
Building Useful Models from Imbalanced Data with Sampling and Boosting

Chris Seiffert and Taghi M. Khoshgoftaar and Jason Van Hulse and Amri Napolitano
Computer Science and Engineering

Florida Atlantic University
777 Glades Rd., Boca Raton, FL 33431

chrisseiffert@gmail.com; taghi@cse.fau.edu; jvanhulse@gmail.com; anapoli1@fau.edu

Abstract

Building useful classification models can be a challeng-
ing endeavor, especially when training data is imbal-
anced. Class imbalance presents a problem when tra-
ditional classification algorithms are applied. These al-
gorithms often attempt to build models with the goal
of maximizing overall classification accuracy. While
such a model may be very accurate, it is often not very
useful. Consider the domain of software quality pre-
diction where the goal is to identify program modules
that are most likely to contain faults. Since these mod-
ules make up only a small fraction of the entire project,
a highly accurate model may be generated by classi-
fying all examples as not fault prone. Such a model
would be useless. To alleviate the problems associated
with class imbalance, several techniques have been pro-
posed. We examine two such techniques: data sampling
and boosting. Five data sampling techniques and one
commonly used boosting algorithm are applied to five
datasets from the software quality prediction domain.
Our results suggest that while data sampling can be very
effective at improving classification performance when
training data is imbalance, boosting (which has received
considerably less attention in research related to mining
imbalanced data) usually results in even better perfor-
mance.

Introduction
Many application domains, such as Software Quality Pre-
diction, suffer from the problem of class imbalance. That
is, datasets in these domains tend to be unevenly distrib-
uted with respect to class. When examples of one class are
much more (or less) abundant than examples of the other
class(es), this presents a problem for traditional classifica-
tion algorithms. This is because most classification algo-
rithms attempt to maximize classification accuracy without
regard for the significance of the different classes. For exam-
ple, in the Software Quality Prediction domain, models are
typically built to distinguish between program modules that
are likely to contain faults (fault prone, or fp) from those that
are not fault prone (nfp). If only 2% of the modules in a soft-
ware project are fault prone, then a model can achieve 98%
accuracy by classifying all modules as being nfp. While this

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

level of accuracy seems very good, such a model is useless
to practitioners in this domain.

Many techniques have been proposed to alleviate the
problems associated with class imbalance. This paper ex-
amines and compares the performance of two such tech-
niques: data sampling and boosting. The first technique,
data sampling, attempts to improve classification perfor-
mance by artificially balancing the class distributions of
training datasets. This can be done in one of two ways. Over
sampling creates a more balanced dataset by increasing the
number of examples in the the minority (underrepresented)
class. Under sampling, on the other hand, reduces the num-
ber of examples belonging to the majority class. Both under
and over sampling can be done randomly, or using more “in-
telligent” algorithms. In this work, we examine the perfor-
mance of five different data sampling techniques, including
both random and intelligent over and under sampling.

The second technique, boosting, is designed to improve
the performance of weak classifiers. It does so by iteratively
building an ensemble of classifiers, modifying the weight of
training examples after each iteration. By assigning higher
weights to misclassified examples, the model built in the
following iteration is more likely to correctly classify those
examples. While boosting was not designed specifically to
deal with the class imbalance problem, our results show that
it performs very well in this regard. In this work, we ex-
amine the performance of AdaBoost (Schapire 1999), a well
known boosting algorithm that can improve the performance
of any weak classifier.

While there is existing research that compares different
data sampling techniques, and proposes modified boosting
algorithms, these studies do not compare the performance
of multiple data sampling to that of boosting for mining im-
balanced data. Some studies, especially those that combine
boosting and sampling into a single algorithm (Chawla et al.
2003), do compare the performance of the base data sam-
pling technique, the base boosting technique and their com-
bination, but to our knowledge no study performs a com-
prehensive comparison of the performance of boosting and
the various data sampling techniques. This work does just
that. We present a comprehensive empirical evaluation of
data sampling and boosting using real world datasets from
the domain of software quality prediction. In this study,
for which 16,000 classification models were evaluated, we

Proceedings of the Twenty-First International FLAIRS Conference (2008)

306

demonstrate the performance of five data sampling tech-
niques and boosting. Our results show that while data sam-
pling does improve classification performance when training
datasets are imbalanced, boosting often outperforms even
the best data sampling technique.

Related Work
The difficulties associated with learning from imbalanced
data are well documented in data mining and machine learn-
ing literature. Japkowicz (Japkowicz 2000) provides an in
depth view of the imbalance problem, identifying different
types of imbalance and which are the most detrimental to
the learning process. (Japkowicz 2000) also examines dif-
ferent strategies for dealing with class imbalance, including
random over and under sampling which are two of the tech-
niques used in this work. Weiss (Weiss 2004) also inves-
tigates the problem of class imbalance, presenting a survey
of many techniques for alleviating this problem, including
boosting, another technique used in our research.

Data sampling has received significant attention among
data mining researchers. Drummond and Holte (Drummond
& Holte 2003), for example, compare over and under sam-
pling using C4.5 decision trees. Their results show under
sampling to be more effective than over sampling for im-
proving the performance of models built using C4.5. Mal-
oof’s research (Maloof 2003), however, shows that under
and over sampling result in roughly equivalent models when
using C5.0 (C4.5’s commercial successor) and Naive Bayes.
In addition to random over and under sampling, several
more “intelligent” data sampling techniques have been pro-
posed to sample data in such a way that benefits the clas-
sifier. Barandela et al. (Barandela et al. 2004) and Han et
al. (Han, Wang, & Mao 2005) examine the performance of
some of these “intelligent” data sampling techniques such
as SMOTE, borderline-SMOTE, and Wilson’s Editing. Van
Hulse et al. (Van Hulse, Khoshgoftaar, & Napolitano 2007)
examine the performance of seven different sampling tech-
niques including both random and “intelligent” techniques.

The other strategy this work examines, boosting, has re-
ceived relatively less attention in the related research. Most
of these studies deal with the introduction of new boost-
ing techniques designed specifically for the class imbalance
problem. DataBoost-IM, proposed by Gou and Viktor (Guo
& Viktor 2004) combines boosting and data sampling to im-
prove classification performance. SMOTEBoost (Chawla et
al. 2003) is another technique that combines data sampling
(SMOTE) and boosting to compensate for imbalanced data.
RareBoost (Joshi, Kumar, & Agarwal 2001) modifies the
boosting process by adjusting weights differently depending
on the misclassified examples’ class.

In this work, we present an empirical investigation com-
paring the performance of various data sampling techniques
to that of boosting. Based on previous research (Van Hulse,
Khoshgoftaar, & Napolitano 2007), we select the five data
sampling techniques that most improve performance when
learning from imbalanced data. We evaluate the perfor-
mance of these five techniques on five datasets from the soft-
ware quality prediction domain, and compare their perfor-
mance to that of AdaBoost (Freund & Schapire 1996), one

Table 1: Dataset characteristics
Dataset #mods #min %min #attr
C12 282 16 5.67 9
CM1 505 48 9.50 16
PC1 1107 76 6.87 16
SP1 3649 229 6.28 43
SP3 3525 47 1.33 43

of the most popular boosting algorithms. To our knowledge,
this is the first study to compare the performance of boosting
and multiple data sampling techniques.

Experimental Datasets
This work uses five datasets from the software quality pre-
diction application domain. This domain is ideally suited for
studying the class imbalance problem since almost all soft-
ware quality datasets are imbalanced. It is well known in the
software engineering field that the majority of a software
project’s faults lie in only a small percentage of the program
modules. Therefore, software quality datasets are naturally
imbalanced (Khoshgoftaar, Yuan, & Allen 2000). Table 1
provides details about the five software quality datasets used
in this study, including the size of the dataset (#mods), the
number of minority class (fp) examples (#min), the percent-
age of examples belonging to the minority class (%min), and
the number of attributes in the dataset. The datasets, some
of which are proprietary, used in this work represent soft-
ware projects of different sizes with different levels of im-
balance. They were obtained from three different industries
including a large telecommunications company, the NASA
Metrics Data Program (NASA/WVU IV&V Facility), and
the Department of Defense.

Learners
This work uses two well-known learners: C4.5 and RIPPER.
C4.5 (Quinlan 1993) is a learning algorithm that builds de-
cision trees using an entropy-based splitting criterion stem-
ming from information theory. It improves upon ID3 (Quin-
lan 1986) by adding support for tree pruning and deal-
ing with missing values and numeric attributes. J48 is the
WEKA (Witten & Frank 2005) implementation of C4.5.
RIPPER (Repeated Incremental Pruning to Produce Error
Reduction) (Cohen 1995) is a rule-based learner that modi-
fies the IREP algorithm (Furnkranz & Widmer 1994) to im-
prove accuracy without sacrificing efficiency. JRip is the
WEKA implementation of RIPPER. The default parame-
ter values (provided by WEKA) for both J48 and JRip are
used in our experiments. These learners were selected since
they have been shown to be greatly affected by the class im-
balance problem (Van Hulse, Khoshgoftaar, & Napolitano
2007). Results may vary when other learners are used.

Sampling Techniques
This work uses five different data sampling techniques.
Random over sampling (ROS) and random under sampling

307

(RUS) achieve more balanced datasets by randomly du-
plicating examples of the minority class (ROS) or ran-
domly removing examples from the majority class (RUS).
Synthetic Minority Oversampling Technique, or SMOTE
(SM) (Chawla et al. 2002) creates new minority class ex-
amples by extrapolating between existing minority class ex-
amples. Borderline-SMOTE (BSM) (Han, Wang, & Mao
2005) modifies the SMOTE technique by only creating new
examples based on minority class examples that lie near the
decision border in feature space. Wilson’s Editing (WE) is
an under sampling technique that attempts to remove only
majority class examples that are likely to contain noise as de-
termined by the k-Nearest Neighbors algorithm (Aha 1997).

Each sampling technique was performed using a variety
of parameters. ROS, RUS, SM, and BSM were performed
with three different parameters: 35, 50 and 65. These para-
meters identify the percentage of examples in the post sam-
pling dataset that will belong to the (pre-sampling) minority
class. WE was performed twice, once using the Euclidean
distance measure and once using the Weighted distance mea-
sure described in (Barandela et al. 2004).

Boosting
AdaBoost (Schapire 1999) is a well known boosting algo-
rithm shown to improve the classification performance of
weak classifiers. AdaBoost begins with all examples in the
training dataset being assigned equal weights. AdaBoost
then begins an iterative process where weak hypotheses are
generated using the base learner (in this study, C4.5 or RIP-
PER). The error associated with a hypothesis is calculated
and the weights of the training examples are adjusted, with
misclassified examples receiving higher weights while the
weights of correctly classified examples are reduced. There-
fore in the next iteration the misclassified examples are more
likely to be correctly classified by the new hypothesis. Once
the stopping criteria is met (in this case, 10 iterations) all
hypotheses participate in a weighted vote to assign classes
to unlabeled examples.

Performance Metrics
Traditional performance measures such as overall classifi-
cation accuracy, or its complement, misclassification rate,
are inappropriate when dealing with the classification of rare
events. When as few as 1% of examples belong to the mi-
nority class, a classifier can achieve an overall accuracy of
99% by simply labeling all examples as belonging to the
majority class. In a domain such as software quality predic-
tion, however, such a model is useless. Instead, we use two
performance metrics that consider the ability of a classifer
to differentiate between the two classes: The Kolmogorov-
Smirnov statistic (KS) and the area under the ROC curve
(AUC).

The Kolmogorov-Smirnov (KS) statistic measures the
maximum difference between the empirical distribution
function of the posterior probabilities of instances in each
class. In other words, let Fci(t) = P (p (x) ≤ t | ci),
0 ≤ t ≤ 1. Fci(t) is estimated by the proportion of class ci

instances ≤ t:

Fci(t) =
class ci instances with posterior probability ≤ t

class ci instances
.

Then the KS statistic is defined as:

KS = max
t∈[0,1]

| Fc1(t)− Fc2(t) | (1)

The larger the distance between the two distribution func-
tions, the better the learner is able to separate the two classes.
The maximum possible value for KS is one (perfect separa-
tion), with a minimum of zero (no separation). The KS sta-
tistic is a commonly-used metric of classifier performance
in the credit scoring application domain (Hand 2005).

Receiver Operating Characteristic curves (Provost &
Fawcett 2001), or ROC curves, graph true positive rates
on the y-axis versus the false positive rates on the x-axis.
The resulting curve illustrates the trade-off between detec-
tion rate and false alarm rate. Traditional performance met-
rics consider only the default decision threshold of 0.5. ROC
curves illustrate the performance across all decision thresh-
olds. For a single numeric measure, the area under the ROC
curve (AUC) is widely used, providing a general idea of the
predictive potential of the classifier.

Experimental Design Summary
Using five software quality datasets, models are trained us-
ing two classification algorithms: C4.5 and RIPPER. Five
different data sampling techniques, as well as boosting, are
implemented to improve the performance of these learners.
We employ 10-fold cross validation to build and test our
models. That is, the datasets are broken into ten partitions,
where nine of the ten partitions are used to train the model,
and the remaining (hold out) partition is used to test the
model. This is repeated ten times so that each partition is
used as hold out data once. In addition, we perform 10 inde-
pendent repetitions (runs) of each experiment to remove any
biasing that may occur during the random selection process
and to ensure the statistical significance of our results. The
results reported in the following sections represent the aver-
age of these repetitions. In total, 16,000 models were evalu-
ated during the course of our experiments.

Results: Data Sampling
This section presents the results of our experiments using
data sampling. We compare the performance of C4.5 and
RIPPER models built after applying five different data sam-
pling techniques with the performance of models built with-
out data sampling.

Tables 2 and 3 show the performance of C4.5 and RIP-
PER models, respectively, using the KS statistic to measure
classification performance. In each of these tables, the best
model for each dataset is indicated in bold print, while the
worst performance is italicized. Asterisks (*’s) in these ta-
bles indicate results for which the statistical significance will
be discussed later in this paper. Table 2 shows that data
sampling almost always results in better performance than
not performing sampling. For each dataset, the best per-
formance is achieved using data sampling. In three of the

308

Table 2: Performance of C4.5 models measured using KS
statistic

ST C12 CM1 PC1 SP1 SP3
BSM 0.6974 0.3523 0.5421 0.3200 0.4064
ROS 0.6015* 0.2158 0.3976 0.1708 0.1159
RUS 0.7272* 0.3665 0.5351 0.3832 0.4631
SM 0.6944 0.3768 0.5385 0.3115 0.3402
WE 0.6764 0.2223 0.3556 0.2762 0.0290

None 0.6549 0.1303 0.2806 0.2714 0.0180

Table 3: Performance of RIPPER models measured using
KS statistic

ST C12 CM1 PC1 SP1 SP3
BSM 0.6754 0.3709 0.4979 0.3821 0.4544
ROS 0.6218 0.2355 0.4169 0.2220 0.0987
RUS 0.7618 0.3919 0.4907 0.3988 0.4497
SM 0.7050 0.3648 0.5408 0.3613 0.3564
WE 0.6722 0.1112 0.2494 0.1184 0.0129

None 0.6097 0.0472 0.1808 0.0874 0.0121

five datasets, RUS results in the best performance. For the
two remaining datasets, the intelligent over sampling tech-
niques results in the best performance. BSM results in the
best performance using the PC1 dataset, while SM achieves
the highest KS statistic using the CM1 dataset. None (no
sampling) results in the worst performance in three of the
five datasets. In the remaining two datasets (C12 and SP1),
ROS actually performs worse than None. Of the five data
sampling techniques, ROS is the only technique to result in
worse performance than None for any dataset.

Table 3 shows the classification performance of models
built using RIPPER. These results are even more convinc-
ing. Using RIPPER, every sampling technique outperforms
None for every dataset. Unlike when C4.5 was used to
build models, there is no case where models built with-
out sampling outperform those built with sampling. Once
again, RUS is shown to be a very strong sampling tech-
nique, achieving the highest KS statistic in three of the five
datasets. SM achieved the best performance for the PC1
dataset, while BSM yielded the highest KS value for the SP3
dataset. In general, RUS is shown to be the best overall data
sampling technique, while SM and BSM also perform very
well. ROS and WE usually result in improved classifica-
tion performance, but are almost always outperformed by
the other three techniques.

Tables 4 and 5 show the performance of these data sam-
pling techinques as measured using AUC. These results are
similar to those obtained using the KS statistic. Once again,
we see that data sampling almost always results in better
classification performance than when sampling is not used.
When models are built using C4.5 (Table 4), every data sam-
pling technique outperforms None for every dataset. Using
RIPPER to build models, there is only one case where None
outperforms one of the data sampling techniques. As will be
shown in later discussion, however, this performance differ-

Table 4: Performance of C4.5 models measured using AUC

ST C12 CM1 PC1 SP1 SP3
BSM 0.8409 0.6055 0.7479 0.6067 0.5262
ROS 0.7974 0.5929 0.6958 0.5833 0.5495
RUS 0.8634 0.6682 0.7653 0.6784 0.6943
SM 0.8380 0.6515 0.7322 0.6216 0.5091
WE 0.8176 0.5793 0.6899 0.5875 0.5000

None 0.7728 0.5498 0.6529 0.5803 0.4974

Table 5: Performance of RIPPER models measured using
AUC

ST C12 CM1 PC1 SP1 SP3
BSM 0.8299 0.6280 0.7377 0.6948 0.6253
ROS 0.8082 0.6018 0.7057 0.6077 0.5395
RUS 0.8809 0.6923 0.7471 0.7084 0.7209
SM 0.8461 0.6439 0.7498 0.6784 0.5616
WE 0.8358 0.5480 0.6233 0.5589 0.5048*

None 0.8026 0.5169 0.5898 0.5433 0.5051

ence (only 0.0003) is not statistically significant.
Tables 4 and 5 once again show RUS to be the superior

data sampling technique. In fact, using AUC to measure
performance, the data in these tables is even more convinc-
ing. Models built using C4.5 always result in the best perfor-
mance when RUS is used, while RIPPER results in the best
performance when combined with RUS in four of the five
datasets. In the remaining dataset, PC1, SM outperforms
RUS by a very small margin. The results presented in this
section show that whether KS or AUC are used to measure
performance, data sampling results in improved classifica-
tion performance. In addition, RUS is shown to be the best
of the five data sampling techniques.

Results: Boosting
In the previous section, we examined the performance of
five different data sampling techniques. In this section we
consider another technique for alleviating the class imbal-
ance problem: boosting. The results presented in this sec-
tion compare the performance of models built using C4.5
and RIPPER with Adaboost to the results of the best data
sampling technique for each dataset/learner combination, as
presented in the previous section.

Tables 6 and 7 compare the performance of the best data
sampling technique from the previous section (usually RUS)
with the performance achieved using Adaboost to improve
classification performance. These tables use the KS statis-
tic to measure classification performance. Tables 6 and 7
both show very similar results. For four of the five datasets,
boosting out performs even the best data sampling technique
(the best performance for each dataset is indicated by bold
text). The only dataset where Adaboost is outperformed by
data sampling is SP3. These results may be somewhat sur-
prising, since these data sampling techniques are designed to
improve classification performance when training data is im-
balanced, while Adaboost was designed to improve perfor-

309

Table 6: Sampling vs. Boosting using C4.5, KS statistic

Tech C12 CM1 PC1 SP1 SP3
BestST 0.7272 0.3768 0.5421 0.3832 0.4631
Boost 0.8143* 0.4510 0.6193 0.4146* 0.3746
None 0.6549 0.1303 0.2806 0.2714 0.0180

Table 7: Sampling vs. Boosting using RIPPER, KS statistic

Tech C12 CM1 PC1 SP1 SP3
BestST 0.7618 0.3919 0.5408 0.3988 0.4544*
Boost 0.8127* 0.4762 0.5975 0.4142* 0.4245
None 0.6097 0.0472 0.1808 0.0874 0.0121

mance in general. Even though boosting, which receives less
attention in class imbalance research than data sampling, is
not designed to handle this problem, it results in better per-
formance in four out of five of our real-world software qual-
ity datasets.

Tables 8 and 9 show similar results using AUC to measure
performance. Once again, boosting outperforms even the
best data sampling techniques for four of the five software
quality datasets used in our experiments. As when KS was
used to measure performance, the only dataset where data
sampling results in better performance is SP3.

Significance of Results
In order to test the statistical significance of the results pre-
sented in this work, ANOVA analysis (Berenson, Levine,
& Goldstein 1983) was performed. Although the entire
analysis cannot be presented due to space considerations, we
briefly discuss the results in this section. Tables 2 through 9
present the mean performance (across ten repetitions of
ten-fold cross validation) for each dataset/learner/technique
combinations. In addition, some entries in these tables in-
clude *’s, which identify values where discussion about sta-
tistical significance may be important.

In Tables 2 through 5, the best performing sampling tech-
nique is indicated by bold print, and the worst performance
is indicated by italicized text. These two values may also be
marked with *’s. If a bold value is marked with a *, then
that value is not significantly different (at the 5% confidence
level) than the value presented for None (no sampling). For
example, while RUS results in the best KS value using C4.5
and the C12 dataset (Table 2), this value is not significantly
better than the value presented for None. This is the only
case in Tables 2 through 5 where the best performing sam-
pling technique was not signifcantly better than None at the
5% confidence level.

In Tables 2 through 5, a * next to an italicized value means
that that techniques performance was not significantly worse
than None. For example, in Table 2, ROS is shown to per-
form worse than None for the C12 dataset. However, as in-
dicated by the *, this difference is not significant at the 5%
confidence level. In fact, in all of the experiments presented
by Tables 2 through 5, only once is a sampling technique sig-

Table 8: Sampling vs. Boosting using C4.5, AUC

Tech C12 CM1 PC1 SP1 SP3
BestST 0.8634 0.6682 0.7653 0.6784 0.6943*
Boost 0.8995* 0.7158 0.8457 0.7507 0.6711
None 0.7728 0.5498 0.6529 0.5803 0.4974

Table 9: Sampling vs. Boosting using RIPPER, AUC

Tech C12 CM1 PC1 SP1 SP3
BestST 0.8809 0.6923 0.7498 0.7084 0.7209*
Boost 0.8973* 0.7284 0.8352 0.7432 0.6928
None 0.8026 0.5169 0.5898 0.5433 0.5051

nificantly outperformed by None (In Table 2, ROS performs
significantly worse than None on the SP1 dataset).

The *’s in Tables 6 through 9 also provide information re-
garding the statistical significance of the results presented in
those tables. In these tables, a * indicates that the value to
which it is attached is not significantly better than the next
highest value in that column. For example, in Table 6, Al-
though boosting outperforms the best data sampling tech-
nique for the C12 dataset, the difference between the two
values is not significant at the 5% confidence level.

Conclusion
The problem of learning from imbalanced training data is
well documented in data mining and machine learning re-
search. Traditional classification algorithms attempt to max-
imize overall classification accuracy, without regard for the
significance of each class. Therefore, if one of the classes is
underrepresented in the training data, classifiers will tend to
misclassify those minority classes more often in an attempt
to maximize overall accuracy. In a domain such as software
quality classification, however, such a model has no value.
In this domain, and many others, such as network security
and medical diagnosis, the goal is to identify these minority
class examples, not achieve high overall correct classifica-
tion rates.

This study examines two different methods for alleviat-
ing the problems associated with class imbalance: data sam-
pling and boosting. These techniques were applied to five
different real world software quality datasets with different
sizes and levels of imbalance. Our experiments show that
data sampling, which has received much more attention in
class imbalance related research, significantly improves the
performance of software quality prediction models built us-
ing all five of our datasets. The best performance is usu-
ally achieved by random under sampling, but SMOTE and
borderline-SMOTE also perform very well. While random
over sampling and Wilson’s Editing usually improve clas-
sification performance, these two techniques do not usually
perform as well as the other three. ANOVA analysis was
performed (but not presented due to space considerations)
to test the statistical significance of our findings. In most
cases the improvement achieved by sampling was shown to

310

be statistically significant.
Boosting, which was not designed to address the class im-

balance issues, and which has received comparatively little
attention in the research related to mining imbalanced data,
was shown to perform extremely well in our experiments.
In four out of the five datasets, AdaBoost resulted in bet-
ter performance than even the best data sampling technique.
ANOVA analysis shows that this difference is statistically
significant for three of the four datasets, while in one dataset,
where data sampling outperformed boosting, the difference
was not significant. These results are fairly consistent re-
gardless of the learner or performance metric used (excep-
tions are noted in the accompanying analysis).

Based on the results of our extensive experiments, we
conclude that boosting is very effective at alleviating the
problems associated with learning from imbalanced data.
While data sampling techniques usually improve perfor-
mance, this improvement is not as great as the improve-
ment achieved by boosting. These promising results moti-
vate future work which will include investigation of addi-
tional boosting algorithms, including those that are specif-
ically designed to address the class imbalance problem. In
addition, this study will be extended to additional datasets,
in both the software quality prediction domain as well as
other domains where imbalanced datasets are common.

References
Aha, D. W. 1997. Lazy learning. Norwell, MA, USA:
Kluwer Academic Publishers.
Barandela, R.; Valdovinos, R. M.; Sanchez, J. S.; and
Ferri, F. J. 2004. The imbalanced training sample prob-
lem: Under or over sampling? In Joint IAPR International
Workshops on Structural, Syntactic, and Statistical Pattern
Recognition (SSPR/SPR’04), Lecture Notes in Computer
Science 3138 (806-814).
Berenson, M. L.; Levine, D. M.; and Goldstein, M.
1983. Intermediate Statistical Methods and Applications:
A Computer Package Approach. Prentice-Hall, Inc.
Chawla, N. V.; Hall, L. O.; Bowyer, K. W.; and
Kegelmeyer, W. P. 2002. Smote: Synthetic minority over-
sampling technique. Journal of Artificial Intelligence Re-
search (16):321–357.
Chawla, N. V.; Lazarevic, A.; Hall, L. O.; and Bowyer,
K. 2003. Smoteboost: Improving prediction of the minor-
ity class in boosting. In In Proceedings of Principles of
Knowledge Discovery in Databases.
Cohen, W. W. 1995. Fast effective rule induction. In In
Proc. 12th International Conference on Machine Learning,
115–123. Morgan Kaufmann.
Drummond, C., and Holte, R. C. 2003. C4.5, class imbal-
ance, and cost sensitivity: why under-sampling beats over-
sampling. In Workshop on Learning from Imbalanced Data
Sets II, International Conference on Machine Learning.
Freund, Y., and Schapire, R. 1996. Experiments with a
new boosting algorithm. In Proceedings of the Thirteenth
International Conference on Machine Learning, 148–156.

Furnkranz, J., and Widmer, G. 1994. Incremental reduced
error pruning. In International Conference on Machine
Learning, 70–77.
Guo, H., and Viktor, H. L. 2004. Learning from im-
balanced data sets with boosting and data generation:
the databoost-im approach. ACM SIGKDD Explorations
Newsletter 6(1).
Han, H.; Wang, W. Y.; and Mao, B. H. 2005. Borderline-
SMOTE: A new over-sampling method in imbalanced data
sets learning. In In International Conference on Intelligent
Computing (ICIC’05). Lecture Notes in Computer Science
3644, 878–887. Springer-Verlag.
Hand, D. J. 2005. Good practice in retail credit scorecard
assessment. Journal of the Operational Research Society
56:1109–1117.
Japkowicz, N. 2000. Learning from imbalanced data sets:
a comparison of various strategies. In In Papers from the
AAAI Workshop on Learning from Imbalanced Data Sets,
Tech. rep. WS–00–05. Menlo Park, CA: AAAI Press.
Joshi, M. V.; Kumar, V.; and Agarwal, R. C. 2001. Evalu-
ating boosting algorithms to classify rare classes: Compar-
ison and improvements. In In Proceedings of IEEE Inter-
national Conference on Data Mining, 257–264.
Khoshgoftaar, T. M.; Yuan, X.; and Allen, E. B. 2000. Bal-
ancing misclassification rates in classification-tree mod-
els of software quality. Empirical Software Engineering
5(4):313 – 330.
Maloof, M. 2003. Learning when data sets are imbalanced
and when costs are unequal and unknown. In Proceedings
of the ICML’03 Workshop on Learning from Imbalanced
Data Sets.
NASA/WVU IV&V Facility. Metrics data program.
http://mdp.ivv.nasa.gov.
Provost, F., and Fawcett, T. 2001. Robust classification for
imprecise environments. Machine Learning 42:203–231.
Quinlan, J. R. 1986. Induction of decision trees. Machine
Learning 1(1):81–106.
Quinlan, J. R. 1993. C4.5: Programs For Machine Learn-
ing. San Mateo, California: Morgan Kaufmann.
Schapire, R. E. 1999. A brief introduction to boosting.
In International Joint Conference on Artificial Intelligence,
1401–1406.
Van Hulse, J.; Khoshgoftaar, T. M.; and Napolitano, A.
2007. Experimental perspectives on learning from imbal-
anced data. In In Proceedings of the 24th International
Conference on Machine Learning, 935–942.
Weiss, G. M. 2004. Mining with rarity: A unifying frame-
work. SIGKDD Explorations 6(1):7–19.
Witten, I. H., and Frank, E. 2005. Data Mining: Practi-
cal machine learning tools and techniques. San Francisco,
California: Morgan Kaufmann, 2nd edition.

311

