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Abstract

We investigate a simple semi-naive Bayesian ranking method
that combines naive Bayes with induction of decision tables.
Naive Bayes and decision tables can both be trained effi-
ciently, and the same holds true for the combined semi-naive
model. We show that the resulting ranker, compared to ei-
ther component technique, frequently significantly increases
AUC. For some datasets it significantly improves on both
techniques. This is also the case when attribute selection is
performed in naive Bayes and its semi-naive variant.

Introduction
Our combined model is a simple Bayesian network in which
the decision table (DT) represents a conditional probabil-
ity table. It can be viewed as a restricted version of Paz-
zani’s semi-naive Bayesian model (Pazzani 1996). The latter
greedily joins attributes into multiple groups of dependent
attributes—rather than just one group as the method consid-
ered here (represented by the DT). This can result in more
powerful models, but also increases computational complex-
ity by an order of magnitude. Another difference is that
search and evaluation in this paper are based on AUC in-
stead of accuracy.

Learning the combined model
A DT stores the input data in condensed form based on a
selected set of attributes and uses it as a lookup table when
making predictions. Each entry in the table is associated
with class probability estimates based on observed frequen-
cies. The key to learning a DT is to select a subset of
highly discriminative attributes. The standard approach is
to choose a set by maximizing cross-validated performance.
Cross-validation is efficient for DTs as the structure does not
change when instances are added or deleted, only the class
counts associated with the entries change. Similarly, cross-
validation for naive Bayes (NB) is also efficient as frequency
counts for discrete attributes can be updated in constant time.
In our experiments we used forward selection to select at-
tributes in stand-alone DTs because it performed signifi-
cantly better than backward selection. Numeric attributes
in the training data (including those to be modeled by NB)
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were discretized using MDL-based discretization (Fayyad &
Irani 1993), with intervals learned from the training data.

The algorithm for learning the combined model (DTNB)
proceeds in much the same way as the one for stand-alone
DTs. At each point in the search it evaluates the merit asso-
ciated with splitting the attributes into two disjoint subsets:
one for the DT, the other for NB. We use a forward selec-
tion, where, at each step, selected attributes are modeled by
NB and the remainder by the DT, and all attributes are mod-
eled by the DT initally. Leave-one-out cross-validated AUC
is used to evaluate the quality of a split based on the proba-
bility estimates generated by the combined model. Note that
AUC can easily be replaced by other performance measures.
We chose AUC to enable a fair comparison to NB (and hence
only used two-class datasets in our experiments). AUC was
also used to select attributes for the stand-alone DT.

The class probability estimates of the DT and NB must
be combined to generate overall class probability estimates.
Assuming X> is the set of attributes in the DT and X⊥ the
one in NB, the overall class probability is computed as

Q(y|X) = α × QDT (y|X>) × QNB(y|X⊥)/Q(y),

where QDT (y|X>) and QNB(y|X⊥) are the class probabil-
ity estimates obtained from the DT and NB respectively, α
is a normalization constant, and Q(y) is the prior probability
of the class. All probabilities are estimated using Laplace-
corrected observed counts.

In addition to the method described above, we also con-
sider a variant that includes attribute selection, which can
discard attributes entirely from the combined model. To this
end, in each step of the forward selection, an attribute can
be discarded rather than added to the NB model. In the ex-
periments we compare this technique to NB with the same
wrapper-based forward selection (also guided by AUC).

Empirical Results
Table 1 compares DTNB to NB and DTs on 35 UCI datasets.
Multi-class datasets were converted into two-class datasets
by merging all classes except the largest one. We performed
50 runs of the repeated holdout method, setting aside 66%
of the data for training and the rest for testing, and report
the mean AUC and standard deviation. Identical runs were
used for each algorithm. We used the corrected resampled
t-test (Nadeau & Bengio 2003) at the 5% level.
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Table 1: Mean AUC and std. dev. w/o attribute selection.

Dataset DTNB NB DT
anneal 0.9970±0.0080 0.9773±0.0138 • 0.9986±0.0037
autos 0.8887±0.0772 0.8613±0.0818 0.9233±0.0569
balance-s 0.9666±0.0192 0.9035±0.0374 • 0.9129±0.0370 •
breast-c 0.6669±0.1090 0.6901±0.1060 0.6432±0.1149
breast-w 0.9922±0.0075 0.9920±0.0076 0.9845±0.0118 •
credit-a 0.9266±0.0318 0.9253±0.0310 0.9199±0.0342
credit-g 0.7554±0.0438 0.7812±0.0522 ◦ 0.7006±0.0588 •
diabetes 0.8037±0.0573 0.8053±0.0569 0.7971±0.0578
ecoli 0.9868±0.0158 0.9865±0.0150 0.9819±0.0176
glass 0.7485±0.1100 0.7487±0.1036 0.7481±0.1076
heart-c 0.9083±0.0462 0.9109±0.0478 0.8656±0.0524 •
heart-h 0.9206±0.0474 0.9205±0.0487 0.8900±0.0583 •
heart-s 0.8861±0.0612 0.8959±0.0618 0.8777±0.0714
hepatitis 0.8984±0.1063 0.9080±0.1004 0.7767±0.1331 •
horse-c 0.8713±0.0752 0.8365±0.0820 0.8721±0.0478
hypothyroid 0.9950±0.0050 0.9945±0.0035 0.9979±0.0024
ionosphere 0.9533±0.0313 0.9512±0.0302 0.9036±0.0522 •
iris 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000
kr-vs-kp 0.9926±0.0029 0.9525±0.0104 • 0.9946±0.0036 ◦
labor 0.9600±0.0762 0.9608±0.0750 0.8633±0.1336
lymphography 0.9202±0.0615 0.9208±0.0584 0.8881±0.0768
mushroom 1.0000±0.0000 0.9981±0.0007 • 1.0000±0.0000
optdigits 0.9909±0.0060 0.9838±0.0066 • 0.9629±0.0132 •
pendigits 0.9919±0.0022 0.9869±0.0028 • 0.9891±0.0038 •
primary-t 0.8777±0.0590 0.8967±0.0503 ◦ 0.8677±0.0609
segment 0.9992±0.0013 0.9986±0.0020 0.9977±0.0028
sick 0.9560±0.0204 0.9555±0.0199 0.9500±0.0244
sonar 0.8719±0.0725 0.8874±0.0581 0.8255±0.0883
soybean 0.9902±0.0127 0.9656±0.0280 • 0.9649±0.0471
splice 0.9831±0.0048 0.9771±0.0052 • 0.9655±0.0087 •
vehicle 0.9762±0.0144 0.9388±0.0249 • 0.9716±0.0144
vote 0.9886±0.0132 0.9745±0.0191 • 0.9856±0.0129
vowel 0.9967±0.0052 0.9914±0.0107 0.9923±0.0113
waveform 0.9485±0.0100 0.9422±0.0102 • 0.8938±0.0151 •
zoo 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000

•, ◦ statistically significant improvement or degradation for DTNB

Table 1 shows that DTNB achieves 11 significant wins
against NB and only two significant losses. Against DTs,
there are also 11 significant wins and only one significant
loss. There are five cases where DTNB is significantly better
than both constituent techniques. Four of these datasets are
large: optdigits, pendigits, splice, and waveform.

Table 2 shows performance when attribute selection is ap-
plied to both NB and DTNB. This renders NB’s compu-
tational complexity quadratic in the number of attributes,
lifting it to the same level as that of DTNB. DTNB now
achieves seven significant wins against NB, and one signif-
icant loss. Compared to DTs, which have built-in attribute
selection, DTNB again achieves eleven wins, but this time
without a significant loss. For three of the four datasets
from above DTNB again improves significantly on both con-
stituent techniques: pendigits, splice, and waveform.

Conclusions
We investigated a simple and efficient semi-naive Bayesian
ranking algorithm that splits the set of attributes into two

Table 2: Mean AUC and std. dev. with attribute selection.

Dataset DTNBAS NBAS DT
anneal 0.9983±0.0075 0.9882±0.0163 • 0.9986±0.0037
autos 0.8934±0.0751 0.8724±0.0848 0.9233±0.0569
balance-s 0.9666±0.0192 0.9669±0.0192 0.9129±0.0370 •
breast-c 0.6615±0.1095 0.6718±0.1083 0.6432±0.1149
breast-w 0.9920±0.0078 0.9910±0.0086 0.9845±0.0118 •
credit-a 0.9298±0.0332 0.9287±0.0318 0.9199±0.0342
credit-g 0.7577±0.0462 0.7788±0.0512 ◦ 0.7006±0.0588 •
diabetes 0.8024±0.0589 0.8049±0.0570 0.7971±0.0578
ecoli 0.9870±0.0153 0.9871±0.0152 0.9819±0.0176
glass 0.7487±0.1100 0.7493±0.1087 0.7481±0.1076
heart-c 0.9105±0.0468 0.9094±0.0474 0.8656±0.0524 •
heart-h 0.9233±0.0468 0.9197±0.0518 0.8900±0.0583 •
heart-s 0.8831±0.0564 0.8979±0.0633 0.8777±0.0714
hepatitis 0.8960±0.1089 0.8930±0.1045 0.7767±0.1331 •
horse-c 0.8715±0.0757 0.8740±0.0786 0.8721±0.0478
hypothyroid 0.9956±0.0038 0.9968±0.0026 0.9979±0.0024
ionosphere 0.9568±0.0282 0.9596±0.0239 0.9036±0.0522 •
iris 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000
kr-vs-kp 0.9952±0.0024 0.9870±0.0046 • 0.9946±0.0036
labor 0.9575±0.0920 0.9717±0.0822 0.8633±0.1336
lymphography 0.9300±0.0586 0.9185±0.0628 0.8881±0.0768
mushroom 1.0000±0.0000 0.9999±0.0001 • 1.0000±0.0000
optdigits 0.9909±0.0059 0.9927±0.0046 0.9629±0.0132 •
pendigits 0.9936±0.0018 0.9892±0.0026 • 0.9891±0.0038 •
primary-t 0.8770±0.0609 0.8848±0.0567 0.8677±0.0609
segment 0.9994±0.0012 0.9987±0.0019 0.9977±0.0028
sick 0.9544±0.0205 0.9563±0.0196 0.9500±0.0244
sonar 0.8699±0.0703 0.8862±0.0703 0.8255±0.0883
soybean 0.9900±0.0115 0.9930±0.0116 0.9649±0.0471
splice 0.9841±0.0044 0.9823±0.0050 • 0.9655±0.0087 •
vehicle 0.9807±0.0150 0.9680±0.0175 • 0.9716±0.0144
vote 0.9905±0.0096 0.9906±0.0080 0.9856±0.0129
vowel 0.9970±0.0051 0.9941±0.0066 0.9923±0.0113
waveform 0.9479±0.0099 0.9455±0.0098 • 0.8938±0.0151 •
zoo 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000

•, ◦ statistically significant improvement or degradation for DTNBAS

groups: one group assigns class probabilities based on naive
Bayes, the other group based on a decision table, and the
resulting probability estimates are combined. Empirical re-
sults based on AUC show that the combined model performs
well compared to stand-alone naive Bayes and decision ta-
bles. They also show that this holds true when attribute
selection is employed to improve the performance of both
naive Bayes and the combined model.
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