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Abstract

In this paper we present our approach of improving the tradi-
tional alpha-beta search process for strategic board games by
modifying the method in two ways: 1) forgoing the evaluation
of leaf nodes that are not terminal states and 2) employing a
utility table that stores the utility for subsets of board con-
figurations. In this paper we concentrate our efforts on the
game of Connect Four. Our results have shown significant
speed-up, as well as a framework that relaxes common agent
assumptions in game search. In addition, it allows game de-
signers to easily modify the agent’s strategy by changing the
goal from dominance to interaction.

Introduction
The most common approach to dealing with the time con-
straints of playing a human-opponent game is to use the
mini-max algorithm with a cut-off limit and the alpha-beta
pruning (Schaeffer & Plaat 1996), or as was successfully
demonstrated by the Chinook checkers player (Schaeffer et
al. 2007), a database of endgame positions to reduce the
time needed to choose a move in real-time.

In this paper we propose a process of improving the alpha-
beta pruning with a depth limit by modifying the traditional
methods in two ways: 1) forgoing the evaluation of interme-
diate states and 2) employing a utility table that stores the
utility for classified terminal states. This is done by using
a two-tier evaluation approach that combines a ”shallow”
greedy evaluation to the immediate successor states with a
”deep” evaluation at the depth cut-off level.

We concentrate our efforts on the game of Connect Four.
Our results have shown significant speed-up while maintain-
ing high-quality decisions, as well as a framework that al-
lows our system to relax common game assumptions. In ad-
dition, it allows game designers to easily modify the agent’s
strategy by changing the goal from dominance to interaction.

Methodology
In our approach a two-tier evaluation is used. First, a ”shal-
low” or greedy evaluation is performed on the immediate
successors of the current state. Second, once the search
agent encounters a terminal state or a terminal leaf, a ”deep”
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evaluation is retrieved from a pre-specified value from a util-
ity table. The evaluation function can be written as:

Evaluation(State) = Greedy(1stmove)+Utility(State)

As shown in Figure 1. Assume state A is one of the im-
mediate successor states of the current state, and state B is
a leaf node in the sub-tree of state A. The greedy evaluation
of state A is calculated the first time state A is visited. When
state B is visited, the utility of state B is retrieved from the
utility table. The final evaluation of state B will be the sum
of the greedy evaluation from state A and the utility of state
B.

Figure 1: Game Tree Evaluation

Greedy Evaluation
From the current state, there is at most N immediate succes-
sor state in an N-column board. Each successor state will
be examined, even if the state is not a leaf node. One can
image this greedy evaluation is an ”immediate reward” for
each possible move from the current state.

The greedy evaluation procedure of this system is very
similar to that of the human process. The basis is to examine
the adjacent cells of the last move. We defined an array that
stores the greedy evaluation scores before the search starts.
Once an immediate successor state has been visited, a score
is retrieved from the array and stored as a part of the current
board state. It is important to note that the greedy evaluation
scores are chosen in such a way to ensure that their value
will not exceed the difference between the utilities of two
dissimilar terminal states. Only states that are assigned the
same utility in the next step are affected.

There are two reasons that the greedy evaluation is con-
sidered in the final evaluation function. First, if two paths
lead to the same result, their utility will be the same, and the
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greedy evaluation can serve as the second criteria. Second,
considering the immediate reward is more realistic than re-
lying on estimate the rewards of non-terminal states in the
deeper levels.

Utility Table
The deep evaluation function does not attempt to apply a
subjective heuristic function to the leaf nodes, but rather
tracks the number of winning and losing states that have
been encountered from the same path. The formula for cal-
culating the utility is shown below, where∞ is a large num-
ber not in excess of the limit of integer.

Utility(Win) =∞× #wins

(#columns + 1)(depth+1)/2)

Utility(Loss) = −∞× #losses

(#columns + 1)(depth+1)/2)

Utility(Draw) = Utility(Intermediate) = 0

This formula is designed in such a way that the utility of
each winning state is greater than the utility of all winning
states in more moves; and the utility of each losing state is
less than the utility of all losing states in more moves.

Prior to the search starts, the program predefines various
results in the search space and constructs a utility table to
store the utility of each possible terminal state. The utility
table is essentially a two-dimensional array, or an M by N
matrix where M is the cut-off level and N is the number of
columns + 1. Each row in the utility table represents the
depth of the game tree. The utilities of terminal states after
the agent makes its first move are stored in the first row, and
the utilities of terminal states after the agent makes one move
and the user makes another move are stored in the second
row. The columns indicate the number of different terminal
states from the same path. For instance, if there exists two
ways to win from the same path in 5 moves, the utility is
stored in to the fifth row (depth 5), third column. Below is
the general form of the utility table.

Figure 2: Utility Table

Experiment
In our experiment, we concentrate our efforts on the game
of Connect Four. The standard board has been solved by
James Allen and Victor Allis independently in 1988 with
perfect play (Allen 1989; Allis 1988). However, the problem
remains interesting because finding the optimal moves is too
long in real-time.

We tested the search agent with an 8-by-8 board (while
the methodology can be applied in various demensions) on
a machine with an Intel Celeron CPU2.80 GHz. We per-
formed two sets of trials; each containing 30 independent
matches with 6 human players. The first trial had a depth-
limit of 8 and the other had a depth-limit of 10.

In the trial with eight-step look ahead, the agent required
roughly 20 milliseconds to select a move and won 24 games.
In the second trial, the search agent’s 10-step look ahead
required 200 milliseconds on average. However, the second
agent had 28 victories over 30 plays.

Conclusion
Efficiency and speed are essential in game search. We were
able to reduce execution time while creating an option to
modify the agent’s behavior. Although this strategy is used
in Connect-Four, similar methodology can be applied to var-
ious problems. Recent work by Hom and Marks has focused
on balancing various challenges in games (2007). Our fu-
ture work will entail focusing on novel evaluation criteria.
Once the framework has been tested for proof-of-concept,
machine learning techniques can be used to improve the
gaming experience for individual users, similar to ideas of
Yannakakis (2005) and Ponsen et al. (2007).
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