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Abstract
To facilitate more meaningful interpretation considering the
internal interdependency relationships between data values,
a new form of high-order (multiple-valued) pattern known
as Nested High-Order Pattern (or NHOP) is recently
proposed. This pattern satisfies a consistent statistical
criterion when the pattern is iteratively extracted. The
general form of High-Order Pattern (HOP), that NHOP is a
subtype, is a set of multiple associated values (identified as
variable outcomes) extracted from a random N-tuple. The
pattern is detected by statistical testing if the occurrence is
significantly deviated from the expected according to a prior
model or null hypothesis. Here we extend our work of
NHOP to the classification task. The rationale is that,
meaningful association patterns, involving multiple values
jointly and at the same time predict classification, can
reinforce the underlying regularity, and hence provide a
better understanding of the data domain. In this paper, we
propose a Classification method based on the Nested High-
Order Patterns (C-NHOP). In evaluating our method using
26 UCI benchmark datasets, the experiments show a highly
competitive and interpretable result.

1. Introduction
From the analysis of data, mining various forms of
association patterns that also predict the classification
groupings often provides more reliable information about
the underlying physical properties, and hence reflects a
better understanding of the data domain. Association
mining aims to discover descriptive patterns relating
different values from database. Classification aims to build
a classifier from a set of training data whose classes are
known and useful in classifying new instances into one of
the pre-defined classes. Recently, associative classification
is proposed that often considers multiple values as a
pattern in the design of the classification rules. This paper,
following the same spirit, aims to produce a system in a
more tightly-coupled manner that the extracted data
patterns and classification can be jointly interpreted.

A desirable characteristic in the process of classification
is that the classifier can be interpreted from the description
of the extracted patterns, which are understandable by the
human users. Empirical studies (Liu, Hsu, and Ma 1998;
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Li, Han, and Pei 2001) show that associative classification
systems can achieve competitive classification
performance, together with standard AI methods such as
decision trees (Quinlan 1993) and rule induction (Cohen
1995), and are as easily interpretable.

Some associative classification systems make use of
association rule mining algorithms which aim to generate
classification rules that satisfy the minimum support and
minimum confidence (Liu, Hsu, and Ma 1998; Li, Han,
and Pei 2001; Thabtah et al. 2004). However, the setting of
minimum support and confidence can be difficult. For
example, when minimal support is set too high, many
useful rules for classification may be missed. In addition, a
detected rule with high support usually involves only a few
values and may not be detailed enough to classify
precisely. On the other hand, when minimal support is set
too low, the computational cost is much higher as the
search space increases enormously. Furthermore, since the
extracted rules with low support usually have low
occurrence, they could overfit the data and thus may ignore
the underlying properties of the domain. As a result, the
extracted rule set may contain many irrelevant rules in the
classification process. Pruning these irrelevant rules can
improve the classification accuracy, but may not address
the actual issue of capturing the underlying properties of
the domain.

Similarly, when the minimum confidence threshold is
set too high, the rules may involve too many values that
can overfit the data. However, lowering the confidence
threshold will also degrade the classification accuracy. As
a result, the optimality often depends on the user who
typically changes parameters while running the algorithm.

In this paper, we propose a novel association pattern
based on Nested High-Order Pattern (NHOP) (Lui and
Chiu 2007) which depends on statistical criteria that apply
iteratively to the extracted pattern components. Intuitively,
a high-order pattern (HOP) is a complex pattern that forms
and reflects a complex interactive relationship among its
composed values (Wong and Wang 1997). It is based on
sampling outcomes of a random N-tuple, rather than
frequent itemsets. Thus, it draws on the probabilistic
properties by analyzing relationships in random variables.
The high-order relationships are extracted from the
outcome values to construct statistically significant
association patterns that are jointly occurring. Thus the
patterns’ reliability is related directly to the statistical
evaluation.
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To explain the proposed high-order pattern more clearly,
a high-order pattern is a set of jointly occurring
interdependent (or associated) values that are statistically
significant. For example, given sample outcomes of (X1
,X2,…,X20), a high-order pattern can be (X3=A, X7=B,
X12=D). The order of a high-order pattern is defined as the
number of interdependent values detected. Based on
analysis of statistical significance, a high-order pattern can
be defined as a set of values whose observed occurrences is
statistically deviated from the prior model assumption,
such as the independence assumption (Wong and Wang
1997; Chiu, Wong, and Cheung 1991).

The significance of a high-order pattern is evaluated
using a statistical test (Wong and Wang 1997). An
overview of the test can be described as follows. First, the
observed frequency of a pattern candidate is obtained from
the data. The expected frequency of the pattern candidate
can then be estimated based on the presumed null
hypothesis which normally assumes that all the values are
mutually independent. It is rejected if the actual observed
frequency of the pattern candidate statistically deviates
from the expected frequency. In this case, the pattern
candidate is accepted as a significant pattern.

The null hypothesis assumption of independence has
been used extensively in many pattern discovery problems.
When the independence hypothesis is rejected, the
alternative hypothesis is accepted. The alternative
hypothesis suggests that not all of the values in the pattern
are independent. In other words, it suggests that at least
some values are interdependent, without specifying which
values are interdependent when more than two values are
involved. That is, a comprehensive nature of the internal
interdependency relationships can be identified and
interpreted later.

In general, an n-order pattern (2<nN), extracted from
the dataset of a random N-tuple, may still contain
independent disjointed components. For example, in a 4-
order pattern (A,B,C,D), the value subset {A,B} may be
independent of the other subset {C,D}, even though the
whole set {A,B,C,D} deviates from its null hypothesis of
the prior model. To facilitate interpretation and identify
patterns that are important considering their internal
interdependency relationships, a new form of restricted
subtype known as Nested High-Order Patterns (or NHOP)
is recently proposed (Lui and Chiu 2007). In (Lui and Chiu
2007), the analysis using aligned protein sequences shows
that NHOP is useful in identifying key multiple sites at the
3-dimensional protein molecular core. Here, we extend the
work on NHOP and apply it for the classification task that
is reinforced from the extracted patterns.

By NHOP, we refer to a pattern such that its components
are detected to be interdependent when the pattern is
expanded iteratively. This pattern thus satisfies the
statistical criterion of interdependency consistently for all
its components. An illustration of a NHOP which consists
of four components, denoted as (((A,B),C),D), is shown in
Figure 1.

A B C D

Component Statistical interdependency

Nested High-Order Pattern

Figure 1. Illustration of a Nested High-Order Pattern, denoted as
(((A,B),C),D).

To construct a NHOP, an interdependent component is
added iteratively to a previous lower order pattern. The
motivation is that with interdependent components added
iteratively, we avoid detecting patterns that are
independently disjoint. At each expansion of pattern,
NHOP composes components that are not simply due to
the chance model as specified in the prior assumption. In
other words, we avoid adding irrelevant value components
into the constructed high-order pattern. NHOP is desirable
for classification purpose because by avoiding components
that are due to the chance model, NHOP can better
represent the true underlying regularities in the data. It can
then more likely be generalized to unknown testing data.

A NHOP pattern can be defined as monothetic or
polythetic pattern. A monothetic pattern expands from a
single value (Lui and Chiu 2007). A NHOP pattern that is
polythetic can include more complex expansion with more
values. A well-known example of polythetic pattern is the
XOR pattern, where all the attribute values are independent
to each other, which requires for more complex pattern
relationships. In this paper, we generalize our algorithm to
allow expansion of a pattern component to include multiple
values when a single value pattern expansion is inadequate.
In our experiments, we found that using one or two values,
rather than a large number is already adequate for most
benchmark datasets.

The rest of the paper is organized as follows. Section 2
describes the notation and basic concepts used in this
paper. Section 3 presents in depth our proposed method
relating to classification which we called C-NHOP
(Classification based on NHOP). Section 4 presents the
extensive experimental results.

2. Notations and Basic Concepts

2.1 Notations and Data Representation
Our data are represented as sampling outcomes of a
random N-tuple. Alternatively, we can describe them as an
ensemble of a dataset represented as a relation in a
relational database. The relation can then be represented as
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X=(X1,X2,…,XN) with N variables. An instance of X is a
realization that can be denoted as x=(x1,x2,…,xN). Each xi

(1iN) can take up an attribute value denoted as xi=aip.
An attribute value xi=aip is a value taken from the attribute
value set, i={aip|p=1,2,...,Li} where Li is the number of
possible values for the attribute Xi. A value aip in i is then
defined as a primitive. Let E be a subset of X. E then has at
least one variable, but less than or equal to N variables.
The realization of E is denoted as e. A compound pattern
event (or just compound event) associated with the variable
set E is a set of attribute values instantiated by a realization
e. The compound event can be represented by e={Xj=ajq |
XjE, q1,2,...,Lj}. The order of the compound event is
|E|, which can be conveniently denoted as n (≤N).

2.2 Evaluation of Statistical Significance
The expansion of NHOP is based on evaluating the
statistical interdependency between its components,
denoted, say, E1=e1 and E2=e2. Statistically significant
patterns are considered in order to differentiate from those
that are due to chance. To evaluate the statistical
significance, a measure between the outcome values
corresponding to their variables is used. This is considered
to identify those values that are interdependent even
though other values of the same variables are not.

We use the following method for evaluating the
statistical interdependency between two compound events
E1=e1 and E2=e2, using a statistics z(e1,e2). The notation E1

and E2 refers to the joint variables composed of the
corresponding variable subset that makes up the event of e1

and e2 respectively. E1 and E2 consists of distinct variable
sets (i.e. E1E2=). The standardized residual z(e1,e2)
(Wong and Wang 1997) is defined as:

),exp(

),exp(),(
),(

21

2121
21

ee

eeeeobs
eez


 (1)

where obs(e1,e2) is the observed frequency and exp(e1,e2) is
the expected frequency for (e1,e2) respectively. The
expected frequency of (e1,e2) is calculated from the
independence assumption where the null hypothesis
assumes the two events considered to be independent to
each other. If the deviation between the observed and
expected frequency of the compound events is sufficiently
large, then the pattern is found to be previously
unexpected. Thus, a new pattern not previously known can
be evaluated. It is known that the standardized residual is
normally distributed only when the asymptotic variance of
z(e1,e2) is close to one, otherwise, standardized residual has
to be adjusted by its variance using the formula below. The
adjusted residual (Wong and Wang 1997) is expressed as:
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where v(e1,e2) estimates the maximum likelihood of the
variance of z(e1,e2). It is expressed as:
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The adjusted residual d(e1,e2) has an asymptotic normal
distribution. Thus the significance level can be chosen to
be 95%, or any other acceptable level. The test for
statistical significance is based on the following inequality
d(e1,e2) N , where N is the tabulated threshold with 
being the confidence level.

2.3 Measure of Interdependency of NHOP
The amount of interdependency between two events is
estimated using a measure of mutual information. The
mutual information between the two compound events
E1=e1 and E2=e2 is calculated as:
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To calculate the overall relevance of a detected NHOP
based on combining the interdependency among the
patterns expanded in all the previous iterations, we use a
weighted product of the mutual information (). It is
defined as follows. Consider an n-component NHOP,
denoted as e=((((e1 , e2), e3),…), en), where ej is the jth

component append to the (j-1)- component NHOP. The
measure  of e, which indicates the total internal
interdependency, is defined as:

1 2 3

1 2 1 2 3

1 2 1

( (((( , ), ),...), ))

( ) [ ( , ) (( , ), ) ...

(( , ,..., ), )]

n

n n

e e e e e

P e MI e e MI e e e

MI e e e e

 
     (5)

This measure calculates the summed total
interdependency of all components identified. Notice that,
 is high when the calculated mutual information for all
the added components in the pattern is consistently high.
Furthermore, the jth component is added only when it is
statistically significantly interdependent with the (j-1)-
component NHOP.

3. Classification based on NHOP

3.1 Overview
The classification algorithm proposed here is designed as a
complementary consideration between the detected NHOP
with the classification pattern. Note that the two types of
patterns are both interpretable in understanding the data
domain. Thus, their reliability reinforces each other. We
call the algorithm that extracts patterns with these
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properties C-NHOP algorithm (or Classification based on
Nested High-Order Pattern Algorithm). C-NHOP consists
of three phases including: 1) extracting patterns from the
training data; 2) constructing the classifier; and 3)
classifying new instances in the testing data.

3.2 Pattern Extraction
The algorithm for extracting the NHOP patterns from the
training data is presented as follows. The patterns are
generated from low to high order by using pattern
expansions iteratively. Initially, the number of values for
pattern expansion is set to one. In the first iteration, the 2-
order patterns in the form of (C=ci, Xj=ajq) are detected
using the adjusted residual for each class C=ci, where the
class label, C=ci, is associated to one value only.

To have a more efficient search for higher order
patterns, only a subset of detected patterns in current
iteration is selected using a database coverage method
(Liu, Hsu, and Ma, 1998). The basic idea of the method is
to select a set of high ranking patterns to "cover" as many
instances as possible in the training dataset.

An overview of the database coverage method is
described as follows. The detected patterns are ranked
using the objective function, as in Equation (5). The
highest ranked pattern that can correctly cover at least one
instance in the training dataset is first selected. A pattern
covers an instance if the pattern's values are found in the
instance. Once a pattern is selected, the covered instances
are removed from the dataset. The next highest ranked
pattern that covers the data is then considered. The pattern
selection continues until as many instances as possible are
covered.

If some instances in the data cannot be covered by these
patterns, we increase the size of pattern expansion by one.
The objective is to cover the remaining uncovered
instances by patterns with multiple values expansion. We
consider single value expansion first before using
expansion with multiple values. When there are instances
in the data cannot be covered by NHOP with single value
expansion, a more complex NHOP based on multiple value
expansion will be used with additional computational cost.

When all the instances are covered or when the
expansion increases up to a predefined number (m), the
selected patterns will be promoted for higher order search
in next iteration. If no pattern selected in current iteration,
the search terminates. In the next iteration, the expansion is
reset to single value and instances are reset to be
"uncovered".

Notice that the pattern is evaluated based on the whole
set of training data rather than the remaining dataset as in
many other methods at each search iteration. The
advantage is that the detected patterns are reflective of the
domain rather than biased for the classification task only.

3.3 Classifier Construction
To construct a classifier is to extract a subset of high
quality patterns that can represent the training dataset. To
achieve this goal, filtering out patterns that confuse
between the classes or overfit the data is required.

Specific patterns with a large number of values tend to
have higher accuracy. They, however, tend to have lower
occurrence in the training data. With low occurrence, these
patterns may not generalize well to the testing data. This is
the problem of overfitting. In our method, we select
patterns for the classifier using a pattern ranking scheme
based on the order of the pattern and the degree of the
patterns in satisfying the extracting criterion. A pattern
ranking is defined as follows. Defining confidence(ci,e)=
P(ci,e)/P(e); given two patterns (ci,e1) and (ci,e2), (ci,e1) is
said to have a higher ranking than (ci,e2), if:
(1) confidence(ci,e1)>confidence(ci,e2);
(2) confidence(ci,e1)=confidence(ci,e2)

but order of (ci,e1)<order of (ci,e2);
(3) confidence(ci,e1)=confidence(ci,e2),

order of (ci,e1)=order of (ci,e2),
but (ci,e1)> (ci,e2).

The first criterion based on confidence has been used by
most associative classifiers such as (Liu, Hsu, and Ma
1998; Li, Han, and Pei 2001). Pattern with higher
confidence may introduce less error in the classification
phase. The second criterion said that when two patterns
have the same confidence, the one with lower order is
preferred. The rationale is that lower order pattern, which
is more general, is less likely to overfit the data. When
confidence and order of two patterns are the same, the third
criterion chooses the one with a higher value.

The algorithm for constructing the classifier is presented
as follow. First, selected patterns in previous phase are
sorted according to the ranking scheme. A refined set of
patterns is then selected based on the database coverage
method.

3.4 Classifying new instance
In classifying a new instance of unknown class in the
testing phase, the class label of the first NHOP such that it
is observed in the instance will be used. If there is no
matched NHOP pattern, lower order patterns of NHOP
with fewer components will be considered. If there is still
no matched pattern, the majority class with the most
number of samples will be used.

4. Experimental Results

4.1 Description of Data
The following experiments are evaluated based on 26
benchmark datasets in UCI Machine Learning Repository,
which can be obtained from (Liu, Hsu, and Ma 1998). As
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shown in Table 1 (column 1 to 4), the datasets differ in
number of attributes (column 2), number of classes
(column 3), as well as sample size (column 4). We use the
same method as in (Liu, Hsu, and Ma 1998) to discrete the
continuous attributes.

Each dataset is evaluated using 10-fold cross-validation.
To ensure the class frequency distributions are more
suitable for the cross-validation, each obtained dataset has
been shuffled using the shuffle utility in C4.5 (Quinlan
1993). In cross-validation, a dataset is divided into 10
folds. Each fold is in turn used as the testing dataset while
the remaining data is used as the training dataset. The
average accuracy of all 10 trials is reported.

4.2 Experiment 1: Compare classification rates
considering different sizes of pattern expansion
In this experiment, we compare the classification rates
using different maximum number of expanded values
allowed. This parameter is denoted as m.

The result using maximum size of expansion, m=1, m=2,
and m=3 is shown in Table 1 (columns 5 to 7). The overall
average classification rates of using m=1, 2, 3 are 85.0%,
86.6%, and 86.7% respectively. The rates using m=1 is
lower than using m=2 or m=3 as expected. Since only
monothetic patterns can be discovered when using m=1,
the classification rate is poor in some cases where the
dataset consists of many polythetic patterns.

For example, in the Tic-Tac-Toe dataset, the rate using
m=1 is very poor, only with 70.3%. Using m=2, the rate
can be immediately increased to 98.5%. Obviously,
monothetic patterns cannot model the data well. Similarly,
the rate using naïve bayesian method (NB) is also poor for
this dataset as expected. As shown in Table 1 (column 11),
the rate is only 69.9%.

Using m=2 gives higher average rates than using m=1 in
general. By increasing m from one to two, 10 datasets get
higher rates, 11 datasets get the same rates, and 5 datasets
get lower rates. Using m=3 gives similar average rate as
using m=2. By increasing m from two to three, 7 datasets
get higher rates, 15 datasets get the same rates, and 4
datasets get lower rates. The rates based on m=3 is not
significantly higher than that of m=2 using the t-test
(P=0.12).

In summary, our proposed algorithm based on extracted
NHOP patterns that allow two values expansion can be a
better model than that based on single value expansion.
However, there is no significant improvement when three
values expansion is allowed.

In this experiment, the confidence level used for the
adjusted residual statistical test is 90%. Same conclusions
can be drawn in using 80% or 95% confidence level.
Hence the result is not sensitive to the selected level.

Table 1. Classification rates on 26 benchmark datasets.
Dataset Att Cls Size

m=1 m=2 m=3 CBACPAR C4.5 NB C-NHOP
Anneal 38 6 898 99.2 99.3 99.3 96.4 99.3 94.8 97.3 99.3
Australian 14 2 690 86.2 86.8 86.4 86.6 86.1 84.7 86.0 86.8
Auto 25 7 205 82.9 85.2 85.2 72.8 82.9 80.1 67.9 85.2
Breast-w 10 2 699 96.1 95.9 95.9 95.8 96.7 95.0 97.6 95.9
Cleve 13 2 303 82.7 82.7 83.3 83.3 83.0 78.2 82.9 82.7
Crx 15 2 690 86.7 86.4 86.7 85.9 84.8 84.9 85.4 86.4
Diabetes 8 2 768 77.5 77.5 77.5 74.7 76.6 74.2 75.6 77.5
German 20 2 1000 71.6 71.5 71.5 73.5 72.8 72.3 75.4 71.5
Glass 9 7 214 74.3 76.2 76.2 72.6 77.6 68.7 70.6 76.2
Heart 13 2 270 82.6 82.6 82.6 81.5 83.0 80.8 81.9 82.6
Hepatitis 19 2 155 83.8 86.9 86.3 84.9 83.8 80.6 85.0 86.9
Horse 22 2 368 85.9 84.6 85.7 81.3 84.9 82.6 79.4 84.6
Hypo 25 2 3163 97.1 97.1 96.9 98.3 98.3 99.2 98.5 97.1
Ionosphere 34 2 351 94.0 94.0 94.0 91.8 94.0 90.0 88.1 94.0
Iris 4 3 150 93.3 93.3 93.3 92.9 94.7 95.3 94.0 93.3
Labor 16 2 57 96.7 96.7 96.7 83.0 95.0 79.3 86.0 96.7
Led7 7 10 3200 71.8 71.8 71.8 72.2 73.5 73.5 73.3 71.8
Lymph 18 4 148 80.7 81.3 84.0 80.4 83.3 73.5 75.6 81.3
Pima 8 2 768 77.3 77.3 77.3 72.4 77.0 75.5 75.5 77.3
Sick 29 2 2800 96.4 96.4 96.5 97.3 96.7 98.5 96.1 96.4
Sonar 60 2 208 82.4 83.3 83.8 78.3 82.9 70.2 77.0 83.3
Tic-tac-toe 9 2 958 70.3 98.5 98.5 100 100 99.4 69.9 98.5
Vehicle 18 4 846 68.4 69.9 69.5 68.7 71.1 72.6 59.9 69.9
Waveform 21 3 4500 79.8 78.9 79.1 79.4 80.9 78.1 80.7 78.9
Wine 13 3 178 99.4 99.4 99.4 91.6 98.3 92.7 90.5 99.4
Zoo 16 7 101 93.0 97.0 97.0 94.6 95.0 92.2 86.3 97.0
Average accuracy 85.0 86.6 86.7 84.2 86.6 83.3 82.2 86.6

Experiment 1 Experiment 2

4.3 Experiment 2: Compare C-NHOP with other
classifiers
In this experiment, we compare our algorithm with two
associative classifiers including CBA (Liu, Hsu, and Ma
1998) and CPAR (Yin and Han 2003); a decision tree
method, C4.5 (Quinlan 1998); and naïve bayesian (NB)
method. The results for CBA, C4.5, and NB are taken from
(Liu, Ma, and Wong 2000). We run CPAR downloaded
from (Yin and Han 2003) with the default settings.

From Table 1 (column 8 to 12), the average rates for
CBA, CPAR, C4.5, NB, and C-NHOP (using m=2) are
84.2%, 86.6%, 83.3%, 82.2%, and 86.6% respectively.
Among the 26 datasets, the number of won-loss-tied
datasets of C-NHOP against CBA, CPAR, C4.5, and NB
are 19-0-7, 10-1-14, 19-0-7 and 19-0-7, respectively. When
all the five classifiers are compared, CBA achieves the best
accuracy in 2 datasets; CPAR wins in 9 datasets; C4.5 wins
in 5; NB wins in 2; and C-NHOP wins in 12. In comparing
the results, C-NHOP is significantly higher than CBA,
C4.5, and NB when compared using the t-test with
confidence level of P<0.01. The difference between C-
NHOP's rates and CPAR's rates is not statistically
significant. Here, we conclude that C-NHOP is competitive
to these classifiers using these benchmark datasets.

Not only NHOP patterns can be applied to achieve high
accuracy, they are also immediately interpretable. Here,
we use the results from the Zoo dataset to demonstrate the
interpretability of the NHOP patterns. The Zoo dataset is
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Table 2. Top ranked NHOP animal class patterns (most frequent
in the 10-fold cross-validation). [Note that the patterns closely fit
our general understanding of the classes.]
Order Patterns
2-order (class=mammal, milk=yes)
2-order (class=birds, feathers=yes)
7-order ((((class=reptiles, milk=no & toothed=yes),

predator=yes & domestic=no), fins=no), breathes=yes)
3-order ((class=fishes, fins=yes), breathes=no)
5-order (((class=amphibians, aquatic=yes), legs=4), eggs=yes

& toothed=yes)
6-order (((((class=insects,legs=6), backbone=no), tail=no),

toothed=no), airborne=yes)
4-order (((class=others(crest-bearing animals/worms),

backbone=no), tail=no), breathes=no)

chosen because the extracted patterns can easily be
verified. The Zoo dataset contains 101 samples with 16
attributes and a class attribute. Each sample represents an
animal with its characteristics. The 16 attributes are hair,
feathers, eggs, milk, airborne, aquatic, predator, toothed,
backbone, breathes, venomous, fins, legs, tail, domestic,
and size. There are 7 classes of animals including 41
mammals, 20 birds, 5 reptiles, 13 fishes, 4 amphibians, 8
insects, and 10 others (including worms and crest-bearing
animals).

Table 2 lists the most frequent top ranked NHOP for
each class in the 10-fold cross-validation. All these NHOP
are found meaningful. As shown in Table 2, not only
values in the NHOP patterns are shown explicitly, the
statistical associations between the pattern's components
are also displayed. For example, consider the 5-order
NHOP pattern (((class=amphibians, aquatic=yes), legs=4),
eggs=yes & toothed=yes) in Table 2, the first component
associated with the amphibian class is the aquatic
characteristic. The next associated characteristic is "legs
=4". Finally, the last associated component, which based
on two values expansion, consists of two characteristics
including egg-laying and toothed.

5. Conclusion
In this paper, we propose a novel classification system
which we called C-NHOP (Classification based on Nested
High-Order Pattern). It is designed to be highly
interpretable, closely related to patterns observed from the
dataset, and associated with their class labels such that
classification predictability is meaningful. In addition, it
also has the following characteristics:
(1) It constructs NHOP patterns by adding statistically
interdependent components one at a time which aims to
eliminate associations due to random variations.
(2) Extending from (Lui and Chiu 2007), we also identify
polythetic patterns when monothetic patterns with single
value expansion is inadequate.

(3) Generating patterns from a small to larger size, its
predictive relationship is refined from a general to a
specific description.
(4) It uses the whole dataset in evaluating patterns at each
iteration, rather than using the remaining unclassified set,
thus generated patterns are based on complete information
of the observed data and is more interpretable.
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