. Given 
a node t with estimated class probabilities p2

(j|t), j=1,…,J 
(for J classes) the GDI is given by: 
 

 
( )

2
1 |

j

GDI p j t= −

  
(6)

 
When pruned, the tree is first evaluated on the training data 
using 10-fold cross validation and then pruned to the 
minimal subtree that is within one standard error of the 
minimal cross validation error.  

Experiments 

The following section describes the details of the 
experiments. 

Data sets 

This study uses 13 data sets publicly available from the 
UCI – repository (Blake and Merz, 1998) All data sets are 
binary problems; i.e. two-class problems. Table 1 below 
presents the characteristics of each data set. Ins. is the 
number of instances; Con. is the number of continuous 
inputs and Cat. is the number of categorical input 
variables.  
  

Data set Ins. Con. Cat. 

Breast-w 699 9 0 

Colic 368 7 15 

Credit-a 690 6 9 

Credit-g 1000 7 13 

Diabets 768 8 0 

Heart-cleveland 303 6 8 

Heart-statlog 270 13 0 

Hepatitis 155 6 13 

Ionosphere 351 24 0 

Labor 57 8 8 

Liver-disorders 345 6 0 

Sonar 208 60 0 

Vote 435 0  16 

Table 1 - Characteristics of data sets 

Preprocessing 

Missing values are, for continuous input variables, 
replaced with the mean value of all none missing values for 
the variable. Categorical missing values are, similarly, 
replaced with the type value of the variable. When missing 
values have been handled, each data set is divided into ten 
folds which are stratified to ensure that each fold will have 
a representative class distribution. For evaluation, standard 
10-fold cross validation is used in the experiments. 
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G-REX 

In this study G-REX executes in a batch of ten runs for 
each fold. The rule with the highest fitness is selected as 
the winner and is then evaluated on the test set. All fitness 
functions use p = 0.05 , which should produce short and 
comprehensible rules. G-REX used the GP settings 
presented in Table 2. 
 

Number of generations 100 

Population size 1000 

Crossover probabillity 0.8 

Mutation probabillity 0.001 

Creation type Ramped half and half 

Maximum creation depth 6 

Length punishment (p) 0.05 

Table 2 - G-REX settings used in all experiments 

G-REX can use arbitrary representations languages but in 
this study the simple if-else representation languages 
presented using Backus-Naur form in Figure 2 was deemed 
to be sufficient.  
 

 

The tree displayed in Figure 1 is an example of this 
representation; if an if-statment is true, the left sub- tree is 
evaluated, if not the right. An instance is classified as the 
value of the leaf it reaches, following the if-statements.  

Evaluation 

For actual evaluation, all G-REX fitness function and 
Treefit are evaluated using accuracy, AUC and brevity. 
These evaluations are done regardless of optimization 
criterion to investigate whether AUCFitness or BREFitness 
perform better than the standard accuracy fitness function.  
The results are averaged over all folds and reported 
individually for each dataset. Overall performance of the 
different techniques are compared using Wilcoxon signed-
ranks tests (Wilcoxon, 1945). The signed ranks test is a 
(two-sided) test of the hypothesis that the difference 
between the matched samples in the vectors X and Y 
comes from a distribution with median zero.  The tests are 
performed at the 0.05 significance level, so a p-values 
larger than 0.05 indicates that the null hypothesis (median 
is zero) cannot be rejected at the 5% level; a p-value 
smaller than 0.05 indicates that the results are significantly 
different. 

Results 

In the following section the results of the experiments are 
presented. Each table shows a different metric for the same 
rule set; i.e. accuracy, AUC, and brevity are calculated for 
one rule set per technique and dataset, but the results are 
presented in three different tables. All results are averaged 
values for ten stratified folds. The result for the best 
technique on each data set is presented in bold letters. To 
allow comparisons of the techniques the average result for 
all dataset are presented on the last row of each table. 
Wilcoxon tests are used to judge if the differences between 
the techniques are significant. p-values that are significant 
are presented in bold letters. 
 Table 3 below shows the achieved accuracy for the 
different techniques on each dataset.  
 

Data set Treefit ACCFit. BREFit. AUCFit. 

Breast-w 0.943 0.963 0.943 0.941 

Colic 0.853 0.824 0.788 0.848 

Credit-a 0.855 0.846 0.855 0.852 

Credit-g 0.740 0.715 0.707 0.707 

Diabets 0.756 0.750 0.737 0.737 

Heart-cleveland 0.758 0.788 0.725 0.749 

Heart-statlog 0.774 0.804 0.804 0.726 

Hepatitis 0.769 0.819 0.814 0.787 

Ionosphere 0.897 0.932 0.880 0.877 

Labor 0.747 0.783 0.803 0.817 

Liver-disorders 0.661 0.655 0.678 0.626 

Sonar 0.725 0.711 0.721 0.687 

Vote 0.954 0.949 0.956 0.956 

Average 0.802 0.811 0.801 0.793 

Table 3 - Average accuracy over 10-folds 

All techniques produce comparable results. ACCFitness 
achieves slightly higher accuracy than the other techniques, 
but as seen in Table 4, none of the techniques are 
significantly better or worse than another.  
 

 ACCFit. BREFit. AUCFit. 

Treefit 0.2986 0.7832 0.0835 

ACCFit.   0.3911 0.0803 

BREFit.     0.3613 

Table 4 - p-values from Wilcoxon tests for accuracy 

Table 5 shows the AUC values for the same rule sets that 
were used to calculate the accuracy in Table 3. AUCFitness 
clearly outperforms the other techniques using this metric, 
achieving the highest AUC on 9 of 13 data sets. The 
second best technique is ACCFitness followed by Treefit 
and BREFitness.  

Figure 2 - Used representation language 

F = {if, =, <, >} 

T = {i
1
, i

2
, ..., i

n
, c

1
, c

2
, ..., c

m
, } 

 
DTree    :-  (if RExp Dtree Dtree) | Class 
RExp    :-  (ConInp ROp ConConst) | 

(CatInp = CatConst) 
ROp     :-  < | > 
CatInp   :-  Categorical input variable 
ConInp   :-  Continuous input variable 
Class    :-  Class label 
CatConst  :-  Categorical attribute value 

ConConst  :-   
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Data set Treefit ACCFit. BREFit. AUCFit. 

Breast-w 0.933 0.962 0.947 0.972 

Colic 0.853 0.819 0.777 0.883 

Credit-a 0.862 0.891 0.862 0.922 

Credit-g 0.719 0.669 0.534 0.705 

Diabets 0.720 0.724 0.681 0.798 

Heart-cleveland 0.780 0.837 0.724 0.838 

Heart-statlog 0.771 0.844 0.762 0.834 

Hepatitis 0.496 0.755 0.567 0.781 

Ionosphere 0.902 0.920 0.876 0.918 

Labor 0.740 0.806 0.781 0.833 

Liver-disorders 0.642 0.653 0.652 0.640 

Sonar 0.725 0.745 0.737 0.791 

Vote 0.950 0.968 0.959 0.977 

Average 0.776 0.815 0.758 0.838 

Table 5 - Average AUC over 10-folds 

If the performance is compared using a Wilcoxon test, it is 
clear that AUCFitness is significantly better than all other 
techniques. This is no surprise since AUCFitness is the 
only techniques explicitly optimizing AUC. However, it is 
still a strong result for AUCFitness since the same rule sets 
also obtained accuracies comparable to the other fitness 
functions.  

  ACCFit. BREFit. AUCFit. 

Treefit 0.0457 0.583 0.0012 

ACCFit.   2.44E-04 0.0178 

BREFit.     4.88E-04 

Table 6 - p-values from Wilcoxon test for AUC 

When evaluating the rule sets against brevity, the results 
for Treefit is not reported as the representation languages is 
slightly different. 
 

Data set ACCFit. BREFit. AUCFit. 

Breast-w 3.04 1.54 2.83 

Colic 7.51 3.09 9.61 

Credit-a 6.56 3.00 7.03 

Credit-g 6.60 1.06 12.55 

Diabets 2.04 1.11 3.95 

Heart-cleveland 7.65 1.18 10.73 

Heart-statlog 2.91 1.89 3.69 

Hepatitis 5.44 1.14 9.77 

Ionosphere 4.37 1.77 4.82 

Labor 7.67 2.23 6.54 

Liver-disorders 2.48 1.58 4.00 

Sonar 3.06 1.62 3.84 

Vote 5.87 3.00 9.77 

Average 5.02 1.86 6.86 

Table 7 - Average brevity over 10-folds 

In Table 7 it is clear that BREFitness produces rules with 
much lower brevity. Again, it is worth noting that the same 
rule sets also performed rather well when evaluated using 
accuracy. It is natural that BREFitness does not perform as 

well when evaluated against AUC since it produces very 
short rule sets leading to quite rough probability 
estimations. 
 A Wilcoxon test also shows that BREfitness produces 
significantly smaller rule sets than the other techniques. 
Another interesting result is that AUCFitness is 
significantly worse than all other techniques when 
compared on brevity. AUCFitness shortcomings is 
probably explained using the same argument as above; i.e. 
to achieve a high AUC it is necessary to have good 
probability estimations, which can only be produced by 
more complex rule sets.  
 

  ACCFit. AUCFit. 

BREFit. 0.000244 0.000244 

ACCFit   0.0225 

Table 8 - p-values from Wilcoxon tests for brevity 

Conclusions 

This study had two objectives, to evaluate two new fitness 
functions for the G-REX rule extraction algorithm and to 
show the advantages of using GP as a rule inducer.  
 Both fitness functions perform well as they retain the 
same accuracy as the original fitness function while 
optimizing yet another other criteria. AUCFitness produces  
rules that have high accuracy and significantly higher AUC 
than Treefit and the other evaluated fitness functions. 
BREFitness uses the proposed comprehensibility measure 
brevity to create rules which classifies the typical instances 
with simple conditions and only uses complex condition 
for atypical instances. The fitness function outperforms the 
AUCFitness and ACCFitness regarding brevity without 
losing significantly in accuracy.  
 The experiments show that when G-REX is used as a 
rule inducer it is clearly a better alternative than Treefit and 
similar decision trees algorithms. G-REX achieves the 
same or slightly higher accuracy than Treefit, but adds 
additional quality to the same rules by increasing their 
AUC or brevity. A decision maker could certainly benefit 
from this extra rule quality, especially by directing G-REX 
to produce rules optimized on the quality measure best 
suited for the problem at hand. Another strength of a GP 
based rule inducer is that the representation language can 
be tailored for the problem and thereby possibly increase 
comprehensibility, accuracy or both.  
 Overall the experiments show that G-REX is well suited 
for classification tasks and should certainly be considered 
when a high quality transparent model is needed. 

Acknowledgement 

This work was supported by the Information Fusion 
Research Program (University of Skövde, Sweden) in 
partnership with the Swedish Knowledge Foundation under 
grant 2003/0104 (URL: http://www.infofusion.se). 

292



References 

Andrews, R., Diederich, J. and Tickle, A. B. 1995. "Survey 

and critique of techniques for extracting rules from trained 

artificial neural networks." Knowledge-Based Systems 

8(6):373-389. 

 

Blake, C. L. and Merz, C. J. 1998. "UCI Repository of 

machine learning databases." University of California, 

Department of Information and Computer Science. 

 

Breiman, L., Friedman, J. H., Olshen, R. A. and Stone., C. 

J. 1983. Classification and Regression Trees: Wadsworth. 

 

Craven, M. and Shavlik, J. 1999. "Rule Extraction: Where 

Do We Go from Here?",Technical Report, University of 

Wisonsin, Machine Learning Research Group. 

 

Craven, M. W. and Shavlik, J. W. 1996. "Extracting Tree-

Structured Representations of Trained Networks." 

Advances in Neural Information Processing Systems 8:24-

30. 

 

Fawcett, T. 2006. "An introduction to ROC analysis." 

Pattern Recognition Letters 27(8):861-874. 

 

Hongjun, L., Setiono, R. and Huan, L. 1995. "NeuroRule: a 
connectionist approach to data mining." In proceedings of 

the 21st International Conference on Very Large Data 

Bases, Zurich, Switzerland: Morgan Kaufmann Publishers 
 

Johansson, U. 2007. Obtaining accurate and 

comprehensible data mining models : an evolutionary 

approach., Department of Computer and Information 

Science, Linköpings universitet. 

 

Johansson, U., Konig, R. and Niklasson, L. 2003. "Rule 

Extraction from Trained Neural Networks using Genetic 

Programming." In Joint 13th International Conference on  

Artificial Neural Networks and 10th International 

Confernce on Neural Information Processing, 

ICANN/ICONIP 2003. Istanbul, Turkey. 

 

Margineantu, D. and Dietterich, T. 2002. "Improved Class 

Probability Estimates from Decision Tree Models." 

Nonlinear Estimation and Classification; Lecture Notes in 

Statistics 171:169-184. 

 
Provost, F., Fawcett, T. and Kohavi, R. 1998. "The case 

against accuracy estimation for comparing induction 

algorithms.", Machine Learning. Proceedings of the 

Fifteenth International Conference (ICML'98) Madison, 

WI, USA: Morgan Kaufmann Publishers. 

 

Wilcoxon, F. 1945. "Individual comparisons by ranking 

models." Biometrics(1):80-83. 

 

293




