
Declarative Specification and Interpretation of Rule-Based Systems

Dietmar Seipel and Joachim Baumeister
Institute of Computer Science

University of Würzburg, Germany
{seipel|baumeister}@informatik.uni-wuerzburg.de

Abstract

A declarative rule inference engine can be very useful
for modern distributed or heterogeneous applications, if
it can be configured for multiple semantics and evalu-
ation strategies, and if it allows for arbitrary function
calls in rule bodies.
We present a Prolog-based declarative extension of the
deductive database language Datalog to more general
rule-based applications.

Introduction
Recently, the specification of rule-based knowledge in a gen-
eral way has gained reasonable attention. Rules are an intu-
itive knowledge representation for building intelligent sys-
tems, and they are used in many applications, for example
in the context of business rules, the development of med-
ical knowledge bases, and for the control of technical de-
vices. Additionally, in the context of the semantic web ini-
tiative, the definition of a general rule interchange format
(RIF) is under discussion. This enables distributed services
to understand and to use rule-based knowledge from differ-
ent sources (W3C Rules Working Group 2006). Similarly,
typical use cases are the implementation and distribution of
business rules, medical knowledge bases, vocabulary map-
ping used for data integration, and the extension of general
ontologies by expressive rule-based statements.

In open environments like knowledge wikis (Baumeister
& Puppe 2008), volunteer users are able to declaratively
specify rule-based knowledge through a web-based inter-
face. For example, Figure 1 shows the edit pane of a knowl-
edge wiki, where the user can not only specify the textual
knowledge of a specific domain, but is also able to define
explicit problem solving knowledge. In the given exam-
ple, a knowledge wiki for capturing knowledge on landscape
diversity is shown (Baumeister, Reutelshoefer, Nadrowski,
& Misok 2007). The rule base is formulated in a textual
IF/THEN/EXCEPT manner. Conditioned findings are placed
in the IF block, and the rule action – here the derivation of
some solutions – is described in the THEN block. Excep-
tions are defined in the EXCEPT block and prevent the rules

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

from firing, if the corresponding conditions evaluate to true.

Figure 1: The edit pane of a knowledge wiki defining rules
for the effective use of plant diversity.

Besides the general markup of rules, the intended seman-
tics of the embodied knowledge is of prime importance. Es-
pecially in an open environment, the interpretation of the
rule base is an important issue and affects the design and the
development of the rule base. Even for the same knowledge
representation, the interpretation may depend on the particu-
lar application project. In our approach, the declarative con-
figuration of the rule semantics is intended to be defined by
an administrative knowledge engineer and not by the actual
developers of the rule base.

In this paper, rule-based knowledge is represented in Pro-
log syntax and interpreted by a powerful and configurable
rule engine in Prolog, which allows for the declarative con-
figuration of the interpretation process. The presented ap-
proach is general in its application and can be adapted to
reimplement and extend rule-based systems that were orig-
inally using rule engines such as the well-known systems
JBossRules or Jess. In the context of this paper, we will
demonstrate the approach for the declarative specification of
different rule types from the d3web diagnostic knowledge
system (Puppe 1999).

Proceedings of the Twenty-First International FLAIRS Conference (2008)

359



The rest of this paper is organized as follows: In the next
section, we introduce two rule formalisms of diagnostic sys-
tems: scoring rules and set covering rules. They cannot be
implemented based on the well-known forward iteration of
deductive databases. Therefore, we show how forward it-
eration can be generalized by incorporating backward rules,
such that scoring and set covering rules as well as the ag-
gregation of scores can be implemented, and we describe an
application scenario taken from the diagnostic knowledge
system d3web. Finally, we present our implementation of
the generalized forward iteration in Prolog.

Variants of Rule Interpretation
Todays diagnostic systems use quite complex inference ap-
proaches (Stefik 2004), and there exist many variants of in-
terpreting rule-based knowledge. The interpretation of rules
commonly depends on the type of application and the re-
quirements of the domain specialists that are developing the
knowledge base.

In the following, we will describe two formalisms for
knowledge representation, that have proven to be suitable in
a large number of projects in the context of the d3web sys-
tem. Scoring rules are a very intuitive and powerful repre-
sentation often used for developing diagnosis systems, e.g.,
in the medical domain, and set covering rules are very useful
for the implementation of knowledge bases in the context of
recommender systems.

First we introduce some basic notions that are required for
the further definitions, and then we introduce the knowledge
representations in more detail.

Basic Notions
In general, a rule-based system uses a rule base to derive new
facts from a given fact base or facts provided (interactively)
by the user. We partition the facts into two disjoint sets S
and F . S is the universal set of all solutions of the problem,
i.e., facts that are derived by the system and presented to the
user as outputs; in this paper, we use the synonym diagnosis
for solution. F is the universal set of findings that are used
as input facts in rules: there are input findings q = v, where
v is the answer to the question q, and intermediate findings
a = v, where a is an abstraction.

A general rule r = α → β has an antecedent α, which
is a formula over conjunctions, disjunctions, and negations
of conditions over diagnoses, questions, abstractions, and
their corresponding values; the consequent β of the rule is
derived if α evaluates to truefor the given set of findings.
β commonly depends on the rule representation and will be
discussed in the following sections. β can be an intermediate
finding a = v or a pair d = s, where d is a diagnosis and s
is a score, or just a diagnosis d.

Scoring Rules
Scoring rules are used to weight the diagnoses (solutions)
d ∈ S with respect to the given set of facts. A scoring rule
is of the form

r = α→ (d = s),

where α is the condition of the rule and s is a score for d.
E.g., (a4 = v1)∨ ( not(q4 = v1)∧ (q5 ≥ v2) )→ (d1 = 5).

The basic idea for the evaluation of scoring rules is very
simple. For every possible solution d, a numerical account
acc(d) is instantiated at the beginning of each problem solv-
ing session as acc(d) = 0. During the problem solving ses-
sion, every scoring rule for d, that is able to fire, simply adds
its score s to acc(d) as the rule action. If the aggregated
scoring account of a solution d exceeds a given threshold,
then d is presented to the user as a possible solution. Like
in the classic scheme of the Internist system (Miller, Pople,
& Myers 1982), aggregation is done on a logarithmic scale,
and we have set the threshold to 7. Every scoring rule only
fires once during a problem solving session.

Set Covering Rules
Set covering rules provide an intuitive representation, which
is especially well-suited for building recommender systems.
A set covering rule is of the form r = α→ d; for a solution
d ∈ S, the conjunction α contains all findings or negated
findings that are expected to be observed if we assume d.
E.g., α = (a4 = v1) ∧ not(q4 = v1) ∧ (q5 ≥ v2). The
coverage of d depends on how many elements of α evaluate
to true.

For a concrete problem statement, a list of appropri-
ate solutions is derived using a simple hypothesize-and-test
method: For every solution we compare the expected find-
ings of the set covering rules with the actually present find-
ings, and we select the best-matching solutions, i.e., the so-
lutions whose expected set of findings overlaps most with
the observed findings. This simple knowledge representa-
tion can be iteratively extended by additional background
knowledge like weights, similarities between finding values
and frequencies (Baumeister, Seipel, & Puppe 2003).

Deductive Databases and Logic Programming
Deductive databases and logic programming (Ceri, Gottlob,
& Tanca 1990) can be used as a declarative mediator tech-
nology between different data sources and rule-based prob-
lem solvers. Deductive databases normally use Datalog and
the standard inference operator TP .

But practical rule-based applications often require an ex-
tensible set of user-defined built-in predicates, and they need
function symbols for handling complex data structures. For
some applications the standard form of conjunctive rule bod-
ies is not adequate, since the knowledge representation is
more complicated. If non-conjunctive rule bodies are nor-
malized to conjunctive rule bodies, then the TP -evaluation
becomes unnecessarily complex due to redundancy.

Applications such as diagnostic reasoning in the d3web
system could not be formulated using Prolog backward
chaining or Datalog forward chaining alone, since we need
recursion on cyclic data, function symbols, negation and dis-
junction in rule bodies, aggregation, and stratification, and
we might also need non-ground facts. This observation also
holds in general for other rule formalisms.

But, using meta interpreters which we write in Prolog, we
can overcome the limitations of both Datalog and Prolog.

360



Datalog? Thus we have developed a new approach that ex-
tends the Datalog paradigm to Datalog? and mixes it with
Prolog. This makes deductive databases also able to access
and manage a variety of external data sources, such as re-
lational databases, XML databases or XML documents, and
Excel data.

We distinguish between Datalog? rules and Prolog rules.
Datalog? rules are forward chaining rules (not necessarily
range-restricted) that may contain function symbols (in rule
heads and bodies) as well as negation, conjunction, disjunc-
tion, and Prolog predicates in rule bodies. Datalog? rules
are evaluated bottom-up, and all possible conclusions are
derived.

The supporting Prolog rules are evaluated top-down,
and – for efficiency reasons – only on demand, and they can
refer to Datalog? facts. The Prolog rules are necessary for
computations on complex terms, and – more importantly –
for aggregating the derived Datalog? facts after each itera-
tion.

Declarative Rules in Datalog?

Datalog? allows for general, user-defined built-in predicates,
which can be implemented in Prolog, and function symbols.
A Datalog? program consists of forward and backward rules
in Prolog syntax, all of which can access the Prolog database
and are subject to the same backtracking mechanism.

• The forward rules are interpreted in a bottom-up iteration.
Every elementary step calls all rule bodies in Prolog and
adds the derived facts to the Prolog database. Thus, ele-
mentary derivations can only refer to already derived facts
and not to forward rules, which breaks recursion.

• The backward rules are evaluated top-down in Prolog us-
ing standard SLDNF-resolution. This allows for embed-
ding arbitrary Prolog computations in Datalog?. Thus, by
defining predicates using backward rules, the user can ex-
tend the set of allowed built-in predicates.

Optimizations such as ∆-Iteration (Ceri, Gottlob, & Tanca
1990) can be implemented flexibly based on program trans-
formations; the basic declarative rule interpreter does not
have to be changed for this.

Forward Rules
The forward rules use the connectives “,” (and), “;” (or),
and “not”, where “and” binds stronger than “or”.

In the following we show some diagnostic forward rules
for deriving facts for the unary predicates finding and
diagnosis. After each step of the bottom-up iteration,
all scores for the same diagnosis are aggregated before the
next iteration starts.

Intermediate Findings There can be rules for deriving
intermediate findings from input findings and intermediate
findings, which have previously been derived during an in-
teractive examination dialog. E.g., the following rule derives
a4 = v1, if the intermediate finding a1 = v7 and (at least)
one of the input findings q2 = v1 or q3 = v4 are known:

finding(a4 = v1) :-
finding(a1 = v7),
( condition(q2 = v1)
; condition(q3 = v4) ).

The Prolog predicate condition/1, is implemented us-
ing backward rules, which we will see later. If an input find-
ing is not yet known, then an interview is started to ask the
corresponding question to the user.

Scoring Rules The following rules assign scores to the
diagnoses based on the intermediate diagnoses and the an-
swers to the questions; the complex rule structure of the first
rule is shown in Figure 2:
diagnosis(d1 = 5) :-

( finding(a4 = v1)
; not(condition(q4 = v1)),

condition(q5 >= v2) ).
diagnosis(d1 = -3) :-

not( condition(q4 = v2)
; finding(a2 = v3) ).

Figure 2: Rule structure of a scoring rule

Set Covering Rules The following set covering rule de-
rives a solution from a conjunctive condition. The Prolog
predicate coverage/2 computes the value S indicating
how well the condition matches the current fact base; it can
be implemented by the user.

diagnosis(d = S) :-
coverage( ( finding(a4 = v1),

not(condition(q4 = v1)),
condition(q5 = 2) ), S ).

The best-matching solution is determined later by aggrega-
tion. More complicated set covering rules can have weights
and similarities.

Interview Strategy Question indication rules are used for
deriving the information that a question should be asked to
the user at the current point of the problem solving process:

361



finding(q1 = indicated) :-
( finding(a4 = v1)
; not(condition(q4 = v1)) ).

Optimization by Blocking Rules We can block a rule
as soon as some diagnosis is established – i.e. the
score is equal/greater than 7 – by adding a literal
not(diagnosis(_ = 7)) at the beginning of the rule
body:

finding(a5 = v1) :-
not(diagnosis(_ = 7)),
condition(q1 = v7).

We can block individual rules or all rules. In the latter case,
the derivation process stops.

Usually, a rule without variables should fire at most once.
In Datalog?, we provide a second type of ∆-rules which is
identified by another rule arrow <-.
finding(a5 = v1) <-

condition(q1 = v1).

Such a rule is expanded – when the rule base is consulted –
to the following regular rule, where r17 is a unique rule
identifier, which is created by the system:

finding(a5 = v1) :-
not(rule_was_fired(r17)),
condition(q1 = v7),
assert(rule_was_fired(r17)).

In d3web, ∆-rules have to be used for scoring rules, since
a scoring rule can only fire once (further firings would re-
peatedly increase the score). In general, ∆-rules can also be
used for speeding up the diagnostic process.

Backward Rules
Backward rules are used for the configuration of the declar-
ative inference engine. They are stored together with the
derived facts in the Prolog database. There can be rules for
evaluating the conditions of forward rules, for initiating in-
teractive interviews during a diagnostic process, and for ag-
gregating the scores of diagnoses.

Evaluation of Conditions For evaluating a condition in
the body of a forward rule, the following predicate searches
for findings in the fact base. If there is no matching finding,
then an interview dialog is initiated, cf. Figure 3.

A call of the form condition(C), where C = Q⊗ V ,
determines the answer W to the question Q and compares it
with V using the operator ⊗. If a finding for Q is known,
then W can be taken from there. Otherwise, if the question
Q is indicated, then a suitable Prolog dialog is initiated, and
the answer W is the asserted in a finding.

condition(C) :-
C =.. [Op, Q, V],
( finding(Q = W)
; finding(Q = indicated),

d3_dialog(Q = W),

assert(finding(Q = W)) ),
!,
apply(Op, [W, V]).

In the rule, Op denotes the operator ⊗. If there exists no
finding for Q and Q is not indicated, or if the comparison
W ⊗ V yields false, then the call condition(C) fails.

Figure 3: Dialog for the question Q1

Further Connectives The call m to n(M-N, Cs) in a
forward rule requires that between M and N of the conditions
in the list Cs are true.
finding(a6 = v2) :-

m_to_n( 1-2, [ finding(a4 = v1),
not(condition(q4 = v1)),
condition(q5 = 2) ] ).

The predicate m to n can be implemented using a backward
rule:

m_to_n(M-N, Cs) :-
findall( C,

( member(C, Cs), call(C) ),
Cs_2 )

length(Cs_2, K), M =< K, K =< N.

Obviously, the evaluation of an m to n-condition has to be
delayed until all findings in Cs have been evaluated; this is
acchieved by a stratified evaluation of Datalog?.

Simple set covering rules could be implemented using the
predicate m to n/2.

Aggregation A method for aggregating the set Fs1 of de-
rived facts to a new set Fs2 can be provided by the user. For
d3web, we determine the set Ds of all diagnoses for which
scores have been derived. For all diagnoses D in Ds we ag-
gregate the scores S from the derived facts diagnosis(D
= S) into a single value Score:

aggregate_facts(Fs1, Fs2) :-
findall( diagnosis(D = Score),

( setof( S,
member(diagnosis(D = S), Fs1),
Scores ),

aggregate_scores(Scores, Score),
Fs2 ).

aggregate_scores(Scores, Score) :-

362



maplist( power(2),
Scores, Xs ),

add(Xs, X), log(2, X, Score).

Since scores are on a logarithmic scale in d3web, the aggre-
gation function is S1 ⊕ S2 = log2(2S1 + 2S2).

The combination of probabilities in probabilistic reason-
ing can also be implemented in Datalog?.

Evaluation of Datalog?

Rules with embedded procedural computations and complex
data structures cannot be evaluated in Prolog or Datalog
alone for the following reasons. Current Datalog engines
cannot handle function symbols and non-ground facts, and
they do not allow for the embedded computations.

Standard Prolog systems cannot easily handle recursion
with cycles, because of non-termination, and are inefficient,
because of subqueries that are posed and answered multiply.
Thus, they have to be extended by Datalog features (our ap-
proach) or by memoing/tabling features (the approach of the
Prolog extension XSB).

We have implemented an inference engine for stratified
Datalog? as a meta-interpreter using the common Prolog
system SWI (Wielemaker 2007); the user dialogs have been
built with its publicly available graphical API (Wielemaker,
Anjewierden 2007).

The Generalized Consequence Operator TD,P

The operator TD,P operates on a forward program D and
an auxilliary program P . In the implementation below D is
given as a list D of rules, whereas P is stored in the mod-
ules M and user (the standard module) of the Prolog clause
database.

The following predicate calls all rule bodies of D in the
Prolog module M. The set Fs of derived facts will be stored
in M only afterwards.

tp_operator(D, M, Fs) :-
findall( A,

( member(A :- B, D),
M:call(B) ),

Fs ).

For all body predicates of D there have to be either rules (or
facts) in D∪P or dynamic declarations in P; otherwise, a
call to such a predicate would raise an exception.

Since the evaluated forward program D is not part of the
Prolog database, the forward rules do not call each other re-
cursively within a single TD,P -operator, and they cannot be
called from backward rules. The recursion is only reflected
in the bottom-up iteration of the operator.

For all body predicates of D there can be rules in both D
and P . A body predicate, for which there are only rules in P
which do not refer to predicates fromD, could be considered
as a built-in predicate of D. The rules of P are evaluated
top-down using Prolog’s SLDNF-resolution.

For diagnostic reasoning with d3web, the rules were eval-
uated by such a generalized operator with the built-in predi-
cates condition/1, coverage/2, m to n/2, etc.

Managing Facts in a Module
We use two elementary predicates for asserting/retracting
a given list Fs of facts in/from a module M of the Prolog
database:

assert_facts(M, Fs) :-
forall( member(F, Fs), assert(M:F) ).

retract_facts(M, Fs) :-
forall( member(F, Fs), retract(M:F) ).

For adding a list Fs of facts to M, we need to know the list
I of facts that are already stored in M. First, these facts are
retracted from M, then I and Fs are aggregated using a user-
defined plugin predicate (if the is no such predicate, then no
aggregation is done), and finally the result is asserted in M.

aggregate_facts(M, I, Fs, J) :-
retract_facts(M, I),
ord_union(I, Fs, K),
( aggregate_facts(K, J) ; J = K ),
assert_facts(M, J).

aggregate_facts/2 is a plugin predicate that can be
specified using backward rules in the application.

The Iteration of TD,P

For a given set D of forward rules and a set I of facts, a new
set K is derived in module M:

tp_iteration(D, M, I, K) :-
tp_operator(D, M, Fs),
( tp_terminates(I, Fs) -> K = I
; aggregate_facts(M, I, Fs, J),

tp_iteration(D, M, J, K) ).
tp_terminates(I, Fs) :-

not(member(A, Fs), not(member(A, I))).

The derived facts in tp iteration/4 are stored in the
module M and kept on the argument level (I, J, K). The itera-
tion terminates, if all derived facts have already been known.

The derived facts in the module M are necessary for
tp operator/3. Since they are mixed with the facts and
the rules of the auxilliary Prolog program P in M, they can-
not be extracted from M at the end of the iteration; therefore,
they also have to be kept on the argument level.

The initial call starts tp iteration/4 with an empty
set of facts:

tp_iteration(D, M, K) :-
tp_iteration(D, M, [], K).

Stratification
We have implemented a Prolog library for handling strati-
fication in Datalog?. For example, sophisticated, heuristic
methods of program analysis, which can also be extended
by the user, have to be used to determine embedded calls in
Prolog meta-predicates, cf. (Seipel, Hopfner, & Heumesser
2003).

For diagnostic reasoning with d3web, meta-predicates
such as not, m to n, maplist, checklist, findall,
setof, and bagof have to be handled.

363



Modification of the Fact Base in Bottom-Up Rules
It is possible to update the Prolog database using the predi-
cates assert and retract in forward rules. The follow-
ing transitive closure rules make the derived facts available
to further derivations before the iteration is completed.

tc(X, Y) :-
arc(X, Y),
assert(tc(X, Y)).

tc(X, Y) :-
arc(X, Z), tc(Z, Y),
assert(tc(X, Y)).

Consequently, a large part of the transitive closure is com-
puted during a single iteration of the TD,P -operator. For
avoiding problems, a more controlled use of update predi-
cates for the Prolog database could be required.

In our Datalog? implementation of d3web reasoning
assert is used only after interactive dialogs. This does
not effect the derivation process so drastically; the computa-
tion simply behaves as if all findings had been known before
the computation.

Conclusions
In this paper, we have introduced a novel approach for the
declarative configuration of rule engines. With the described
method the corresponding rule inference strategy can be de-
fined ad-hoc by experts for every single knowledge base.
The approach has been used for an implementation of di-
agnostic reasoning, and for the detection of anomalies in
SWRL ontologies (Baumeister, Kleemann, Seipel 2007).

In the context of open knowledge engineering environ-
ments like knowledge wikis, such a configuration approach
should be very suitable, where distributed volunteers enter
different types of problem solving knowledge, and where
the interpretation logic of the provided knowledge heav-
ily depends on the application project. With the presented
approach an administrative knowledge engineer can easily
configure the intended semantics of the applied rule formal-
ism.

The approach mainly builds on the new language
Datalog? which allows for the definition and the use of for-
ward rules and backward rules. Using Datalog? it seems
to be possible to implement an extended form of the magic
sets transformation method (Ceri, Gottlob, & Tanca 1990) –
which also wants to add top-down features to bottom-up pro-
cessing – for rules with non-conjunctive rule bodies in a very
simple way.

References
Abiteboul, S.; Bunemann, P.; Suciu, D. Data on the Web –
From Relations to Semi-Structured Data and XML. Mor-
gan Kaufmann, 2000.
Baumeister, J.; and Puppe, F. 2008. Web-based Knowledge
Engineering with Knowledge Wikis. In Proceedings of
AAAI Spring Symposium on “Symbiotic Relationships be-
tween Semantic Web and Knowledge Engineering”, Stand-
ford University, USA, AAAI Press.

Baumeister, J.; Seipel, D.; and Puppe, F. 2003. In-
cremental Development of Diagnostic Set Covering Mod-
els with Therapy Effects. International Journal of Un-
certainty, Fuzziness and Knowledge-Based Systems 11
(Suppl.), pp. 25–50.
Baumeister, J.; Reutelshoefer, J.; Nadrowski, K.; Misok,
A. Using Knowledge Wikis to Support Scientific Commu-
nities In Proc. 1st Workshop on Scientific Communities of
Practice (SCOOP), Bremen, Germany, 2007.
Baumeister, J.; Kleemann, T., & Seipel, D. Towards the
Verification of Ontologies with Rules, In Proc. 20th In-
ternational Florida Artificial Intelligence Research Society
Conference (FLAIRS), 2007, AAAI Press, pp. 524–529.
Berners-Lee, T.; Hendler, J.; Lassila, O. The Semantic
Web, In Scientific American, May 2001.
Ceri, S.; Gottlob, G.; Tanca, L. Logic Programing and
Databases, Springer, 1990.
Kifer, M.; Lausen, G. F-Logic: A Higher-Order Language
for Reasoning about Objects, In Proc. ACM SIGMOD Con-
ference on Management of Data (SIGMOD), 1989.
Miller, R.; Pople, H; Myers, J. INTERNIST-1, an Exper-
imental Computer-Based Diagnostic Consultant for Gen-
eral Internal Medicine, New England Journal of Medicine,
1982, Vol. 307, pp. 468–476.
Puppe, F. Systematic Introduction to Expert Systems,
Springer, 1993.
Puppe, F. Knowledge Reuse among Diagnostic Problem
Solving Methods in the Shell-Kit D3, International Jour-
nal of Human-Computer Studies 49, 627-649, 1998
Puppe F.; et al. The d3web system.
http://d3web.sourceforge.net

Seipel, D. DISLOG – A Disjunctive Deductive Database
Prototype, In Proc. 12th Workshop on Logic Programing
(WLP), 1997. http://www1.informatik.
uni-wuerzburg.de/databases/DisLog

Seipel, D. Processing XML Documents in Prolog, In Proc.
17th Workshop on Logic Programing (WLP), 2002.
Seipel, D.; Hopfner, M.; Heumesser, B. Analyzing and Vi-
sualizing Prolog Programs based on XML Representations.
In Proc. International Workshop on Logic Programing En-
vironments (WLPE), 2003.
Seipel, D.; Baumeister, J.; Hopfner, M. Declarative Query-
ing and Visualizing Knowledge Bases in XML, In Proc.
15th International Conference on Applications of Declar-
ative Programing and Knowledge Management (INAP),
2004, pp. 140–151.
Stefik, M. Introduction to Knowledge Systems, Morgan
Kaufmann, 2004.
Wielemaker, J. SWI-Prolog 5.0 Reference Manual,
http://www.swi-prolog.org/

Wielemaker, J.; Anjewierden, A. Programming in
XPCE/Prolog, http://www.swi-prolog.org/
W3C Rules Working Group. 2006. RIF Use Cases and
Requirements: http://www.w3.org/TR/rif-ucr.

364




