
Towards Formalization of ARD+ Conceptual Design and Refinement Method

Grzegorz J. Nalepa and Igor Wojnicki
Institute of Automatics,

AGH – University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland

gjn@agh.edu.pl wojnicki@agh.edu.pl

Abstract

The paper discusses a proposal of a formal description
of ARD+ a conceptual design and hierarchical refinement
method for knowledge-based systems. Formalization of
method syntax is given, as well as description of its seman-
tics. ARD+ is a rework of the classic ARD presented else-
where, that provides a conceptual design for rule-based sys-
tems. ARD+ is based on the concept of gradual design where
consecutive design steps correspond to different knowledge
abstraction levels in the design. Application examples, along
with directions for future research are given.

Introduction
Providing an effective development methodology for com-
plex systems remains a challenge, especially in software
engineering. In some cases to build conceptual models of
business logic software engineers apply Knowledge Engi-
neering methods. These methods originate from the de-
sign of knowledge-based systems (KBS), an important class
of intelligent systems in AI (Russell & Norvig 2003). In
AI, rules are probably the most popular choice for building
knowledge-based systems, that is the so-called rule-based
expert systems (RBS) see (Ligęza 2006).

Applied Software Engineering (SE) is derived as a set
of paradigms, and procedures, from practical programming.
Historically, when the modelled systems became more com-
plex, SE became more declarative, in order to model the sys-
tem in a more comprehensive way. It made the design stage
independent of programming languages which resulted in
number of approaches. So, while programming itself re-
mains mostly sequential, designing becomes more declar-
ative. Since there is no direct bridge between declarative
design and sequential implementation, a substantial work is
needed in order to turn a design into a running application.
This problem is often referred to as a Semantic Gap between
the design and the implementation (Mellor & Balcer 2002).

The research presented in this paper aims at providing a
new software development methodology based on formal
RBS design and analysis methods. It is a continuation of
the research in the field of RBS, where the logical design

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

method called XTT (eXtended Tabular Trees) has been de-
veloped (Nalepa & Ligęza 2005b). Subsequently, a concep-
tual design method called ARD (Attribute Relationship Di-
agrams) has also been proposed (Nalepa & Ligęza 2005a).
These methods provided a proof of concept for an integrated
design process for simple RBS. This paper presents a pro-
posal of ARD+, a largely enhanced and reworked version
of the original ARD. Moreover, it provides fully formal-
ized description of the method syntax compared to the orig-
inal description of ARD found in (Nalepa & Ligęza 2005a;
Ligęza 2006). In this paper a formalized notion of diagram
transformations is also presented. The ARD+ method al-
lows for gradual refinement of the conceptual design with a
fully hierarchical system model being built. The method is
based on graphs, so a discussion of the related research is
also given. Since it is a work in progress, directions for the
future development are presented in the final section.

Design Process for Rules
The methods and tools discussed in this paper are aimed
at practical design of rule-based expert systems, as well as
business rules. Ultimately they should also be applicable
to general business software development. This research is
carried out within the HeKatE project (hekate.ia.agh.
edu.pl). These methods should support the design from
the system description in the natural language, through a
formalized multilevel design, to a final, automated imple-
mentation. The process should be supported by intelligent
software tools helping in the design, as well as translation
and integration of the model with other solutions.

The HeKatE approach is based upon a concept of a three-
level hierarchical design, including conceptual, logical, and
physical stages. At each stage another design method is
used. The stages are integrated, with the integration formally
described, in order to evade well-known semantic gaps that
are common in the software engineering. The project is
based on the previous experiences with design and imple-
mentation of RBS in the area on AI (Liebowitz 1998).

Currently, the HeKatE project provides ARD (Attribute
Relationship Diagrams) conceptual design method for at-
tributes, and XTT (eXtended Tabular Trees) logical design
method for rules. While ARD allows to identify system
attributes and their functional dependencies, XTT provides
means to build decision rules using these attributes. An im-

Proceedings of the Twenty-First International FLAIRS Conference (2008)

353



portant development within the project is the area of sup-
porting tools. At the moment, the ARD+ design is supported
by a prototype Prolog toolchain (VARDA), that allows for
an automated visualization of the ARD+ model using the
GraphViz (www.graphviz.org) tool.

The original ARD method has been presented in (Nalepa
& Ligęza 2005a; Ligęza 2006). It has been proposed as
a supportive design method for XTT (Nalepa & Ligęza
2005b). XTT is a logical design method for rule-based
systems, where the knowledge base is designed using a
structured representation, based on the concept of tabu-
lar trees (Ligęza, Wojnicki, & Nalepa 2001). ARD pro-
vides means for attribute identification for the XTT method.
The first version of ARD (as of (Nalepa & Ligęza 2005a;
Ligęza 2006)) was based on the concept of diagrams that
contained two sets of attributes, dependent and independent
ones. The ARD model was a hierarchical one, with the
hierarchy developed with use of two split transformations,
the vertical one – specifying the dependency, and horizon-
tal one discovering an independency. This provided a clear
and transparent formalism. However, this formalism proved
to be quite limited, when it came to more complex design
cases. Some of the most important limitations, were:
• insufficient split expressiveness – in complex cases the

two basic transformations were not satisfactory, and the
ARD formalism would not allow to define other splits,

• unclear attribute origins – the original method would al-
low to introduce new attributes during the design pro-
cess without means to formally relate them to existing at-
tributes, making the global attribute model inconsistent,
and possibly incomplete (see Fig. 1),

• representation redundancy – there was a notion of func-
tional attribute dependency (which had a clear formula-
tion) and an apparent functional diagram dependency in
the model, which were unclear and misleading; at the
same time it would enforce attribute redundancy in the
neighbor diagrams (see Fig. 1),

• lack of formally described XTT integration – even though
ARD supported the XTT, the transition from the ARD
model to the XTT was not fully formally described, and
suffered from particular notation problems.

These shortcomings stimulated a major rework, and refor-
mulation of the ARD method. At the same time, XTT is also
being enhanced towards a general rule programming model.

ARD+ Proposal
The first version of ARD has been applied to simple cases,
and had no practical prototype implementation. The evo-
lution of XTT, as well as larger complexity of systems de-
signed, gave motivation for the major rework, and reformu-
lation of ARD, presented for the first time in this paper.

Below, some basic concepts on which ARD+ is based are
presented. They are in fact a refinement of the concepts of
the original method. ARD+ is a formal method, so the syn-
tax of the method is given along with structural transforma-
tions and model semantics. In this paper the refined ARD+
method is still referred to as simply ARD.

0

Date
Hour

Temp

Date
Hour

aSE
aOP

aSE
aOP

aTHS

0.1 0.2

where these

attributes

come from? what is the

difference

need them for?

what exactly do we

these are redundant

these two?
between

Figure 1: Selected ARD limitations

Preliminary Concepts
The ARD method aims at supporting the designer at a very
general design level, where the conceptualization of the de-
sign takes place. ARD is used in the first design stage, being
a type of requirements specification method. Its input is a
general system description in the natural language. Its out-
put is a model capturing knowledge about relations between
attributes describing system properties. The model is sub-
sequently used in the next design stage, where the actual
logical design with rules is carried out.

The main concepts behind ARD are:

attributive logic based on the use of attributes for denot-
ing certain properties in a system (Ligęza 2006; Ligęza &
Nalepa 2007).

functional dependency is a general relation between two
or more attributes (or attribute sets), called “dependent”
and “independent”; the relation is such as in order to de-
termine the values of the dependent attributes, the values
of the independent ones are needed.

graph notation provides simple, standard yet expressive
means for knowledge specification and transformation.

visualization is the key concept in the practical design sup-
port provided by this method.

gradual refinement is the main design approach, where the
design is being specified in number of steps, each step
being more detailed than the previous one.

structural transformations are formalized, with well de-
fined syntax and semantics.

hierarchical model captures all of the subsequent design
steps, with no semantic gaps; it holds knowledge about
the system on the different abstraction levels.

knowledge-based approach provides means of the declar-
ative and transparent model specification.

Based on these concepts, a new enhanced and formalized
version of the ARD is given. Let us now discuss the formal
syntax of ARD diagrams.

354



Syntax
The ARD method aims at capturing relations between at-
tributes. Attributive Logic (Ligęza 2006; Ligęza & Nalepa
2007) (AL, for short) is one based on the use of attributes for
denoting certain system properties. A property is described
by one or more attributes. ARD+ captures functional depen-
dencies among these properties. Capturing these concepts
and dependencies is called the ARD Design Process.

A typical atomic formula (fact) takes the form A(p) = d,
where A is an attribute, p is a property and d is the current
value of A for p. More complex descriptions take usually the
form of conjunctions of such atoms and are omnipresent in
the AI literature (Russell & Norvig 2003; Hopgood 2001).
Definition 1 Attribute. Let there be given the following,
pairwise disjoint sets of symbols: P – a set of property sym-
bols, A – a set of attribute names, D – a set of attribute
values (the domains).

An attribute (see (Ligęza 2006; Ligęza & Nalepa 2007))
Ai is a function (or partial function) of the form

Ai:P → Di.

A generalized attribute Ai is a function (or partial func-
tion) of the form Ai:P → 2Di , where 2Di is the family of
all the subsets of Di.
Definition 2 Conceptual Attribute. A conceptual attribute
A is an attribute describing some general, abstract aspect
of the system to be specified and refined.

Conceptual attribute names are capitalized, e.g.:
WaterLevel. Conceptual attributes are being finalized
during the design process, into, possibly multiple, physical
attributes, see Def. 8.
Definition 3 Physical Attribute. A physical attribute a is an
attribute describing a well-defined, atomic aspect of the sys-
tem.

Names of physical attributes are not capitalized, e.g.
theWaterLevelInTank1. By finalization, a physical
attribute origins from one or more (indirectly) conceptual
attributes. Physical attributes cannot be finalized, they are
present in the final rules.
Definition 4 Simple Property. PS is a property described
by a single attribute.
Definition 5 Complex Property. PC is a property de-
scribed by multiple attributes.
Definition 6 Dependency. A dependency D is an ordered
pair of properties D = 〈p1, p2〉 where p1 is the independent
property, and p2 is the one that dependent on p1.
Definition 7 Diagram. An ARD diagram G is a pair G =
〈P,D〉 where P is a set of properties, and D is a set of
dependencies.
Constraint 1 Diagram Restrictions. The diagram consti-
tutes a directed graph with certain restrictions:

1. In the diagram cycles are allowed.
2. Between two properties only a single dependency is al-

lowed.
Let us now discuss the formalization of diagram transfor-

mations.

Transformations
Diagram transformations are one of the core concepts in the
ARD. They serve as a tool for diagram specification and de-
velopment. For the transformation T such as T : D1 → D2,
where D1 and D2 are both diagrams, the diagram D2 car-
ries more knowledge, is more specific and less abstract than
the D1. Transformations regard properties. Some transfor-
mations are required to specify additional dependencies or
introduce new attributes, though. A transformed diagram
D2 constitutes a more detailed diagram level.

Definition 8 Finalization. Finalization TF is a function of
the form

TF : P1 → P2

transforming a simple property P1 described by a concep-
tual attribute into a P2, where the attribute describing P1 is
substituted by one or more conceptual or physical attributes
describing P2.

An interpretation of the substitution is, that new attributes
describing P2 are more detailed and specific than attributes
describing P1.

Definition 9 Split. A split is a function S of the form:

S : PS → {PS1, PS2, . . . PSn}

where a complex property PS is replaced by n properties,
each of them described by one or more attributes originally
describing PS.

Constraint 2 Attribute Dependencies. Since PS may de-
pend on other properties PO1 . . . POm, dependencies be-
tween these properties and PS1 . . . PSn have to be stated.

Constraint 3 Attribute Disjunction. Attribute sets describ-
ing features PS1 . . . PSn have to be disjoint.

Constraint 4 Attribute Matching. All of the attributes de-
scribing PS have to describe properties PS1 . . . PSn. No new
attributes can be introduced for properties PS1 . . . PSn.

Such an introduction is possible through finalization (see
Def. 8) only.

Constraint 5 Attribute Pool. All attributes describing PSs

have to describe properties PS1 . . . PSn.

Constraint 6 Transformation Limit. The number of trans-
formations in a single design step is limited to one per node –
a node can be either split or finalized but not both.

Refactoring
During the design process some properties or attributes can
be missed or treated as not important, hence not included in
the diagram. Refactoring allows to incorporate such artifacts
or remove unnecessary ones. Refactoring would be modify-
ing any of the existing transformations: finalization or split
in a particular ARD diagram.

355



Finalization A Finalization Refactoring would be adding
or removing an attribute, modifying a past finalization. Re-
moving an attribute Ar results in removing it from all al-
ready defined complex properties. If there is a simple prop-
erty which regards such an attribute, it should be removed. If
Pr functionally depends on a set of properties Sp, even tran-
sitionally, and they depend on one another only, properties
from Sp needs to be removed too. Additionally all attributes
which are not being used any more need to be removed as
well. The Finalization Refactoring with adding an attribute
implies that at some point a split has to be performed on a
property involving the new attribute. Furthermore, appro-
priate dependencies between the property described by the
introduced attribute and other properties have to be stated as
well. This constitutes the Split Refactoring.

Split The Split Refactoring can take place on its own. It
does not have to be preceded by a Finalization Refactoring.
In such a case it would be changing functional dependencies
among already defined properties only. In general, the Split
Refactoring regards:

• adding or removing properties upon defined splits,

• rearranging already defined dependencies.

Removing a property implies that all other properties that
were split from it, even transitionally, have to be removed.
Adding a property leads to defining its dependencies, be-
tween the property and other already defined ones.

In general, adjusting dependencies can be provided in the
following ways:

• define dependencies between the property and other ex-
isting properties at the most detailed diagram level, or

• adjust appropriate past split transformations (at previous
diagram levels) to consideration the new property.

In the first case, the dependencies are defined for the most
detailed diagram level only. Since there is a hierarchical
design process, these changes are taken into consideration
at previous levels automatically. The second case implies
that the designer updates appropriate past splits in a gradual
refinement process. Stopping this process at more general
level than the most detailed one, generates appropriate splits
in all more detailed levels automatically.

Split refactoring cases discussed here are the generic ones.
However, this is a complex issue, crucial for the actual de-
sign refactoring. Currently this area of development is an
intensive work in progress.

Semantics
The semantics of ARD will be explained and visualized us-
ing a reworked Thermostat example, found in (Ligęza 2006;
Nalepa & Ligęza 2005a).

A property is always described by a set of attributes,
these attributes uniquely identify the property . The single
most important concept in ARD is the concept of the prop-
erty functional dependency. Properties are described by at-
tributes. It means, that in order to determine dependent prop-
erty attribute values, independent properties attribute values
have to be determined first. An example is given in Fig. 2.

Time Temperature

Figure 2: An example of dependency

Time Temperature

Date
Hour

season
operation

Temperature

Figure 3: An example of finalization

It indicates that a property described by Temperature de-
pends on a property described by Time.

Identifying all possible properties and attributes in a sys-
tem is a very complex task. Transformations allow to gradu-
ally refine properties, attributes and functional dependencies
in the system being designed. This process ends when all
the properties are described by physical attributes and all of
the functional dependencies are defined.

An example of the finalization is given in Fig. 3. The top
diagram represents the system before the finalization. The
property described by attribute Time is finalized. As a re-
sult new attributes are introduced: Date, Hour, season,
operation. Semantics of this transformation is that the
system property described by a conceptual attribute Time,
can be more adequately described by a set of more detailed
attributes: Date, Hour, season, operation, which
more precisely define the meaning Time in the design. The
two latter attributes are physical ones, used in the final rule
implementation. Finalization of properties based on such at-
tributes is not allowed.

An example of simple finalization is given in
Fig. 4. A property described by a conceptual attribute
Temperature is finalized into a property described
by a physical attribute thermostat_settings. In
other words, a general concept of temperature, represented
by Temperature, is to be represented by an attribute
thermostat_settings.

Another ARD transformation is the split. An example
is given in Fig. 5. The top diagram shows a situation be-
fore, and the bottom one after, the split transformation. This
split allows to refine new properties and define functional
dependencies among them. A property described by at-
tributes: Date, Hour, season, operation, is split into
two properties described by Date, Hour, and season,
operation appropriately. Furthermore there is a func-
tional dependency defined such as season, operation

Time Temperature

Time thermostat_settings

Figure 4: An example of simple finalization

356



Date
Hour

season
operation

Temperature

Date
Hour

season
operation

Temperature

Figure 5: An example of split, dependent

Date
Hour

season
operation

Temperature

Date
Hour

season

operation

Temperature

Figure 6: Another example of split, independent

depend on Date, Hour.
During the split, some of the properties can be defined

as functionally independent. An example of such a split
is given in Fig. 6. Properties described by season and
operation are functionally independent.

The ARD design process based on transformations leads
to a diagram representing features described by physical at-
tributes only. An example of such a diagram is given in
Fig. 7. All properties of the designed system are identified.
Each of them is described by a single physical attribute. All
functional dependencies are defined as well.

Each transformation creates a more detailed diagram, in-
troducing new attributes (finalization) or defining functional
dependencies (split). These more detailed diagrams are
called levels of detail or just diagram levels. In the above
examples, transitions between two subsequent levels are pre-
sented. A complete model consists of all the levels capturing
knowledge about all splits and finalizations.

Let us now discuss the practical issues of consistent and
compact representation of the hierarchical model.

Hierarchical ARD+ Model
During the design process, upon splitting and finalization,
the ARD diagram grows. This growth is expressed by con-
secutive diagram levels, making the design more and more
specific. This constitutes the hierarchical model. Consecu-
tive levels make a hierarchy of more and more detailed dia-
grams describing the designed system.

day today

operationhour

thermostat_settings

month season

Figure 7: An ARD Diagram: all features are identified

Time

Date
Hour

season
operation

Figure 8: TPH for the diagrams from Fig. 3

Date
Hour

season
operation

Date
Hour

season
operation

Figure 9: TPH for the diagrams from Fig. 5

The purposes of having the hierarchical model are:
• gradual refinement of a designed system, and particularly
• identification of the origin of given properties,
• ability to get back to previous diagram levels for refactor-

ing purposes,
• big picture perspective of the designed system.

The implementation of such a hierarchical model is pro-
vided through storing the lowest available, most detailed di-
agram level, and additionally information needed to recreate
all of the higher levels, the so-called Transformation Process
History, TPH for short. TPH captures information about
changes made to properties at consecutive diagram levels.
These changes are carried out through the transformations:
split or finalization. A TPH forms a tree-like structure, de-
noting what particular property is split into or what attributes
a particular property attribute is finalized into.

An example TPH for the transformation presented in
Fig. 3 is given in Fig. 8. It indicates that a feature described
by an attribute Time is refined into a feature described by
attributes: Date, Hour, season, operation.

Another TPH example for the split transformation shown
in Fig. 5 is given in Fig. 9. It indicates that a feature de-
scribed by attributes: Date, Hour, season, operation
is refined into two features described by: Date, Hour and
season, operation attributes respectively. Having a
complete TPH and the most detailed diagram level, it is
possible to automatically recreate any, more general, level,
performing a roll-back. Using this feature it is possible to
recreate the ARD design at any abstraction level previously
defined; it allows further refactoring.

Using the last level of the ARD+ rule prototypes can be
generated. The input of the algorithm is the most detailed
ARD+ diagram, the output is the set of rule prototypes in a
very general format:
rule: condition atts | decision atts

The complete description of the algorithm is out of scope of
this paper. The rules for the ARD diagram in Fig. 7, are:
season, operation | thermostat_settings
month | season
day | today
today, hour | operation

357



Related Research
The formulation of ARD+ is simpler and more compact,
than the original one. To some extent it is influenced by
some classic concepts from AI and mathematics.

A first most obvious inspiration is the graph theory. It is
a very important and well developed topic in mathematics.
The ARD+ formulation should be enhanced in the future, to
include some graph notions, especially for transformations,
and possibly split patterns. On the other hand it was a con-
scious design decision not to use graph-related syntax names
for ARD+. So even though for a mathematician, an ARD+
model is a directed graph, dependencies are edges, and prop-
erties are nodes; we try to avoid these “visual” names, sim-
ply to indicate their general meaning within ARD+.

Graph-based representations can be extended in number
of ways. An important formalism, that was also considered
are the AND/OR graphs. However, it seems that its seman-
tics is too strong and specific for what is needed in ARD+.

ARD+ also bears similarities to the causal graphs formal-
ism, used mainly in diagnosis and fault detection. At this
point ARD+ was invented with forward chaining rule-based
systems in mind. However, it is a generic approach for rule
prototyping that could also be applied to backwards chain-
ing, which is omnipresent in the domain of diagnosis.

To some extent, the ARD+ is similar to classic AI meth-
ods such as semantic networks and ontologies. Again, so far
it was a conscious decision not to include some of the strong
semantical mechanism present in ontologies, such as classic
abstraction (though the ARD+ attribute specification is sim-
ilar) or composition. It seems that at this stage level these
tools could be actually too restrictive.

ARD+ attribute finalization concept is similar to a clas-
sic concept of production in the terms of the formal gram-
mars. Conceptual attributes are semantically close to non-
terminal symbols, whereas the physical ones to terminals.
So, a more algebraic notation of attribute finalization using
BNF, or BNF-like notation is considered.

Summary and Future Work
The paper presents a preliminary formal description of the
ARD+ conceptual design method for rules. The original
contribution of the paper is the refined formalization of the
method, including a gradual hierarchical design process, and
a compact hierarchical ARD+ model. The solutions con-
tained in the paper are presented with practical examples.

While ARD+ identifies attributes describing the system,
specifying actual rules is provided by the XTT method,
building upon attributes specified in the ARD+ process.
There is an ongoing research which would allow for an inte-
gration of ARD+ and XTT.

Future work will be mainly focused of the more com-
plex design cases, that would allow for developing practical
refactoring solutions within ARD+. One of the approaches
is to formulate semi-formalized design minipatterns, used at
the ARD+ level transitions. These should ultimately allow
to identify and describe some typical split patterns (in the
original ARD there has been only two split types possible).

Since the design process should be supported with a
convenient tool, there is a prototype ARD+ design tool
(VARDA) written in the Prolog language. It is purely
declarative and supports automated visualization at any dia-
gram level. The prototype consists of an API for low-level
ARD handling primitives such as defining attributes, proper-
ties and dependencies, and high-level primitives supporting
the transformations, and visualization primitives as well.

Currently this prototype design tool stores knowledge as
Prolog language clauses. While it is an efficient approach
for the design stage, it is not portable in terms of data and
knowledge exchange standards. So there is an ongoing re-
search regarding ARD+ representation using XML. This
should ultimately allow for attribute exchange with other
specification formalisms, including RIF on the general level,
R2ML, and possibly ontologies.

Acknowledgements The paper is supported by the
HeKatE Project funded from 2007–2009 resources for sci-
ence as a research project.

References
Hopgood, A. A. 2001. Intelligent Systems for Engineers
and Scientists. Boca Raton London New York Washington,
D.C.: CRC Press, 2nd edition.
Liebowitz, J., ed. 1998. The Handbook of Applied Expert
Systems. Boca Raton: CRC Press.
Ligęza, A., and Nalepa, G. J. 2007. Knowledge repre-
sentation with granular attributive logic for XTT-based ex-
pert systems. In Wilson, D. C.; Sutcliffe, G. C. J.; and
FLAIRS., eds., FLAIRS-20 : Proceedings of the 20th In-
ternational Florida Artificial Intelligence Research Society
Conference : Key West, Florida, May 7-9, 2007, 530–535.
Menlo Park, California: Florida Artificial Intelligence Re-
search Society.
Ligęza, A.; Wojnicki, I.; and Nalepa, G. 2001. Tab-trees: a
case tool for design of extended tabular systems. In et al.,
H. M., ed., Database and Expert Systems Applications, vol-
ume 2113 of Lecture Notes in Computer Sciences. Berlin:
Springer-Verlag. 422–431.
Ligęza, A. 2006. Logical Foundations for Rule-Based Sys-
tems. Berlin, Heidelberg: Springer-Verlag.
Mellor, S. J., and Balcer, M. 2002. Executable UML: A
Foundation for Model-Driven Architectures. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc.
Nalepa, G. J., and Ligęza, A. 2005a. Conceptual modelling
and automated implementation of rule-based systems. In
Krzysztof Zieliński, T. S., ed., Software engineering : evo-
lution and emerging technologies, volume 130 of Frontiers
in Artificial Intelligence and Applications, 330–340. Ams-
terdam: IOS Press.
Nalepa, G. J., and Ligęza, A. 2005b. A graphical tabular
model for rule-based logic programming and verification.
Systems Science 31(2):89–95.
Russell, S., and Norvig, P. 2003. Artificial Intelligence: A
Modern Approach. Prentice-Hall, 2nd edition.

358




