
Visualization Techniques for the Evaluation of Knowledge Systems

Joachim Baumeister, Martina Menge and Frank Puppe
Institute of Computer Science

University of Würzburg, Germany
Contact: joba@uni-wuerzburg.de

Abstract

Although various methods for the evaluation of intelli-
gent systems have been proposed in the past, almost no
techniques are present that support the manual inspec-
tion of knowledge bases by the domain specialist. In
this paper, we discuss a collection of appropriate visual-
ization techniques that help developers of a knowledge
base to interactively browse and analyze the knowledge
base in order to find deficiencies and semantic errors in
the implementation. We describe standard visualization
methods adapted for knowledge base analysis, and we
propose a novel visualization technique to support the
manual inspection task. The application of the shown
methods was motivated by daily practice of knowledge
base development.

Introduction
Whereas the evaluation of intelligent systems has been in-
vestigated thoroughly in the past, only little attention was
paid to its possible support by visualization techniques. In
this paper we describe and characterize already known visu-
alization methods that can be used in the context of the eval-
uation of knowledge bases, and we will introduce a novel
visualization technique that supports the validation of the
derivation and interview behavior of an intelligent system in
a semi-automatic manner.

In the context of validation tasks many automated meth-
ods have been proposed, e.g., (Vermesan & Coenen 1999).
Most of these methods consider the evaluation of the final
result of the intelligent system, i.e., the derivation quality
at the end of a problem-solving session. However, for real-
world systems the interactivity between the user and the sys-
tem is also an important issue. Here, the system implements
an interactive interview with the user in order to collect only
the relevant findings required for deriving the appropriate
solution. The order and number of questions asked before
deriving a final solution is often a critical feature of these
interactive systems, because a lengthy dialog or an unintu-
itive order of the questions may irritate the user of the sys-
tem, then canceling the interview in the worst case. Another
important issue is the actual usage of the system when de-
ployed into a real-world application. The direction of refine-

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ment of such a system can depend on the usage statistics of
the system, i.e., frequently used parts of the knowledge base
may be considered to be improved with respect to the inter-
view efficiency, very rarely used parts may be considered for
structural rework or deletion.

In this paper, we motivate that visualization methods can
support validation tasks efficiently, especially when auto-
mated methods cannot be used. However, it is not intended
to give an exhaustive discussion of visualization methods for
validation tasks but rather to present a selection of useful
methods for which their application was motivated by the
experiences we have made during the development of var-
ious knowledge bases. In the next section we give a brief
categorization of visualization techniques to be used in dif-
ferent evaluation tasks. Thereafter, we introduce the novel
visualization technique d/d-nets to semi-automatically val-
idate interactive knowledge systems in more detail. This
method is applicable to validate the correct sequence and
derivation progress of interview-based systems. We briefly
describe some case studies in the context of medical knowl-
edge systems, and we conclude the paper with a summary
and an outlook to future work.

Visualization for Evaluation
According to (Fluit, Sabou, & van Harmelen 2006) the fol-
lowing general use cases of visualization techniques can be
identified: data analysis, querying, and exploration. In the
context of evaluation the use case data analysis can be re-
fined to the term knowledge base analysis, that have been
often also named manual inspection of the knowledge base.
Here we identify the following important sub-tasks:
• The analysis of the usage of the system can be inspected

by using visualization techniques like (pie or bar) charts
and treemaps.

• The structure of the knowledge base, i.e., the actual
implementation details, can be inspected when visualiz-
ing the knowledge base by graph-based techniques, for
example derivation graphs (Seipel, Hopfner, & Baumeis-
ter 2005) and clustermaps (Fluit, Sabou, & van Harmelen
2006).

• The workflow of the system behavior, i.e., the actual
sequence of typical interactive problem-solving sessions
and the solution output of the system. To the best knowl-
edge of the authors no current visualization technique can

Proceedings of the Twenty-First International FLAIRS Conference (2008)

329



be directly applied. We therefore introduce the concept of
d/d-nets that is capable to visualize interactive problem-
solving sessions.
For all presented visualization techniques the intuitive

presentation is the most important feature, since we want to
have these techniques to be used and understood by domain
specialists that are often not trained knowledge engineers.

Pie Charts: The Usage of the System
Often, the usage of the system is related to the actual design
of the knowledge base. A prominent design flaw, that corre-
sponds to the usage of the system, is the lazy object, i.e., an
input or output object that is never/rarely used (Baumeister
& Seipel 2005). Thus, very frequently used as well as very
rarely used inputs and solutions are the typical target ob-
jects. For example, very frequently derived solutions should
be considered to be refined to a more diverse set of sub-
solutions in order to improve the capabilities of the system.
In contrast, solutions that are never derived by the system
can point to an incorrect implementation of the system, e.g.,
the presence of semantically inconsistent rules that avoid the
derivation of these solutions. Also, rarely or never derived
solutions can point to an existing redundancy in the knowl-
edge base, when they have been superseded by specialized
or generalized solutions in the past, but were accidently not
removed by the developer. Similar considerations can be
made for questions that have been almost never answered
by the user or were answered with a default answer like,
e.g., answer unknown. These objects may either point to
an unsuitable question in the given context, or may point to
a question that is actually difficult to answer for standard
users. Like rarely used solutions, the observation of infre-
quently used abstractions may also uncover semantically in-
correct rules for deriving them.

Although, the analysis issues described above have to be
assessed by a domain specialists in a manual manner, vi-
sualization techniques can give an efficient support. Then
imbalanced usage of objects can be traced intuitively. For
the usage analysis of the systems we propose different im-
plementations of pie charts, since their semantics are clear
and commonly understood.

The basic structure of a pie chart for the usage of ques-
tions is as follows: we render one pie for each question
showing the distribution of its particular answers. For nu-
merical questions we use standard binning methods, if no
partitioning of the value range was already defined in the
knowledge base. Within this pie two important additional
aspects of the usage are tackled:
1. How often is the question answered by the users in gen-

eral?
2. If the question was answered in the corresponding cases,

then how often it was answered with the default answer
”unknown”?

The first aspect (”how often answered in general”) is ren-
dered by an additional circle around the pie depicting all
cases that are inspected: the green colored part of this cir-
cle corresponds to the percentage of given answers, whereas
the rest of the circle is colored red showing the percentage of
no answers given for this question. The second aspect (”how

many ’unknown’ answers”) is tackled by an additional piece
of the pie colored in red, i.e., the red colored piece corre-
sponds to the percentage of the given answers ”unknown” in
all answered cases.

Green outer arc: proportion
of cases for which the question 
was actually answered.

Red outer arc: proportion of 
cases for which the question 
was not answered.

Red pie piece: proportion of cases 
for which the question was answered 
with default answer "unknown".

Colored pie piece: proportion
of cases for which the question 
was answered with "answer1".

Figure 1: An example pie chart showing the usage of a ques-
tion with respect to the stored problem-solving sessions.

Figure 1 shows an example pie chart for one question.
Usually, the visualization method renders a separate pie
chart for every question in a table like manner. While brows-
ing the charts we can easily identify the set of questions,
that were for example answered with the default answer ”un-
known”. Furthermore, browsing the charts can give an initial
impression, whether the distributions of the answers given
by the users are balanced.

Derivation Graphs: The Knowledge Base Structure
The analysis of the structure of a knowledge base using a
graph-based representation has been discussed extensively,
e.g., (Seipel, Hopfner, & Baumeister 2005). Here, rules are
represented as a subgraph where the findings of a rule con-
dition are connected by appropriate edges. The graph-based
depiction of a derivation path can help the developer during
the manual inspection of the knowledge base, e.g., when in-
vestigating the surrounding area of a found anomaly. Addi-
tionally, a graph visualization can help to intuitively identify
objects that are frequently used for the derivation of many
solutions, e.g., derivation hubs. In general, derivation hubs
can worsen the robustness of a system with respect to noisy
or missing input data.

Figure 2 shows a part of the derivation paths for the ex-
ample output “solution 1”. Structural deficiencies can be
identified when following the paths of the derivation graph.
In a practical application users would typically ask for ren-
dering all rules for a specific solution. For mid-size and
larger knowledge systems such an approach is only reason-
able when the graph can be browsed interactively, then sub-
conditions are only expanded by clicking the corresponding
nodes.

Besides these simple derivation graphs we propose a clus-
tered derivation graph for rule bases that was inspired by

330



Figure 2: An example derivation graph for a solution with
four rules.

the ClusterMaps technology for the visualization of light-
weight ontologies (Fluit, Sabou, & van Harmelen 2006). It
is useful for depicting the joint use of findings by different
solutions. Findings are rendered together in a joint node of
the graph, if they are used for deriving more than one solu-
tion. Figure 3 shows a plant classification system taken from
the biological domain; here, the clustered derivation graph
of four solutions (depicted by bubbles with their names) is
presented. Each ball in the outer clusters (only connected to
one solution) represents one finding that is only used to de-
rive the specific solution. The inner clusters are connected
to more than one solution, and findings contained in those
clusters are used to derive the connected solutions, i.e., clus-
ters labeled with (a) - (d). For example, the three findings
contained in cluster c are used for the derivation of “Busch-
Wind. . . ” as well as for the derivation of “Echter Stein-
klee. . . ”. The balls are colored to indicate the derivation
weight of the finding: balls having a red or orange color are
mainly used for excluding the connected solutions, and balls
in light and dark green color represent findings for enforcing
the derivation of the connected solutions. In a dynamic vari-
ant of the clustered derivation graph the usage of the findings
is additionally depicted by the size of the particular balls,
i.e., frequently used findings are represented by larger balls
than less frequently used findings. It is worth noting that ev-
ery finding only occurs once in a clustered derivation graph.
With such a clustered variant the developer can easily iden-
tify groups of findings that are commonly used by multiple
solutions, i.e., derivation hubs. In an interactive application
a click on a specific cluster opens a detailed derivation graph
for a further inspection of the corresponding rules.

(a)

(b)

(c)

(d)

Figure 3: The clustered derivation graph of a plant classifi-
cation system.

Interview Trees: Tracking the User Answers
Larger real-world systems often embody the definition of
various solutions and consequently many questions are in-
cluded that are used to derive the particular solutions. Then,
for a specific solution to be derived not the entire set of ques-
tions is required to be answered by the user. For this reason,
it is reasonable to implement an adaptive dialog strategy that
focusses on refined questions that are suitable for the prob-
lem currently stated by the user. An example of such a tech-
nique is the dialog strategy of decision trees; here, users are
guided through a dialog path by follow-up questions that de-
pend on the previously given answers.

For larger systems, questions are commonly grouped in
questionnaires, i.e., lists of questions, that are jointly an-
swered before follow-up questionnaires are presented to the
user. The proposed graph-based visualization technique
presents the structure of the follow-up questionnaires and
questions of the knowledge base. Such an overview of the
dialog tree can help the developer to find redundant calls
of questionnaires and inefficiencies of the dialog sequence.
Furthermore, unreachable questionnaires can easily be iden-
tified since such elements are displayed as isolated nodes in
the graph.

Figure 4 depicts the interview structure of a larger medi-
cal consultation system. Questionnaires are represented by
boxes with rectangles and single (follow-up) questions by
boxes containing green balls.

The shown graph is extended by displaying the usage of
the particular paths corresponding to a given set of cases that
were stored in previous problem-solving sessions. Here, the
usage of the dialog sequences is shown by the thickness of
the edges, i.e., frequently used paths are thicker than less
used paths. Additionally, the number of uses is attached to

331



Figure 4: An excerpt of the interview structure of a medical
consultation system with actual uses of the particular paths.

the edges, i.e., the number of cases that used this sequence.
Besides the static variant that is displaying the complete in-
terview sequences of the knowledge base, we also provide
an interactive version where the developer starts from an ini-
tial questionnaire. By clicking on that questionnaire all pos-
sible follow-up questions and questionnaires are unwrapped
and the graph is extended subsequently by further clicks of
the user.

d/d-nets: A Black-Box Inspection Technique
An important aspect of the evaluation is the analysis of
the derivation results together with the sequence of the in-
terview during the problem-solving process. To the best
knowledge of the authors there is no method available that
solves this task sufficiently. For example, typical empiri-
cal testing methods only consider the derivation quality of
the knowledge system, without taking care of how the re-
quired findings were acquired from the user. For the au-
tomatic testing of the interview structure partially ordered
question sets and diagnosis related question sets were intro-
duced by (Baumeister 2004, p. 140ff), but these techniques
only evaluate the interview at the coarse level of question-
naires and not the order of the actually presented questions.

In this section, we introduce the novel black-box testing
method d/d-nets (for dialog/derivation nets) to analyze the
derivation and interview behavior of an intelligent system
in a semi-automated manner. The benefit of this method is
the independence from the underlying representation of the
interview and derivation knowledge. The only precondition
of the method with respect to the inference engine is that –
at any time – we can query the current states of the possible
solutions and that we can retrieve the next question to be pre-
sented to the user. However, in its current state d/d-nets are
limited to smaller knowledge bases due to the exponential
growth of the net during its construction process.

In the following we give an overview of the method,
where we describe the process of the net construction and
the subsequent testing phase in more detail.

Introduction to d/d-nets In general, a d/d-net is a tree-
like graph, in which every path from the root to a leaf of the
tree represents a possible dialog of the user. Inner nodes of
the trees describe (follow-up) questions that are asked by the
system, whereas outgoing edges of a node are annotated by
the possible answers of the particular question. A question
with more than two possible answers will generate the corre-
sponding number of edges. Thus, d/d-nets are not limited to
binary branching. Edges of the d/d-net are also attached by
a box listing all solutions that are currently derived as pos-
sible solutions at this stage of the problem-solving process.
Leaves of a d/d-net are the final solutions of the system that
are derived in this particular case, e.g., see Figure 5a. In or-
der to retain the tree structure of the graph, one question can
appear multiple times within the tree.

Figure 5: An example d/d-net graph.

A schematic d/d-net is depicted in Figure 5. For exam-
ple, if “init question” is answered with the alternative “yes”,
then the follow-up question “question 1” is presented to the
user and the solutions 1-3 are derived as intermediate solu-
tions as denoted in the attached ballon, e.g., see Figure 5b.
A ranking of the solutions is defined by the numbers given
in parentheses behind the solution names. If “question 1” is
then answered with the alternative “yes”, then the final result
“solution 1” is derived with the solutions 2 and 3 as alterna-
tive results (having a significant lower rating than “solution
1”). We can see that the proposed visualization can be intu-
itively used by a domain specialist to inspect the dialog and
the derivation behavior of the developed knowledge system,
i.e., the developer has to trace every path of the tree in order
to validate the system behavior.

The d/d-net Process Model We describe the overall
method for using d/d-nets in a semi-automatic evaluation
task:
1. Initialization: Create an initially empty collection of

previously reviewed cases PRC = { }.
2. Construction and visualization of the d/d-net: The

graph is visualizing all possible interview traces of a de-
veloped knowledge system.

332



(a) All possible cases are recorded using an automated
interview bot, i.e., we fill the set of recorded cases RC .
The bot simulates an interactive dialog with the knowl-
edge system by iteratively answering the possible val-
ues of the currently presented question. After providing
an answer to the current question, the bot recursively
retrieves the next follow-up question to be answered.
A new case is stored if no follow-up question is asked
by the system any more. During the simulation of an
interview the bot also stores the intermediate solutions,
that are derived during the problem-solving session.

(b) The recorded cases are rendered using a rooted tree
graph drawing algorithm, see (Sugiyama 2002). The
sequences of the recorded but previously reviewed
cases c ∈ PRC ∩ RC are highlighted in the d/d-net
as for example shown in the left branch in Figure 5.

3. Manual review of the d/d-net: Every possible case, i.e.,
every path from the root to a leaf, is manually inspected
by a domain specialist (not necessarily the developer of
the knowledge base). Here, only previously unreviewed
cases c /∈ RC need to be reviewed.
For this step we recommend to print out the entire graph
on a poster in order to obtain a better overview of the in-
terview workflow. Here, already traversed and reviewed
paths can be easily highlighted with a text marker. For
example, this was done in Figure 5 for the left branch of
the tree, i.e., the cases
{(init question = yes; question 1 = yes),
(init question = yes; question 1 = no; question 2 = yes)}.

4. Storing the test suite: If all reviewed cases are inspected
successfully and are marked as correct by the domain spe-
cialist, then these cases are also stored in the test suite of
”previously reviewed cases” PRC .

5. Knowledge modification: After changing the knowl-
edge base, the previous steps are iterated starting with
step 2. All previously reviewed cases – that have not
changed in this iteration – are highlighted in the tree.
Thus, the domain specialist intuitively identifies the new
or changed paths in the tree that have to be reviewed in
this iteration.

Im comparison to a directed-acyclic graph (DAG) we choose
the tree as the most appropriate visualization of a d/d-net be-
cause of the following two reasons: First, the intermediate
results (states of solutions) in one case may not hold for all
dialog paths (representing other cases) incoming to a partic-
ular node. Second, a tree figure greatly simplifies the manual
highlighting technique when tagging an reviewed case; us-
ing a DAG may result in multiple markers of one edge for
more than one case.

In summary, the described method proposes a complete
life-cycle methodology for the validation of knowledge sys-
tems. It suggests a mixed-initiative technique that not only
considers the derivation quality of the final solutions but also
the intermediate solutions together with the interview struc-
ture. When changing the knowledge base the system com-
putes all possible interview sequences and compares these
sequences with the already reviewed cases. Due to the visual
labeling of the unchanged interview sequences the domain

specialist only has to review new or changed cases. The vi-
sualization technique is very important in this context, since
it allows for an intuitive demonstration of the context of the
particular cases, which is very important for the domain spe-
cialist during a manual inspection.

Case Studies
The presented visualization techniques were developed as a
plug-in of the system KnowME, a modeling environment for
the agile development of knowledge systems, that already
provides tools for the evaluation and refactoring of knowl-
edge bases (http://d3web.sourceforge.net). For all the visu-
alization methods we identified the application of abbrevia-
tion techniques as a very important issue, since typical users
want to see the names of the particular objects in a graph or
pie chart at any time. Having the object names in the visu-
alization at any time improves the efficiency of the manual
inspection significantly. However, printing the full name of
each object will commonly result in a cluttered visualization
and will hinder any positive inspection experience. In our
case study we found a combined abbreviation technique to
be most useful (Stum et al. 1991), i.e., erasing the center of
the word and a conservative elimination of vocals. In the fol-
lowing, we demonstrate the presented visualization methods
pie charts and interview trees by some real-world knowledge
bases.

Interview Trees
The visualization of interview flows is helpful for the devel-
oper for almost all larger knowledge bases that embody a
dialog logic. We exemplify its use describing a consultation
and documentation system for dental medicine, i.e., a system
that is used to record the data and patient’s findings acquired
during the examination by a dentist. Typically, the first ex-
amination of a patient implies the acquisition of the basic pa-
tient’s data together with a complete registration of the usual
findings of the patient’s teeth. Follow-up consultations nor-
mally record a less detailed collection of findings, but will
provide a detailed questionnaire if indicated by the physi-
cian. The knowledge base contains 455 questions grouped
by different questionnaires. Figure 6a shows an expanded
tree depicting the possible sequences of the interview. Rect-
angular boxes represent questionnaires containing the par-
ticular questions, whereas rounded boxes with green circles
show single questions. The tree is expanded by these ques-
tions, if the user clicks on the corresponding questionnaire
rectangle. Starting with the root, i.e., the initial questions,
edges represent the possible indications of further question-
naires. In summary, the tree of dialog sequences is very
helpful to track the possible indications of questionnaires for
the particular use cases.

Pie Charts for Detecting Lazy/Busy Objects
Figure 6b shows the pie charts of a questionnaire taken from
a medical consultation system for sonography (Hüttig et al.
2004). Questions that were never answered in the given
cases can be easily identified since they are displayed as

333



Figure 6: (a) The complete dialog logic of a knowledge system for dental consultation and documentation. (b) Pie charts
depicting the usage of questions in a questionnaire of a medical documentation system for sonography.

white, empty circles. For the remaining questions the per-
centage of answers given can be inspected by the green outer
circle. Last but not least, the dark red pie pieces represent
the percentage of how much the default answer ”unknown”
was provided.

Conclusions

Although, many automatic methods for the evaluation of in-
telligent systems have been proposed in the past often the
manual inspection of the implemented knowledge is neces-
sary, e.g., to interactively discover design anomalies or de-
ficiencies in the knowledge base. Visualization techniques
can significantly support the manual inspection of a knowl-
edge base. We presented a non-exhaustive overview of vi-
sualization techniques that can be applied for the manual in-
spection of a knowledge system. We focussed on a selection
of methods that we found helpful to support the evaluation
tasks in our daily practice for developing and maintaining
knowledge bases. In general, there exists a vast collection
of diverse visualization techniques, and therefore our future
work will consider a normative description and discussion
of the applicability of the particular classes of visualization
methods with respect to evaluation tasks. We demonstrated
the applicability of the visualization methods pie charts and
interview trees by case studies. d/d-nets will be deployed
in a real-world case study in the near future; however, the
visualization method and the process model was invented
together with the domain specialist that is intended to ac-
complish the evaluation.

References
Baumeister, J., and Seipel, D. 2005. Smelly Owls – De-
sign Anomalies in Ontologies. In FLAIRS’05: Proceedings
of the 18th International Florida Artificial Intelligence Re-
search Society Conference, 215–220. AAAI Press.
Baumeister, J. 2004. Agile Development of Diagnostic
Knowledge Systems. IOS Press, AKA, DISKI 284.
Fluit, C.; Sabou, M.; and van Harmelen, F. 2006.
Ontology-based information visualization. In Visualizing
the Semantic Web. Springer. 36–48.
Hüttig, M.; Buscher, G.; Menzel, T.; Scheppach, W.;
Puppe, F.; and Buscher, H.-P. 2004. A Diagnostic Expert
System for Structured Reports, Quality Assessment, and
Training of Residents in Sonography. Medizinische Klinik
3:117–22.
Seipel, D.; Hopfner, M.; and Baumeister, J. 2005. Declar-
ative Querying and Visualizing Knowledge Bases in XML.
In INAP/WLP’04: Applications of Declarative Program-
ming and Knowledge Management (selected papers), LNAI
3392, 16–31. Berlin, Germany: Springer.
Stum, G. M.; Demasco, P. W.; ; and McCoy, K. F. 1991.
Automatic Abbreviation Generation. In RESNA 14th An-
nual Conference, 97–99. Washington, D.C.: RESNA Press.
Sugiyama, K. 2002. Graph Drawing and Applications for
Software and Knowledge Engineers. World Scientific.
Vermesan, A., and Coenen, F. 1999. Validation and Ver-
ification of Knowledge Based Systems. Theory, Tools and
Practice. Kluwer Academic Publisher.

334




