Proceedings of the Twenty-First International FLAIRS Conference (2008)

ARD+ Design and Visualization Tool-Chain Prototype in Prolog

Grzegorz J. Nalepa and Igor Wojnicki
Institute of Automatics,
AGH - University of Science and Technology,
Al. Mickiewicza 30, 30-059 Krakéw, Poland
gjn@agh.edu.pl wojnicki@agh.edu.pl

Abstract

The paper presents a prototype design tool-chain for the
ARD+ conceptual design method for rules, called VARDA.
The tool-chain is implemented in a Unix environment with
the use of Graphviz visualization tool and SWI-Prolog.

Introduction

An effective design support is a complex issue. It is related
to the design methods as well as the human-machine inter-
face. What is often not emphasized, is the role of the de-
sign process. Since most of the complex designs are cre-
ated gradually, and are often refined or refactored, the de-
sign method should take this process into account, and the
supporting tools should effectively use it.

In order to solve these problems, the HeKatE project
aims at providing both design methods and tools that sup-
port the design process. Currently HeKatE provides the
preliminary conceptual design with the ARD+ method (At-
tribute Relationships Diagrams). The main logical design is
conducted with the use of XTT method (eXtended Tabular
Trees) (Nalepa & Ligeza 2005).

The main focus of the paper is to present the prototype
of VARDA (Visual ARD Rapid Development Alloy). 1t is
a rapid prototyping environment for ARD+, built with use
of the SWI-Prolog for the knowledge base building, and
Graphviz tool for a real-time design visualization. These
tools are combined by the Unix environment, where the Im-
ageMagick tool provides an instant visualization of the pro-
totype at any design stage.

Conceptual Design of Rules with ARD+

The ARD method aims at capturing relationships between
attributes in terms of Attributive Logic (Ligeza 2006). At-
tributes denote certain system property. A property is de-
scribed by one or more attributes. ARD captures functional
dependencies among these properties. A simple property
is a property described by a single attribute, while a com-
plex property is described by multiple attributes. It is in-
dicated that particular system property depends function-
ally on other properties. Such dependencies form a directed
graph with nodes being properties.

Copyright (© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

373

There are two kinds of attributes adapted by ARD: Con-
ceptual Attributes and Physical Attributes. A conceptual at-
tribute is an attribute describing some general, abstract as-
pect of the system to be specified and refined. Conceptual
attributes are being finalized during the design process, into
possibly multiple physical attributes. A physical attribute is
an attribute describing a well-defined, atomic aspect of the
system. There are two transformations allowed during the
ARD+ design. These are: finalization and split. Finaliza-
tion transforms a simple property described by a conceptual
attribute into a property described by one or more conceptual
or physical attributes. It introduces a more specific knowl-
edge about the given property. Split transforms a complex
property into a number of properties and defines functional
dependencies among them.

During the design process, upon splitting and finalization,
the ARD model grows. This growth is expressed by consec-
utive diagram levels, making the design more and more spe-
cific. This constitutes the hierarchical model. Consecutive
levels make a hierarchy of more and more detailed diagrams
describing the system. The implementation of such hierar-
chical model is provided through storing the lowest avail-
able, most detailed diagram level at any time, and additional
information needed to recreate all of the higher levels, the
so-called Transformation Process History (TPH).

Prolog Prototype

A software prototype providing the ARD+ design and visu-
alization method has been built. It is designed as a multi-
layer architecture (see Fig. 1):

e knowledge base to represent the design,

e low-level primitives: adding and removing attributes,
properties and dependencies,

o transformations: finalization and split including defining
dependencies and automatic TPH creation,

e low-level visualization primitives: generating data for the
visualization tool-chain, so-called DOT data,

e high-level visualization primitives: drawing actual depen-
dency graph between properties and the TPH.

As an implementation environment of choice the Prolog
language is used. It serves as a proof of concept for the
ARD+ design methodology and prototyping environment.

diagrams .
U DOT visualization
ser tool—chain
I API call/reply L DOT !
| > spawnin, :
transformations o) ‘p . ‘g
S visualization
1 =
i API call/reply $ ke
| = DOT
managing:
! attributes, .
! properties, | L_| data generation ;
| dependencies, for GraphViz !
' TPH !
:) rawdata
3 raw data

attributes
properties
dependencies

TPH |
SWI-Prolog |

Figure 1: Prolog prototype architecture

ARD, TPH diagram

GraphViz

| EPS, SVG, JPG,...

User

interaction

ImageMagick

SWI-Prolog

filesystem

Figure 2: Visualization tool-chain

Switching to other environments such as Java, C++, Ajax,
or Eclipse platform is possible. Prolog was chosen because
it offers a rapid development environment for knowledge-
based systems.

The low-level visualization primitives generate data for
the visualization tool-chain. The high-level visualization
primitives spawn the tool-chain, which renders appropriate
graphs representing the diagrams. These primitives can be
used at any time during the design process in the Prolog in-
teractive shell. They launch the visualization tool-chain in
parallel with the shell.

At the design stage, a proper visualization of the current
design state, is the key element. It allows to browse the
design more swiftly and identify gaps, misconceptions or
mistakes more easily. Both ARD and TPH diagrams are di-
rected graphs. Therefore, a graph visualization primitives
are needed. Instead of reinventing these concepts, or im-
plementing them from scratch, a tool-chain of well proved
tools to provide actual visualization is assembled. The tool-
chain is based on three components: SWI-Prolog (www .
swi-prolog.orgq), GraphViz (www.graphviz.org),
and ImageMagick (www . imagemagick.org).

The interaction between the visualization tool-chain and
the rest of the system is given in Fig. 1. The detailed inter-
action between the tool-chain components is given in Fig. 2.

374

There are two scenarios the visualization is performed:

1. generating diagrams for an already designed system de-
scribed in Prolog,

2. generating diagrams during the design process.
The first scenario can be executed as follows:

swipl —-g —-f "ard-design.pl’
| dot -Tpng | display

-t go.

Assuming that ard-design.pl file contains the design
coded with appropriate Prolog clauses, and predicate go
triggers GraphViz data generation. The generated data is
processed by GraphViz (dot utility) generating a PNG out-
put which is passed to ImageMagick (display) which dis-
plays it and allows for annotation. In addition to the func-
tionality described above, GraphViz can be successfully ap-
plied to generate the diagrams in other formats and store
them in the file system. It is indicated as a dotted flow be-
tween GraphViz and filesystemin Fig. 1.

Generating diagrams during the design process is pro-
vided by two Prolog predicates: sar and shi that gener-
ate the appropriate GraphViz source code, and spawn both
GraphViz and ImageMagick subsequently. These predicates
are accessible from the interactive Prolog shell, and display
the ARD or the TPH accordingly. The tool-chain is executed
in parallel with the interactive Prolog prompt which allows
to display several diagrams simultaneously.

Implementing VARDA with Prolog was a conscious de-
cision. Currently it has over 700 lines of Prolog code. A
rough estimate is that it corresponds to several thousands
lines of Java code. While some graph editing Java solu-
tions (JGraph) or frameworks (Eclipse EMF) could be help-
ful, the development of an ARD editor in Java would be
much more complicated and time consuming. VARDA
is a free software licensed GNU GPL, and it can be ob-
tained from: https://ai.ia.agh.edu.pl/wiki/
hekate:varda.

Conclusion

The original contribution of this paper is the presentation of
a Prolog-based prototype tool-chain for the refined ARD+
method. The tool-chain uses the Graphviz visualization tool
and the SWI-Prolog environment. It allows for a rapid pro-
totyping of the ARD model, with an automated, real-time
visualization.

Acknowledgements The paper is supported by the
HeKatE Project funded from 2007-2009 resources for sci-
ence as a research project.

References
Ligeza, A. 2006. Logical Foundations for Rule-Based Sys-
tems. Berlin, Heidelberg: Springer-Verlag.

Nalepa, G. J., and Ligeza, A. 2005. A graphical tabular
model for rule-based logic programming and verification.
Systems Science 31(2):89-95.

