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Abstract

Understanding answers to open-ended explanation
questions is important in intelligent tutoring systems.
Existing systems use natural language techniques in
essay analysis, but revert to scripted interaction with
short-answer questions during remediation, making
adapting dialogue to individual students difficult. We
describe a corpus study that shows that there is a re-
lationship between the types of faulty answers and the
remediation strategies that tutors use; that human tu-
tors respond differently to different kinds of correct an-
swers; and that re-stating correct answers is associated
with improved learning. We describe a design for a di-
agnoser based on this study that supports remediation in
open-ended questions and provides an analysis of natu-
ral language answers that enables adaptive generation
of tutorial feedback for both correct and faulty answers.

1 Introduction
Research in intelligent tutoring systems suggests that getting
students to explain their reasoning is important for learn-
ing and should be encouraged (Chi et al. 1994), and that
contentful student talk is correlated with learning gain (Lit-
man & Forbes-Riley 2006). Thus, some tutorial dialogue
systems encourage students to produce language by ask-
ing “why” questions (Aleven, Popescu, & Koedinger 2001;
Jordan et al. 2006; Graesser et al. 1999). They use nat-
ural language understanding techniques to analyze student
answers and choose feedback based on the faults (errors and
missing parts) discovered. However, for remediation, cur-
rent systems revert to scripted dialogue techniques, where
instructors pre-author system responses to the range of stu-
dent inputs they anticipate.

While systems using scripted dialogue can be built and
deployed quickly, they are limited in their ability to adapt
to the needs of individual learners. Scripted remediations
usually ask only short-answer questions and restrict student
input. If unrestricted input is allowed, typically only generic
remediation can be offered without referencing the content
of the student input, which is not how human tutors nor-
mally behave (Jordan 2004). Moreover, while scripted dia-
logue allows different types of feedback for different types
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of mistakes anticipated by the authors, there is no guarantee
that the same tutorial strategies will be applied consistently
to the same types of mistakes in different authored scripts.
This causes additional difficulty in transferring the results of
research on tutorial dialogue into a practical system, because
a large number of scripts may have to be altered if a tutoring
strategy needs to be changed.

We believe that there can be significant training benefits
from a system designed to overcome these limitations. We
report a corpus study showing that human tutors use dif-
ferent types of tutoring strategies depending on the com-
binations of correct, incorrect and missing parts in stu-
dent answers. Tutors also pay attention to correct parts
of student input, restating and summarizing correct stu-
dent answers, and explicitly acknowledging correct parts
of faulty answers. Moreover, our data show that re-stating
correct answers is associated with higher learning gains.
This is a significant new finding, as current research in tu-
toring (Litman & Forbes-Riley 2006; Kim et al. 2006;
Rose et al. 2003) focuses only on fixing faults in student
answers, and existing tutorial dialogue systems provide only
contentless positive feedback if a student answers correctly.

Based on the results of this study, we describe an imple-
mented diagnoser component built as part of developing the
BEETLE2 tutorial dialogue system (Callaway et al. 2007).
The diagnoser produces diagnosis structures containing de-
tailed analyses of student answers to explanation questions,
and identifies explicitly correct, incorrect, missing and ir-
relevant parts of the answer. We show how these diagnosis
structures are used to automatically generate adaptive tuto-
rial feedback, including restates of student answers.

We then propose a model for handling correct student an-
swers in a way that is more similar to human tutor behavior.
Based on our corpus analysis and discussions with experi-
enced tutors, we propose to introduce differing categories of
good answers that correspond to different tutoring strategies.
This allows for greater flexibility of analysis in answers ex-
pressed in natural language, and encodes intuitions of expe-
rienced tutors about the range of acceptable answers to ex-
planation questions, and the appropriate system responses.

Our system improves on existing language-based tutorial
dialogue systems by providing a framework that allows for
consistently applying tutorial strategies throughout the dia-
logue. In the future, this will allow us to systematically com-
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pare the effectiveness of different tutorial dialogue strategies
by comparing learning gain and user satisfaction between
versions of the system using different strategies.

The rest of the paper is organized as follows. Section 2
describes our corpus of human-human tutorial dialogue, the
corpus analysis used to identify levels of accuracy in student
answers and the patterns of response strategies used by hu-
man tutors across those levels. Section 3 presents the design
for a diagnoser that takes natural language answers as input
and produces analyses suitable for a tutorial component that
generates adaptive feedback. Finally, Section 4 discusses
how our approach relates to previous work on diagnosing
natural language explanations, and our ongoing and planned
efforts to evaluate the usefulness of adaptivity in dialogue.

2 Corpus
2.1 Data Collection
Two research team members, an experienced electrician and
a psychologist, jointly developed a curriculum covering ba-
sic topics in D.C. circuits, including: the components of a
circuit; how to build a functioning circuit; and how to find
faults in a non-functioning circuit using a voltmeter. The in-
structional design philosophy was to interleave short presen-
tations of information with interactive exercises, activities,
and discussion. The student learning environment consisted
of a window displaying lesson slides, a simulation-based
workbench for building circuits, and dialogue history and
chat windows. The student and tutor were physically sep-
arated and communicated over a network through the chat
interface. The tutor had an extra monitor that mirrored the
student’s workstation. The corpus collection is reported in
more detail in (Steinhauser, Butler, & Campbell 2007).

We present the results from thirty participants distributed
across three experienced tutors. Exactly half of the partici-
pants were male. The mean age was 22.4 years (σ = 5.0).
These participants scored an average of 41% on their pre-
tests (σ = 11%), and an average of 83% on their post-
tests (σ = 10%), demonstrating a statistically significant
improvement in performance, t(29) = 20.04, p < .01. Our
corpus consists of 8,085 turns and 56,133 tokens.

2.2 Corpus Analysis
In this section we describe the analyses that we have con-
ducted on our corpus to search for support for our hypothe-
ses about human tutor behavior. More specifically, we in-
vestigate the following questions:

1. Do human tutors explicitly address content that has al-
ready been correctly provided by their students?

2. If so, can we identify any reliable patterns in when they
do this, to provide guidance for system development?

3. Does the data suggest that this type of instructional strat-
egy is actually effective?

Additionally, when student answers are incorrect, we look
for reliable patterns between the nature of the student error
and the instructional strategy selected by the tutor, again to
provide guidance for system development.

Strategy Subtypes
REINFORCE Accept and Move On (“acc moveon”)

Accept and Restate (“acc restate”)
REMEDIATE Let it go(“let go”)

Try to get them to fix it (“student fix”)
Fix it for them (“tutor fix”)

feedback Positive, Negative, Hedged;
Acknowledge good bits (“ack good”)
Acknowledge bad bits (“ack bad”)

Figure 1: Overview of tutorial strategy annotation

First, we briefly describe our coding scheme. Each stu-
dent utterance was assigned an accuracy value (“correct”,
“incorrect”, “partially correct with some errors” or “partially
correct but incomplete”) by the tutor in real time during
the dialogue. We applied a hierarchically organized cod-
ing scheme to the tutor utterances (summarized in Figure
1). At the highest level, we distinguished between strategies
that typically followed correct answers and that appeared to
signal a basic acceptance on the tutor’s part of the student
answer (labeled “reinforce”) from strategies that typically
followed the flawed answers (labeled “remediate”). The
“reinforce” responses were divided into two sub-categories.
Sometimes the tutor simply accepted the answer (usually
with positive feedback) and allowed the student to move on,
“accept & move on”, while other times the tutor’s response
included substantive content, often some type of restatement
of the content in the student’s answer, “accept & restate”.

“Remediate” responses were further broken down into
three sub-categories, which can be conceptualized as “let
it go”, “fix it for them” and “try to get them to fix it.” An
additional annotation code describing explicit tutorial feed-
back was added where relevant. Three of the code values
reflected feedback that conveyed an accuracy judgment, but
did not contain any lesson content: “positive”, “negative”
and “hedged”. The other two values were used when the ut-
terance contained content, in addition to the accuracy judg-
ment. These values were labeled “acknowledge good bits”
and “acknowledge bad bits”. A hypothetical example of a
“try to get them to fix it” remediation that would also re-
ceive a code of “acknowledge good bits” is “Well, you’re
right that the battery and the light bulb must be connected,
but would ANY connection at all be good enough?”.

To assess the reliability of the annotation, we evaluated
the pairwise percent agreement for segmentation, and Co-
hen’s kappa for the segments with agreed boundaries, fol-
lowing (Carletta et al. 1997). For the segmentation of tu-
tor utterances (“remediate” vs. “reinforce”) two indepen-
dent coders achieved a pair-wise percent agreement score
of 91%. There was substantial agreement on whether a seg-
ment was a “reinforce” or “remediate” (K = 0.88), and near
perfect agreement for differentiating between the three sub-
categories of remediate (K = 0.98) and two sub-categories
of reinforce (K = 0.92).

Now we turn to our hypothesis testing. First, consider re-
inforcement strategies. The “acc restate” strategy was used
by our tutors 26% of the time in response to student an-

404



Did tutor use
“ack good”?

Incorrect PartCorrect
some errors

Incomplete

Yes 5% (6) 16% (10) 15% (16)
No 95% (142) 84% (53) 85% (94)

Table 1: Tutor feedback strategy by student error type.

swers that were considered correct. We did not ask our
tutors to provide any finer level of classification of cor-
rect answers in real time, so we are not able to identify a
pattern in our tutors’ selection between the “acc moveon”
and “acc restate” based on the nature of the students’ an-
swers. However, we can ask whether or not restating is an
effective strategy. We conducted a hierarchical multiple lin-
ear regression, using post-test scores as our dependent vari-
able and pre-test scores, amount of reinforcement received
overall, and the frequency with which the “acc restate” was
used as our independent variables. The first model included
only the amount of reinforcement received as the predictor
which accounted for 44% of the variance and was signifi-
cant, F (1, 29) = 22.14, p < .01. The second model in-
corporated the pre-test score and accounted for 54% of the
variance, F (2, 29) = 15.84, p < .01. Finally, the third
model included all three predictors and accounted for 61%
of the variance, F (3, 29) = 13.64, p < .01. More specifi-
cally, reinforcement (β = .84, p < .01), pre-test (β = .36,
p = .007), and restatements (β = .35, p = .038) all demon-
strated significant effects on post-test score. In other words,
after controlling for incoming knowledge of the topic and
the extent to which a student was reinforced for being cor-
rect during the lesson itself, the tutor’s increased use of the
the “acc restate” strategy was associated with higher student
post-test scores.

We next looked at remediation strategies, which generally
focused on the content that students misrepresented. Over-
all 10% of the tutor strategies coded as “remediate” also re-
ceived a code of “ack good”. Table 1 breaks down the pres-
ence of this code across tutor responses to student utterances
that vary in their level of inaccuracy. As Table 1 shows, tu-
tors were approximately equally likely to use this code if
the student answer contained any accurate information, and
unlikely to use it if the student answer was completely in-
correct. A Chi-Square Test of Independence was significant,
χ2(2) = 10.78, p < 0.01, allowing us to conclude that tu-
tors’ use of the “acknowledge good bits” strategy does de-
pend systematically on the nature of the student error.

In order to determine whether or not “ack good” is an
effective strategy, we again conducted a hierarchical mul-
tiple linear regression, using post-test scores as our depen-
dent variable and pre-test scores, amount of remediation re-
ceived overall, and amount of remediation with acknowl-
edge good bits received as our independent variables. The
first model included only the amount of remediation re-
ceived as the predictor which accounted for 44% of the
variance and was significant, F (1, 29) = 21.81, p < .01.
The second model incorporated the pre-test score and ac-
counted for 54%, F (2, 29) = 15.71, p < .01. Remediation
(β = −.63, p < .01) and pre-test (β = .32, p = .023)

Tutor Strategy Incorrect PartCorrect
some errors

Incomplete

let go 4% (7) 1% (1) 28% (69)
tutor fix 27% (43) 47% (33) 18% (46)
student fix 69% (106) 52% (37) 54% (134)

Table 2: Tutor remediation strategy by student error type.

demonstrated significant effects on post-test score. How-
ever, the frequency with which students received remedia-
tion that included an “ack good” component did not account
for a statistically significant amount of unique variance in
post-test scores.

Finally, we examined our data to see if the tutor remedi-
ation strategy selection was related to the type of error in
the student answer (Table 2). Here, a Chi-Square Test of
Independence was significant, χ2(4) = 64.29, p < 0.01,
allowing us to conclude that tutors’ selection of a strategy is
related to the nature of the student error. More specifically,
it appears as if our tutors reacted more strongly as the na-
ture of the student error became more severe. For example,
our tutors were willing to ignore answers that were correct
but incomplete over 25% of the time. But they almost never
ignored a student answer that contained an actual error.

To summarize, our tutors did indeed allocate a certain
amount of their dialogue to explicitly addressing lesson con-
tent that students had already presented accurately. When
student answers were correct, tutors restated that informa-
tion over 25% of the time. Even when student answers
contained errors, if the answers also contained any correct
information at all, tutors still addressed that content about
15% of the time. And while the “ack good” strategy did
not appear to have a significant effect on learning outcomes
in our data, the “acc restate” reinforcement strategy was a
significant positive predictor of learning outcomes. Taken
in combination, this suggests that the effectiveness of future
tutorial dialogue systems may be improved by adding the ca-
pability to explicitly address and discuss lesson content that
has already been correctly presented by the student.

In addition, our study demonstrates that tutor’s choice of
strategy for faulty answers depends on the different combi-
nations of correct, missing and errorful parts of the student
answer. This suggests a diagnoser design where such parts
are identified explicitly, and then used in choosing the ap-
propriate strategy. We discuss our design in the next section.

3 Diagnosing Student Answers
Based on the results of the data analysis, we built a diag-
noser with the twin goals of being able to implement a vari-
ety of tutorial strategies (in particular strategies that restate
the correct answers, as well as acknowledge correct parts of
faulty answers), and to be able to apply those strategies sys-
tematically depending on the student answer category. An
example remediation dialogue from the corpus is shown in
Figure 2. Here the tutor acknowledges the good part of the
answer and elicits the missing piece of information by hint-
ing at the precise nature of the error.

We represent correct answers as lists of objects and rela-
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[Question: What are the conditions that are required to make a
light bulb light up?]

S: A closed circuit with both ends of the battery are necessary.
T: If both battery terminals are included, is that good enough?

Because both battery terminals are involved in #5 but that
didn’t light.

S: Both terminals of the lightbulb also have to be included.
T: Yup! We usually say something like this: There must be a

closed path (complete circuit) containing both a lightbulb
and a battery

Figure 2: Example human-human dialogue from our corpus
where an incomplete answer is improved

T1: What are the conditions that are required to make a light
bulb light up?

S1: A battery must be in a closed path.
T2: Yes, a battery must be contained in a closed

path. Anything else? Consider circuit 5.
S2: A bulb must be in a closed path as well.
T3: Perfect. A bulb and a battery must be contained in a

closed path.

Figure 3: Example human-computer dialogue with the im-
plemented system.

tions between them that a student is required to mention. We
then use a deep parser to extract a list of objects and relations
from a student answer, and attempt to match it with a known
good answer. If a student answer matches a correct answer
perfectly, then a corresponding reinforcement strategy can
be applied (as discussed in Section 3.2). Otherwise, the di-
agnoser tries to classify each object and relationship that the
student mentioned as one of the following:

• Correct parts – objects and relationships present in the
standard answer;

• Direct errors - objects and relationships directly contra-
dicting the standard answer (e.g., the student says the ter-
minals are separated when they are connected);

• Irrelevant parts - objects and relationships not present in
the standard answer, perhaps because an irrelevant (and
therefore incorrect) reason was given in the explanation,
or because the student was too verbose;

• Missing parts - parts in the standard answer but not
present in the student’s answer.

For example, consider a dialogue generated by our sys-
tem, shown in Figure 3 (this is a slightly simplified version
of the corpus dialogue from Figure 2). The deep parser and
interpreter extract a set of relationships shown in Figure 4(a).
The diagnoser implements a soft unification algorithm that
attempts to match (including variable bindings) the student
input with the expected answer (shown in Figure 4(b)), and,
based on the results, produces the diagnosis structure shown
in Figure 4(c). Each representation contains an answer code
(discussed in Section 3.2), a match code that corresponds to
the error category from the student answer analysis, and the
detailed analysis of the student answer described above.

(a) (Battery Batt1) (Path Path1)
(is-closed Path1 T) (contains Path1 Batt1)

(b) ((Answer-type Best)
((LightBulb ?bulb) (Battery ?batt) (Path ?p) (is-closed ?p T)
(contains ?p ?bulb) (contains ?p ?batt)

(c) ((Answer-type Best) (Code Partial)
(Matched ((Battery Batt1) (Path Path1)

(is-closed Path1 T) (contains Path1 Batt1)))
(Missing ((LightBulb ?bulb) (contains Path1 ?bulb)))
(Contradictory ()) (Extra ())

Figure 4: Representations used in interpreting student input:
(a) the set of objects and relationships extracted by the inter-
preter from S1; (b) the encoding of the expected best answer,
“A bulb must be in a closed path with a battery”; (c) the di-
agnosis produced by the system, later used for feedback.

In our example, the analysis contains both the matching
parts (the mention of a battery contained in a closed path),
and the missing part (the mention of the bulb in the same
path). No parts were marked as contradicting the answer di-
rectly, or being irrelevant. This structure can then be used
directly by the tutorial planner to generate the remediation
in T2, confirming the correct part, adding a prompt for the
missing information, and optionally generating a hint by
pointing out a relevant circuit for which the student answer
holds but the bulb is not lit. The process of generating tuto-
rial feedback is discussed in more detail in the next section.

3.1 Generating Tutorial Feedback
The detailed answer diagnosis in Figure 4(c) allows the tu-
toring strategy to be adjusted depending on the results of the
diagnosis, as we have observed human tutors to do. The
tutorial planner first attempts to directly address any errors
present in the student’s answer (in all other cases, the an-
swer will contain a mixture of correct, missing and extra in-
formation). Second, if the answer contains some but not all
of the correct elements (i.e., “matched” and “missing” are
both non-empty) the system acknowledges the correct con-
tent and prompts the student to supply the missing content.
Third, if the analysis indicates the student’s answer contains
neither correct parts nor direct errors, the tutorial planner
will assume the student gave an irrelevant response, mention
this to the student, and prompt for the missing information.
Fourth, if the answer is fully correct and the irrelevant rela-
tionships are consistent with the state of the world (i.e., too
verbose), the tutor may apply a “reiterate key point” rein-
forcement strategy. Finally, if the answer was fully correct,
the tutorial planner acknowledges that fact, potentially in-
cluding encouragement depending on our student model.

We use a tutorial planner together with a deep genera-
tion system to implement this strategy. The tutorial planner
defines classes of dialogue acts like “accept” and “generic
prompt” which can each have many potential lexicaliza-
tions, as well as more contentful dialogue acts like “specific
prompt” based on the underlying propositions in the diag-
nosis. The deep generator is then used to map propositions
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to syntactic structures and lexical items. Thus, different re-
sponses can be instantiated based on different combinations
of dialogue acts:

Wrong→ reject() + deny(wrong) + [try-again()]
“No, the battery should also be in a closed path.”

Incomplete→ accept() + restate(correct) + [prompt()]
“Exactly, the bulb must be in a closed path. What else?”

Incomplete→ ack() + restate(correct) + [prompt(missing)]
“Yes, the bulb must be in a closed path. What about the battery?”

Correct→ ack() + reiterate(correct)
“Right, they must both be in the same closed path.”

Thus a tutor’s reply may be a combination of “Yes” from
an acknowledgment dialogue act, “You need a battery in a
closed path” from the content in the matched part of the di-
agnosis, “What about a bulb?” from the tutorial planner’s
determination of a specific hint via the propositions in miss-
ing, as well as phrases like “but...also” derived from the fact
that the answer has both correct and missing propositions.

3.2 Reinforcing Correct Answers
Since our data analysis showed that re-stating answers
judged as correct by human tutors is correlated with im-
proved learning gains, we took a deeper look at those in
our corpus, in order to decide on an appropriate strategy
for when and how to restate the good answers. First, we
noted that the restatements can be classified into 3 broad
categories: accepting a student answer as correct but mod-
eling a better answer (for example, using a better terminol-
ogy), re-iterating the key point (emphasizing the most im-
portant point in the explanation), and summarizing the an-
swer (for example if, as in the previous section, the answer
was elicited over multiple turns). We also found that there
was significant variation in the answers that were rated as
good by experienced tutors. To investigate this issue we
asked one of the expert tutors involved in the experiment
to supply a list of possible good answers to each question in
the curriculum.

Based on this list and a discussion with the tutor we ar-
rived at a more detailed classification of student answers into
minimal, good, and best. Generally speaking, an answer is
classified as best if it makes correct use of technical termi-
nology, or is based on “deep” features of the context, or if
it references unobservable, causal relationships between do-
main constructs. The answer is classified as good when it
uses technical terminology correctly and describes actions
and observable outcomes of manipulations, but is based on
surface features of the context. The answer is classified as
minimal when it alludes to the key point but does not use
technical terminology or does not use it correctly, or requires
some inferencing to be considered correct.

Figure 5 contains examples of different levels of correct
answers listed by our tutor. The minimal answer is correct
as it gives a functional description of how voltage readings
behaved in previous exercises in the curriculum. The good
answer provides a generalization on how the voltage can be
used in fault-finding, the topic that the student is learning.
The best answer (rarely seen with real students) gives the
complete definition of voltage from the lesson. Based on

What is the relationship between the voltage reading between two
terminals and their electrical states?

Minimal A voltage reading of 0 means the terminals are in the
same state, a voltage reading of 1.5 tells you they are in different
states

Good Voltage indicates if terminals are in the same state or in dif-
ferent states

Best Voltage is a difference in states between 2 terminals

Figure 5: Examples of different good answers to the same
question encoded by an expert tutor

discussions with the tutor, we decided that different rein-
forcement techniques are appropriate for each case. Mini-
mal answers should be accepted as correct, but rephrased to
model a better answer; for example, “That’s right - voltage is
a measurement of the difference in electrical states between
two terminals”. Good answers should be accepted, but with
re-iterating the key point, for example “That’s right - the
point is that voltage gives you a comparison or difference”.
Finally, the system should just accept the best answers and
move on (not using a restatement technique).

In an initial evaluation of our answer categories we had an
expert tutor encode standard answers to a set of 49 questions
from the curriculum, corresponding to 2 out of 3 lessons.
Twenty two of the questions were factual questions where
there could not be more than one type of correct answer,
such as “which of the diagrams on the slide show a short cir-
cuit”. Of the remaining 27, 19 (70%) had more than one type
of correct answer encoded (i.e. either “minimal and best”,
“good and best”, or “minimal, good and best”). Thirteen of
those had all three types of correct answers encoded.

We implemented multiple levels of good answers in our
system by allowing multiple expected answers for each
question. Each answer is associated with a code (as shown
in Figure 4), which can be one of best, good or minimal.
The diagnoser compares the student answer to all possible
answers, and selects the diagnosis that has the fewest errors,
or, given an equal number of errors, the largest number of
matching parts. The code for this answer is then passed to
the tutorial planner in the diagnosis structure, and is used to
select the appropriate reinforcement strategy.

4 Discussion and Future Work
In separating out the good, missing and incorrect parts of the
student answer, our diagnoser design is similar to those in
Why2-Atlas (Jordan et al. 2006) tutor, which uses uses sim-
ilar categories of explicit and implicit correct and incorrect
statements, along with missing statements. However, these
categories are applied to essays only, and not to short answer
questions in remediations, which are entirely pre-scripted.
This often results in redundancy, because the system is not
aware of the semantic content of tutor and student statements
during remediation. A semantic tagging mechanism was
added to Why2-Atlas (Jordan, Albacete, & VanLehn 2005)
to control the redundancy that results from scripted remedia-
tions, but our system aims to avoid redundancy and allow the
dialogue to be adaptive without need for additional labeling.
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The Geometry Explanation tutor (Aleven, Popescu, &
Koedinger 2001) adds adaptive feedback to the PACT cog-
nitive tutor (Aleven et al. 1998) by encoding hand-authored
hints for every possible combination of missing parts or er-
rors in a definition (each combination is defined as a concept
in a tutoring strategy ontology). Our diagnoser offers a po-
tentially more flexible solution: if information about miss-
ing parts and errors was available from a cognitive model,
then dialogue management and generation could be com-
bined to generate adaptive feedback without pre-authoring
(though significant effort to build the deep generation com-
ponent would still be necessary).

The AUTOTUTOR system (Graesser et al. 1999) requires
the human developers to pre-author a set of possible good
answers to each question, which are matched with student
input using LSA. This approach could be extended to in-
clude different types of good answers, but at the expense of
pre-authoring additional tutorial feedback.

We have not yet evaluated the effectiveness of our diag-
noser and tutorial strategies. The corpus is currently an-
notated with different reinforcement and remediation strate-
gies, but not with different levels of good answers, and thus
cannot be used directly to find associations between differ-
ent types of good answers and reinforcements. The choice
of strategy is therefore based on discussions with human tu-
tors. However, we plan to evaluate its effectiveness as part
of the overall system evaluation.

Our ultimate goal is to develop a system flexible enough
to conduct a systematic program of research into the nature
of effective adaptation in tutorial systems. The initial stud-
ies that we plan to conduct will focus on the effectiveness
of the specific tutor response strategies described in this pa-
per. We then plan to investigate hypotheses about additional
variables (beyond student answer accuracy) that may also
contribute to tutor response strategy selection, such as the
student’s confidence and history of success (or failure) on
similar problems (Porayska-Pomsta 2004). The diagnoser
will provide a foundation for such experimentation, as once
a set of different tutoring moves is implemented, the choice
of strategy can be easily altered within the tutorial planner,
thus allowing us to directly compare versions of the system
that use different strategies in the same contexts.

5 Conclusion
In this paper we presented evidence that tutors explicitly re-
state good parts of student answers, and that if these restate-
ments occur after correct answers, they are correlated with
better learning. We presented a diagnoser that provides de-
tailed analyses of student input, and supports automatically
generating restatements and other tutoring strategies. We
also introduced the idea that in natural language explana-
tions different levels of good answers are acceptable, and
proposed an initial model for how a tutoring system would
choose an appropriate reinforcement strategy to respond to
such answers. The diagnoser and tutoring component will
serve as a basis for further experimentation by allowing us
to consistently apply tutorial strategies across an interaction,
and compare versions of the system using different strate-
gies. This should allow us to make more causal conclusions

about the effectiveness of various tutoring strategies, instead
of relying only on correlational data from corpus studies.
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