
Granular Logic with Variables for Implementation of Extended Tabular Trees

Antoni Ligęza and Grzegorz J. Nalepa
Institute of Automatics,

AGH – University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland

ligeza@agh.edu.pl gjn@agh.edu.pl

Abstract

This paper presents proposals of certain extensions to the
XTT knowledge representation model, a method of tabular
specification for rule-based systems. The extensions concern
introduction of variables, functionally dependent attributes,
constraints, fuzzy rules and time-delayed values.

Introduction
Over thirty years rule-based systems prove to constitute
one of the most substantial technologies within applied Ar-
tificial Intelligence (AI) (Liebowitz 1998; Jackson 1999;
Negnevitsky 2002). Rules of various forms implement the
core of numerous applications, including expert systems,
decision support systems, control and monitoring systems
and knowledge-based systems in general (Liebowitz 1998;
Jackson 1999; Hopgood 2001). Knowledge specification
with rules is used both for definition of domain knowledge
as well as meta-knowledge concerning inference control.
With use of rules one can specify bases of purely declara-
tive knowledge (both flat and hierarchical ones), procedu-
ral knowledge including control features, and documenta-
tion knowledge covering explanations.

The technology of rule-based systems (RBS) is based on
strong logical foundations (Ben-Ari 2001; Ligęza 2006).
In fact, logic constitutes the core formalism for knowl-
edge specification and inference. Rule-based programming
paradigms, including PROLOG (Covington, Nute, & Vellino
1996), are based on logical deductive inference.

Although rules constitute perhaps one of the simplest and
most transparent programming paradigms, practical imple-
mentation of RBS encounters some important problems. A
non-trivial system may contain less than fifty rules and si-
multaneously it may be difficult to handle. The main prob-
lems encountered concern complete specification of non-
redundant and consistent set of rules. This turns out to be
very tedious task requiring far-going effort.

The main issue for successful design and development of
a rule-based system is to find an appropriate language for
knowledge representation. A recent proposal consists in us-
ing the so-called XTT – eXtended Tabular Trees (Nalepa
2004; Ligęza 2006), a combination of advanced decision

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tables organized within tree-like strictures. In this ap-
proach syntactically similar rules operating in the same
context are grouped within special attribute decision ta-
bles; this introduces structuralization of the knowledge base
and enables formal verification of independent components
(Ligęza 2006). However, the current approach suffers from
several limitations with restricted expressive power being at
the first place.

This paper presents proposals of several extensions of the
XTT technology with respect to knowledge representation
and several related issues. In particular, the following as-
pects are the main focus of this work:

• a new scheme of the XTT tables, allowing for direct spec-
ification of relational symbol (from a predefined set of six
introduced symbols) is put forward as the consequence of
defining Set Attributive Logic as a basic knowledge rep-
resentation language,

• introduction of named variables as attribute values,

• introduction of new attributes (variables) as functions of
initial attributes,

• introduction of functional constraints over these variables,

• introduction of functional (calculable) values defined by
rule antecedent,

• hierarchical structure of new XTT – multi-layer structure
of tables.

Moreover, the problems of using fuzzy inference rules,
adaptation and learning, with use of a Wang-Mendel type
algorithm (Wang & Mendel 1992) are mentioned in brief.
The design and development approach can be extended over
incorporating cases and learning from examples by general-
ization.

As the last point, the approaches to verification and vali-
dation of such rule-based systems do not solve the problem
in an entire way. Verification performed after the system
is designed is both costly and late. Moreover, if errors are
detected, they must be corrected, and after introducing the
corrections the cycle of verification must be repeated. The
problem consist in the possibility of introducing new errors
through correction of the old ones – there in no warranty
that the verification-correction cycle is finite. In the paper
an incremental verification approach is pursued.

Proceedings of the Twenty-First International FLAIRS Conference (2008)

341



Recapitulation of Granular Attributive Logic
Syntax of Set Attributive Language
In this section a concise recapitulation of the Granular At-
tributive Logic (GAL), as introduced in (Ligęza 2006) is
presented in brief.

The basic concept in attributive logic is the notion of a
fact or an atomic formula (atom, for short). This is an atomic
statement of the form

Ai(oj) = dij , (1)
where Ai is an attribute, oj is some object and dij is the
(current) value of attribute Ai for object oj . For example,
the formula temperature(room) = 17 denotes the fact that
the current temperature in the considered room equals 17 de-
grees Centigrade, and positionX(robot) = 123.45 denotes
the current X-coordinate position of the robot.

For simplicity of notation, if there is only one object, or
the object is known by some default assumption, or the at-
tribute covers the definition of the object (e.g. current_date
means in fact date(now)), one can also omit specification
of the object and write Ai = di.1

Let there be given the following, pairwise disjoint sets of
symbols: O – a set of object symbols, A – a set of attribute
names, D – a set of attribute values (the domains). It is
further frequently assumed that the overall domain D is di-
vided into several sets (disjoint or not) Di, such that any of
these sets defines the domain of some attribute. More pre-
cisely, a finite set of attributes is considered to be specified as
A = {A1, A2, . . . , An}. Then also D = D1∪D2∪. . .∪Dn,
where Di is the domain for attribute Ai, i = 1, 2, . . . , n.

After (Ligęza 2006) it is assumed that an attribute
Ai is a function (or partial function) of the form
Ai:O → Di. Note however, that in practical appli-
cations one may need more complex attributes, taking
several values at a time. For example, work_days =
{Monday ,Tuesday ,Wednesday ,Thursday ,Friday}.
Hence, the notion of a generalized attribute is introduced in
(Ligęza 2006). A generalized attribute Ai is a function (or
partial function) of the form

Ai:O → 2Di , (2)
where 2Di is the family of all the subsets of Di.

The generalized attributes are of limited use in some mod-
ern relational databases and object-oriented databases. Af-
ter (Ligęza 2006) the language incorporating set values and
generalized attributes defined as by (2) will be referred to
as SAL (Set Attributive Language) while the language us-
ing simple unique-valued attributes as the one of (1) will be
referred to as AAL (Atomic Attributive Language). Further
on, if it does not introduce ambiguity, the qualifier general-
ized may be omitted.

In case of SAL an extended definition of atomic formu-
lae is put forward (Ligęza & Parra 2006; Ligęza & Nalepa
2007).

1However, note that if there are more than one object to which
the attribute can be applied, an expression of the form Ai = di

constitutes a selector defining a set of objects satisfying this con-
dition; such a construction is widely used in relational databases in
the SQL SELECT command, but is not allowed here.

Definition 1 (SAL) Let o ∈ O be some object, A ∈ A be
a generalized attribute and let t ⊆ D be a certain subset
of the domain of A. Any expression of the form: A(o) = t,
A(o) ∈ t, A(o) 3 t, A(o) ⊆ t, A(o) ⊇ t and A(o) ∼ t are
legal atomic formulae of SAL.

For intuition, the meaning of the atomic formulae is: equal
to (covers all the elements of t), is a single element of, is a
set and covers some single element, is a subset of, is a super-
set of and have non-empty intersection, respectively. Note
that the definition of atomic formulae in SAL (1) covers the
one in AAL; in fact, any atomic value can be considered as
a single-element set. The presented definition is extended
w.r.t. the one of (Ligęza 2006) by introducing the forms:
A(o) ⊆ t, A(o) ⊇ t, A(o) 3 t and A(o) ∼ t.

Recall that that the proposed relations are not indepen-
dent. For example, Ai(o) = t can perhaps be defined as
Ai(o) ⊆ t ∧ Ai(o) ⊇ t; but it is much more convenient to
use “=” directly. Further, as in the case of AAL, if the object
is unique or known, the formulae are simplified to A = d,
A = t, A ∈ t, A ⊆ t, A ⊇ t, and finally A ∼ t, respectively.

Semantics of SAL
Semantics of SAL can be explained in a straightforward way
through reduction to AAL-like formulae and with use of set
algebra. Let t = {d1, d2, . . . , dk} be a set of atomic values,
t ⊆ D, where D is the domain of some attribute A. Let
also s ⊆ D. For simplicity we skip the object in the follow-
ing notation. Atomic formulae of SAL have the following
intuitive meaning:

• A = t is equivalent to A = d1 ∧A = d2 ∧ . . . ∧A = dk,

• A ∈ t is equivalent to A = d1 ∨A = d2 ∨ . . . ∨A = dk,

• A 3 t is equivalent to A = s and s 3 t,

• A ⊆ t is equivalent to A = s and s ⊆ t,

• A ⊇ t is equivalent to A = s and s ⊇ t,

• A ∼ t is equivalent to A = s and s ∩ t 6= ∅.

Hence, the semantics, and thus dealing with the formulae of
SAL, can be reduced to AAL level with auxiliary set algebra
operations.

Rule Representation with SAL within
Extended Tabular Trees

The main idea behind SAL is that it allows for efficient rep-
resentation of knowledge in rule-based systems. Any rule is
of the form:

A1(o) ∝1 t1 ∧A2(o) ∝2 t2 ∧ . . . An(o) ∝n tn −→ RHS

where∝i is one of the admissible relational symbols in SAL,
i.e. =, ∈, 3, ⊆, ⊇, ∼, and RHS is the right-hand side of the
rule covering conclusion and perhaps the retract and assert
definitions if necessary; for details see (Ligęza 2006).

Knowledge representation with eXtended Tabular Trees
(XTT) incorporates extended attributive table format. Fur-
ther, similar rules are grouped within separated tables, and
the whole system is split into such tables linked by arrows
representing the control strategy.

342



Consider a set of m rules incorporating the same attributes
A1, A2, . . . , An. In such a case the preconditions can be
grouped together and for a regular matrix. Together with the
conclusion part this can be expressed as in Tab. 1

Table 1: A general scheme of an XTT table

Rule A1 A2 . . . An H

1 ∝11 t11 ∝12 t12 . . . ∝1n t1n h1

2 ∝21 t21 ∝22 t22 . . . ∝2n t2n h2

...
...

...
. . .

...
...

m ∝m1 tm1 ∝m2 tm2 . . . ∝mn tmn hm

In table 1 the symbol ∝ij can be replaced by any of the
admissible relational symbols =, ∈, 3, ⊆, ⊇, ∼, and RHS .
In practical applications, however, the most frequent relation
is ⊆, i.e. the values of attributes for certain objects are re-
stricted to belong to some specific subsets of the domain. If
this is the case, the table can take simplified form presented
in Tab. 2, which was originally assumed in (Ligęza 2006).

Table 2: A general scheme of an XTT table

Rule A1 A2 . . . An H

1 t11 t12 . . . t1n h1

2 t21 t22 . . . t2n h2

...
...

...
. . .

...
...

m tm1 tm2 . . . tmn hm

There are several advantages of grouping syntactically
similar rules into tables. They include easier analysis and
design of the rule-base, transparency, reuse of XTT compo-
nents and verification of XTT tables with algebraic rather
than logical methods (Ligęza 2006). On the other hand the
expressive power remains too restricted for more complex
applications. Below proposal of certain specific extensions
are discussed.

Granular Logic with Variables
Representation of knowledge with XTT tables given by
Tab. 1 and Tab. 2 does not allow to specify more complex
formula preconditions, where, for example, direct compar-
ison of attribute values is necessary. Below we discuss an
extension of the basic formalism of SAL towards Variable
Set Attributive Logic (VSAL).

Motivation
Consider a simple example of two conditional attributes,
namely C denoting the cost and G denoting the gain (in-
come). Let B denote the business result with two symbolic
values, i.e. ’good’ and ’bad’. We have two simple intuitive
rules:

rule1:G > C −→ B =′ good′

rule2:G < C −→ B =′ bad′
(3)

Unfortunately, in the attributive logic such as SAL it is im-
possible to encode these rules and hence they cannot be rep-
resented within the pure XTT formalism.

There are at least two solutions to this problem. First,
one can define a new, functionally dependent attribute Z =
G− C and specify the rules in the XTT form as in Tab. 3.

Table 3: A simple table with dependent attribute Z

Rule G C Z B
1 _ _ > 0 ’good’
2 _ _ < 0 ’bad’

Unfortunately, it is not always the case that a new, depen-
dent attribute can be defined in a simple way. Then, one has
to use functional constraints imposed on the set of attributes
and a procedure for checking if these constraints are satis-
fied. For intuition, this can be expressed with the Table 4.

Table 4: A simple table with functional constraints f(X, Y )

Rule G C f(X,Y) B
1 X Y X > Y ’good’
2 X Y X < Y ’bad’

Note that new variables, namely X and Y were intro-
duced here to denote the current values of attributes G and
C, respectively. The reason for it is four-fold:
• attributes are functions mapping objects into some prede-

fined domains; the introduced variables denote just their
current values,

• some functional constraints can be defined once (using
a specific set of variables names) and reused for several
different sets of attributes,

• coreference constraints can be expressed with variables,
• more sophisticated rules can be expressed with use of

relational symbols between attributes and variables, e.g.
G ⊂ X and then with constraints over the variables; fur-
ther, constrain propagation can be defined.

Obviously, the definition of constraints must be in the form
of an evaluable formula. The check for its satisfaction can
be left to an external deterministic procedure.

Syntax of Variable Set Attributive Logic
The syntax of Variable Set Attributive Language (VSAL)
covers two extensions with regard to SAL.

First, there is a new form of atomic formulae introduced.
Let X be a variable. The new form of a legal atomic formu-
lae is

A(o) = X,

where plays the role of placeholder for the current value of
attribute A for object o.

Second, let X1, X2, . . . , Xk denote some variables, and
let D1, D2, . . . , Dk be there domains, respectively. Let F

343



be a definition of certain relation, F ⊆ D1×D2× . . .×Dk.
Then

f(X1, X2, . . . , Xk) (4)

is a characteristic predicate of a certain relation F . In fact,
f(X1, X2, . . . , Xk) can be evaluated to true or false for any
specific values of the variables. The expression given by (4)
is a legal atomic formula of VSAL.

Semantics of VSAL
The semantics of VSAL is a straightforward extension of
the one of SAL. An atomic formula of the form A(o) =
X cannot be assigned a truth value until the value of X is
specified. Hence one needs a variable assignment σ defining
the current value of X (it can be an atomic or set value).

In practice, the value of X is defined by the current
value of attribute A. The variables play a role of the so-
called coreference constraints – the current values of at-
tributes are passed over to the functional constraints. Then
f(X1, X2, . . . , Xk) is evaluated to true if and only if the tu-
ple of values of respective attributes A1, A2, . . . , Ak satisfies
(d1, d2, . . . , dn) ∈ F .

Use of Variables in Rule Conclusions
The other reason for introducing variables is that in numer-
ous systems it is necessary to transfer the values of input
attributes from the precondition section to the conclusions.

Consider another problem when the task is to define that
if the gain is up to 1000, one has to pay 20% tax, while if it
is above 1000, one has to pay 200 and 30% of the additional
part. Again this cannot be expressed within simple XTT for-
malism. For intuition, we have to define rules as presented
in Fig. 1.

Here the solution requires the possibility to specify the
values of output attributes being functionally dependent on
the input attribute values.

Tables with Variables, Dependent Attributes,
Functional Constraints and Functional Output
The extended form of XTT tables encoding rules allows for
use of variables as attribute values. The set of initial, inde-
pendent attributes, can also be extended towards the use of
new, complex attributes, functionally dependent on the ini-
tial ones. Their values can be calculated since the values of
initial attributes are established.

Extended tables can also contain functional constraints
specification. Such constraints constitute a powerful tool for
expressing required relationships among attribute values.

For efficient decision making and in control applications
it may be necessary to calculate the output on the base of
current input values. This is now possible thanks to the func-
tional output definition, applicable both for the retract, as-
sert and decisional part of the rules.

A generic scheme of extended rules is presented in Fig. 2;
for simplicity the number of the rule, the context and the
control part are committed.

Attributive Logic with Time Delays
Most of the rule-based systems are in fact reactive ones.
They operate according to a very simple principle: the cur-
rent state of the input variables is analyzed and the rules
having satisfied preconditions are fired. However, in certain
applications, e.g. in the control or signal analysis domain,
the preconditions of the rules must incorporate not only cur-
rent values of input signals, but the past values as well.

Motivation
Consider a simple example of signal analysis. The input
consists of a sequence of values X(t0+∆t×i) = Xi, where
t0 is some initial instant of time and ∆t is the basic time
interval of signal measurement. For example, determining
the current sign of the first derivative can be done with the
following three rules represented within Table 5.

Table 5: Rules for determining the sign of the first derivative

Xi−1 Xi Xi −Xi−1 Sign
_ _ > 0 +
_ _ < 0 -
_ _ = 0 0

In general, applications which detect, analyze and use in-
formation about changes of the input signals, such as first,
second and higher derivatives or accumulated values, such
as moving average for certain period of time, must access
and use past, historical values of the signals. A classical ex-
ample of such task is the prediction and control of dynamic
systems.

Note that access to variable history is not limited to nu-
merical signals. The rules in Tab. 6 are used by car drivers
to predict the next value of the traffic light signal:

Table 6: Rules for traffic lights prediction

Light-before Light-now Light-next
red yellow green

green yellow red
yellow red yellow
yellow green yellow

Temporal Formalism
The simplest and perhaps most useful from practical point of
view temporal formalism is one used in signal analysis and
control theory. The time domain is divided into small and
equal temporal intervals. The signals are measured only at
indexed time instants. The intervals should be small enough
to capture the expected changes and the dynamic behavior
of the system.

Consider a specific attribute Ai. The value of this attribute
at time instant k will be denoted as a pair (Ai, k), or simply
as Ai(k). Now, if the rule based system uses the current
value as well as m past values, the table representing such

344



Rule G C f(X,Y) g(X,Y) T
1 X Y X > Y X − Y ≤ 1000 (X − Y ) ∗ 0.2
2 X Y X > Y X − Y > 1000 200 + (X − Y − 1000) ∗ 0.3

Figure 1: A simple table with functional output

Figure 2: The basic form of an XAT

Prec Dependent Constraints Retract Assert Decision
A1 . . . An Z F B C H
X1 . . . Xn z(X1, . . . , Xn) f(X1, . . . , Xn) r(X1, . . . , Xn) a(X1, . . . , Xn) h(X1, . . . , Xn)

rules should be extended and can have the following form
represented with Table 7.

Table 7: Rules with past values of attribute Ai

Ai(k −m) Ai(k −m + 1) . . . Ai(k) D
di(k −m) di(k −m + 1) . . . di(k) d

where di(j) is the value of attribute Ai at time instant j.
A more general solution might require complex tempo-

ral knowledge representation formalism. In general, there
are numerous temporal logics for specific purposes (Ben-Ari
2001). Practical formalisms referring to exact time fall into
two basic categories: ones based on the concept of inter-
val of time, and ones based on the concept of point of time.
They may also refer to relative or absolute time. Up-to-date,
however, temporal formalism have not found way for prac-
tical applications in rule-based systems (Liebowitz 1998;
Cheng 2002).

Fuzzy Rules and Fuzzy Inference
In practical applications it is often the case that matching
rule preconditions against the current values of state vari-
ables must be performed with some tolerance. In other
words, the boundaries such as threshold values are to certain
degree imprecise. In such a case a useful approach accepted
by practitioners consists in defining fuzzy rules with precon-
ditions specification based on fuzzy sets. The material below
is based on the classical approach to fuzzy sets and fuzzy
rule-based systems (Ibrahim 2004; Negnevitsky 2002).

The Case of Discrete Variables
Consider a discrete set Z = {z1, z2, . . . , zk}. Let µ be a
function of the form:

µ:Z → [0, 1].

The pair Z = (Z, µ) is called a discrete fuzzy set. In
case of finite sets it can be also written as a set of pairs
(zi/µi), where µi = µ(zi), i = 1, 2, . . . , k. Hence Z =
{z1/µ1, z2/µ2, . . . , zk/µk}. Note that the crisp set Z can
be a set of numbers, but it can be a set of purely symbolic
values as well.

Normally, a discrete fuzzy set contains several pairs of the
form (zi/µi). If Z = {z/µ} then Z is called a singleton.

The Case of Continuous Variables
In case of continuous values the fuzzy membership function
can be defined to be any function with the range falling into
the interval [0, 1]. In practice, the most typical functions
used are triangular and trapezoidal ones as well as based on
left or right half of the trapezoid.

Below a single, general function defining the fuzzy degree
is introduced. The function covers several well-known cases
of particular membership functions.
Definition 2 (The π function (fuzzy)) Let Z be a convex
interval of numeric values, e.g. Z ⊂ R, and let α, β, γ and
δ be numbers belonging to S and such that α ≤ β ≤ γ ≤ δ.
We define the π〈α,β,γ,δ〉 function as follows:

π〈α,β,γ,δ〉(α) = 0 for α < β
π〈α,β,γ,δ〉(α) = 1 for α = β
π〈α,β,γ,δ〉(β) = 1
π〈α,β,γ,δ〉(γ) = 1
π〈α,β,γ,δ〉(δ) = 1 for δ = γ
π〈α,β,γ,δ〉(δ) = 0 for δ > γ

and is constructed by piecewise linear interpolation among
these points. The pair Z = (Z, π) is a fuzzy set.

We distinguish the following special cases of function π:
1. ∆α,β,δ = π〈β,β〉 obtained for α < β = γ < δ; this is the

so-called triangle function,
2. Γ = π〈α,β,γ〉 obtained for α < β < γ = δ; this function

is a fuzzy step-wise function,
3. Z = π〈β,γ,δ〉 obtained for α = β < γ < δ.

In majority of practical applications the trapezoidal func-
tion together with the functions based on it, provides a sat-
isfactory solution for defining fuzzy membership functions.
Note that its shape is defined by four distinct parameters,
the shape of triangular function by three, and the shape of
the other two function just by two parameters.

Fuzzy Rule Preconditions
Definition of rule precondition in the fuzzy case is analog to
the crisp case. In the crisp case the basic atomic condition is
of the form: A ∈ t, and the check results in a single logical
value, i.e. true if the current value of attribute A belongs
to set t and false otherwise. In the case of fuzzy precondi-
tions one has to check if A ∈ Z , and the result is the fuzzy

345



membership coefficient belonging to interval [0, 1]. It is nor-
mally assumed that the check produces negative answer if
µ(A) = 0 and positive one if µ(A) > 0.

Now consider a rule having j atomic preconditions incor-
porating fuzzy sets. Let µi denote the fuzzy coefficient ob-
tained for the i − th atomic condition. The total coefficient
is obtained as

µ = µ1 ◦ µ2 ◦ . . . ◦ µj ,

where ◦ is any t-norm operator (such as min or times). A
rule is fired iff and only if µ > 0. In typical fuzzy rule-
based systems it is possible to fire several rules at the same
time. If more than one rule is fired, the results of the rules
are combined to form a single output.

Fuzzy Rule Output
In case a single rule is fired, the current value of µ can be
applied in the following ways:

• instead of a single crisp-case output value d a singleton
(d, µ) is produced; such a pair can be interpreted as ’d
with degree µ’,

• µ can be used to shape the output fuzzy value (limit) as in
the case of Mamdani inference rules,

• µ can be used a kind of certainty degree in case of logical
output values.

When several rules are fired, the value of µ is used to
shape the fuzzy output functions (the Mamdani system) or
as weighting coefficients (the Takagi-Sugeno system).

Learning Fuzzy Rules
A fuzzy rule-based system can become a learning one. This
is especially important when a number of training cases are
available, but no expert knowledge covering them is avail-
able. In such a case a learning or adaptation algorithm can
be used to build a set of rules.

In the case of fuzzy rule-based systems practical results
can be obtained with relatively simple approach of Wang-
Mendel type algorithm (Wang & Mendel 1992).

Verification of Fuzzy Rules
Verification of fuzzy sets of rules is different than in the case
of AAL or SAL. For example, rule preconditions are over-
lapping by intension and one can measure a degree of that.
Completeness and conflict also become fuzzy phenomena
and degrees of them are calculated instead of formal veri-
fication. A note on the approach is presented in (del Acebo
et al. 1998).

Conclusions
In this paper some fundamental extension to the XTT design
method for RBS were presented. They aim at enhancing the
expressiveness of the XTT language, with use temporal and
fuzzy rules. The paper gives an informal description of these
proposed extensions. It is hoped, that these experimental
features could widen the application area of the method.

Acknowledgments The research presented in this paper
is supported from a MNiSW Research Project HeKatE No.:
N516 024 32/2878, Agreement No.: 2878/T02/2007/32.

References
Ben-Ari, M. 2001. Mathematical Logic for Computer Sci-
ence. London: Springer-Verlag.
Cheng, A. M. K. 2002. Real-Time Systems. Scheduling,
Analysis and Verification. Hoboken, New Yersey: John
Wiley & Sons, Inc.
Covington, M. A.; Nute, D.; and Vellino, A. 1996. Prolog
programming in depth. Prentice-Hall.
del Acebo, E.; Oller, A.; de la Rosa, J. L.; and Ligęza,
A. 1998. Static criteria for fuzzy systems quality evalua-
tion. In del Pobil, A. P.; Mira, J.; and Ali, M., eds., Tasks
and Methods in Applied Artificial Intelligence, volume II of
Lecture Notes in Artificial Intelligence 1416. Berlin, Hei-
delberg: Springer-Verlag. 877–887.
Hopgood, A. A. 2001. Intelligent Systems for Engineers
and Scientists. Boca Raton London New York Washington,
D.C.: CRC Press, 2nd edition.
Ibrahim, A. M. 2004. Fuzzy Logic for Embedded Systems
Applications. Embedded Technology. Burlington, MA: El-
sevier Science.
Jackson, P. 1999. Introduction to Expert Systems.
Addison–Wesley, 3rd edition. ISBN 0-201-87686-8.
Liebowitz, J., ed. 1998. The Handbook of Applied Expert
Systems. Boca Raton: CRC Press.
Ligęza, A., and Nalepa, G. J. 2007. Knowledge repre-
sentation with granular attributive logic for XTT-based ex-
pert systems. In Wilson, D. C.; Sutcliffe, G. C. J.; and
FLAIRS., eds., FLAIRS-20 : Proceedings of the 20th In-
ternational Florida Artificial Intelligence Research Society
Conference : Key West, Florida, May 7-9, 2007, 530–535.
Menlo Park, California: Florida Artificial Intelligence Re-
search Society.
Ligęza, A., and Parra, P. F. 2006. A granular attribute
logic for rule-based systems management within extended
tabular trees. In Trappl, R., ed., Cybernetic and Systems,
volume 2, 761–766. Austrian Society for Cybernetic Stud-
ies.
Ligęza, A. 2006. Logical Foundations for Rule-Based Sys-
tems. Berlin, Heidelberg: Springer-Verlag.
Nalepa, G. J. 2004. Meta-Level Approach to Integrated
Process of Design and Implementation of Rule-Based Sys-
tems. Ph.D. Dissertation, AGH University of Science
and Technology, AGH Institute of Automatics, Cracow,
Poland.
Negnevitsky, M. 2002. Artificial Intelligence. A Guide to
Intelligent Systems. Harlow, England; London; New York:
Addison-Wesley. ISBN 0-201-71159-1.
Wang, L.-X., and Mendel, J. M. 1992. Generating fuzzy
rules by learning from examples. IEEE Transactions on
Systems, Man, and Cybernetics SMC-22(6):1414–1427.

346




