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Abstract 

We describe a framework for building intelligent tutoring 
systems that offer an advanced evaluation of learners' 
semantic knowledge. The knowledge model makes a 
pedagogical distinction between contextual and general 
semantic knowledge. General knowledge is defined as the 
knowledge that is valid in every situation of a curriculum, 
and that a learner should possess. In opposition, contextual 
knowledge is the knowledge obtained from the 
interpretation of a situation. Because the model connects the 
description of general knowledge to the description of 
procedural knowledge through “semantic knowledge 
retrieval”, the evaluation of general knowledge is not only 
achieved through direct questions, but also indirectly 
through observation of problem-solving exercises.  

Introduction  

To build e-learning systems that can offer highly-tailored 
assistance, a well-known approach is to model the 
cognitive processes of learners according to cognitive 
theories. The most famous examples of this type of 
tutoring systems are the Cognitive Tutors by Anderson et 
al. (1995). They are based on the assumption that the mind 
can be simulated best by a symbolic production rules 
system (Anderson 1993). Recently, this idea has been 
embedded in a development kit named CTAT (Aleven et al 
2006). The cognitive Tutors internally describe an exercise 
with a main goal and a set of applicable rules. Each action 
done by a learner is seen as the application of a rule that 
execute an action and can create sub-goals. A rule can be 
marked correct or erroneous, and be annotated with 
different tutoring resources. Though these systems obtain 
great success, they are focused on teaching procedural 
knowledge (rules) in the context of problem-solving 
exercises. Anderson et al. (1995) makes this clear: “we 
have placed the emphasis on the procedural (…) because 
our view is that the acquisition of the declarative 
knowledge is relatively problem-free. (…) Declarative 
knowledge can be acquired by simply being told and our 
tutors always apply in a context where student receive such 
declarative instruction external to the tutors. (…) 

Production rules (…) are skills that are only acquired by 
doing.”.   
 We claim that this view is limited in two ways.  First, 
it supposes that the declarative knowledge can be taught in 
an explicit way effectively by human tutors. But, this is not 
always the case. For some domains the declarative 
knowledge is best learned by doing. As it will be illustrated 
here, such domains are the tasks that involve spatial 
representations. Complex spatial representations are 
viewed by many researchers as being encoded as semantic 
knowledge (for example, Tversky 1993). In the remainder 
of this paper, we adopt the term “semantic knowledge” 
instead of “declarative knowledge” to designate the 
declarative knowledge that is not associated with the 
memory of events (Tulving 1972). Second, Cognitive 
Tutors cannot evaluate semantic knowledge. They assume 
that learners will acquire the semantic knowledge before 
doing the problem-solving exercises, or that it will be 
available during the exercises and that the learners will 
know when to use it. The problem is that if a learner 
possess erroneous semantic knowledge or don't know when 
to use the semantic knowledge, the Cognitive Tutors will 
wrongly understand the mistakes made by the learner in 
terms of procedural errors, possibly triggering 
inappropriate tutoring behavior. 
 On the other hand, evaluation of a learner's semantic 
knowledge in tutoring systems is generally achieved by 
asking direct questions about that knowledge such as 
multiple-choice test (for example, Morales & Aguera 
2002). Another approach is the automatic scoring of 
concepts maps that a learner draws by comparing them 
with an expert map (Taricani & Clariana 2006). A concept 
map is basically a graph where each node is a concept or 
concept instance and each link represents a relationship. 
Our hypothesis is that a more accurate evaluation of 
semantic and procedural knowledge can be achieved by 
making explicit the semantic knowledge that a learner 
should learn, and evaluate it not only with questions but 
also with procedural knowledge in problem-solving tasks. 
This is in accordance with educational researchers that 
emphasize the importance of understanding how the 
semantic and procedural knowledge are expressed together 
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in procedural performance (Star 2000). This paper first 
presents our framework. Then, we describe how it allows 
the RomanTutor tutoring system to offer tailored 
assistance.  

A Framework to Support Semantic 

Knowledge Evaluation 

The architecture of our framework (cf. fig. 1(a)) is inspired 
by those of classical intelligent tutoring systems (Wenger 
1987). The main components are (1) the learning activities 
user interface, (2) the domain knowledge, (3) the student 
model and (4) the tutoring module. The last two 
components are domain-independent. 

Figure 1: The architecture of our framework 

The Learning Activities User Interfaces 

A learning activities user interface has been developed for 
a tutoring system that assists learners during exercises on 
the simplification of algebraic Boolean expressions by 
means of reduction rules (Fournier-Viger et al 2006). 
However, this paper presents our latest work, applied in the 
RomanTutor (figure 2). The RomanTutor (Kabanza et al 
2005) is a software program for training astronauts to the 
manipulation of CanadarmII, a robotic arm with seven 
degrees of freedom, installed on the international space 
station (ISS). Handling the CanadarmII is a demanding 
duty since astronauts who control it have a view of the 
environment rendered by three monitors. Each one show 
the view usually obtained from a single camera at a time 
among about ten cameras mounted at different locations on 
the ISS and on the arm. Guiding the arm requires several 
skills such as selecting cameras for a situation, visualizing 
in 3D an environment perceived in 2D and selecting 
efficient sequences of manipulations. Astronauts follow a 
rigorous protocol that comprises many steps, because one 
mistake can engender terrible consequences. The task of 
interest in RomanTutor is moving the arm from one 
configuration to another, according to the protocol. To 
achieve the task, astronauts need to build spatial 
representations and to visualize them in a dynamic setting. 
The GUI of RomanTutor reproduces part of the 
CanadarmII control panel.  

The Concept Ontology 

The second step after defining the learning activities 
interface is to define the domain knowledge. The first part 

is the concept ontology. The RomanTutor’s concept 
ontology includes about 100 concepts such as the various 
ISS modules, the main parts of CanadarmII, the cameras 
on the ISS, and some important strategic 3D zones of the 
environment surrounding the ISS. The ontology also 
specifies the important relationships that can exist between 
instances of concepts. In our framework, the concept 
ontology inference engine (cf. fig. 1) is the component that 
offers reasoning services on the concept ontology. The 
concepts in the concept ontology are linked to the concepts 
in the cognitive model that is described next. This allows 
the separation of the cognitive model in multiple files, its 
interpretation as a whole, and provides a basis for logical 
reasoning. It permits creating “glass-box learning objects” 
(see Fournier-Viger et al 2006 for more details).  

Figure 2: The RomanTutor interface 

The Cognitive Model 

After defining the concept ontology, one must describe the 
cognitive processes relevant to the learning activities. Our 
cognitive model (Fournier-Viger et al 2006) is a symbolic 
model that organizes knowledge as semantic knowledge 
and procedural knowledge. It is inspired by the ACT-R 
(Anderson 1993) and Miace (Mayers, Lefebvre and 
Frasson 2001) cognitive theories.  

Semantic Knowledge. The semantic memory contains 
descriptive knowledge. Our model regards semantic 
knowledge as concepts taken in the broad sense. According 
to recent researches (Halford et al 2005), a human can 
consider up to four concept instances to perform a task. 
However, the human cognitive architecture can group 
several of them to handle them as one (Halford et al 2005). 
We call “described concepts” these syntactically 
decomposable representations, in contrast with primitive 
concepts that are syntactically indecomposable. For 
example, the expression “PMA03 
isConnectedToTheBottomOf Lab02” is a decomposable 
representation containing three atomic symbols, which 
represents the knowledge that the “PMA03” ISS module is 
connected at the bottom of the “Lab02” ISS module on the 
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ISS (assuming the standard ISSACS coordinate system). In 
this way, the semantic of a described concept is given by 
the semantics of its components. While concepts are stored 
in the semantic memory, concept instances occur in 
working memory, and are characterized by their mental 
and temporal context (Mayers et al 2001). Thus, each 
occurrence of a symbol such as “Lab02” is viewed as a 
distinct instance of the same concept.  

 Furthermore, our model distinguishes –on a pedagogical 
basis -between “general” and "contextual” semantic 
knowledge. We define general knowledge as the semantic 
knowledge (memorized or acquired through experience) 
that is valid in every situation of a curriculum. For instance 
, such knowledge is that the approximate length of the end 
effector of CanadarmII is one meter. A general knowledge 
is a described concept, because to be useful it must 
represent a relation. To be used properly, general 
knowledge must (1) be properly acquired, (2) be recalled 
correctly and (3) be handled by valid procedural 
knowledge. Conversely, contextual knowledge is the 
knowledge obtained from the interpretation of a situation. 
It is composed of concepts instances that are dynamically 
instantiated during a situation. For example, the 
information that the rotation value of the joint “WY” of 
CanadarmII arm is currently 42° is a contextual knowledge 
obtained by reading the display.  

Procedural Knowledge. The procedural memory encodes 
the knowledge of how to attain goals automatically by 
manipulating semantic knowledge. It is composed of 
procedures that fires one at a time according to the current 
state of the cognitive architecture (Anderson 1993). 
Contrary to semantic knowledge, the activation of a 
procedure does not require attention. One procedure can be 
for example, to recall the knowledge of the best camera to 
view a given ISS module. Another procedure would be to 
select a camera in the user interface of the RomanTutor. 
Note that according to the ACT-R theory (Anderson 1993), 
if two procedures are often applied one after the other to 
retrieve the same fact, a new specialized procedure can be 
learned that produce the same result without recalling the 
fact from long term memory. Furthermore, as Mayers et al. 
(2001), we differentiate primitive procedures and complex 
procedures. Whereas primitive procedures are atomic 
actions, a complex procedure activation instantiates a set of 
goals, which might be achieved either by a complex 
procedure or a primitive procedure.  

 Goals are intentions that humans have, such as the goal 
to solve a mathematical equation, to draw a triangle or to 
add two numbers (Mayers et al 2001). At every moment, 
the cognitive architecture has one goal that represents its 
intention. There can be many correct and incorrect ways 
(procedures) to achieve a goal. Our model is based on the 
proposal of many researchers that goals obey the same 
constraints as semantic knowledge. i.e. they are competing 
to become the activated goal, they can be forgotten and 
their activation vary according to the context. In our 
model, this assumption means that cognitive steps may not 
always need to be achieved in the same order. Our model 

view goals as a special type of described concepts, 
instantiated with zero or more concept instances that are 
the object of the goal. For example, the concept instance 
“Cupola01” could be a component of an instance of the 
goal “GoalSelectCamerasForViewingModule”, which 
represents the intention of selecting the best camera for 
viewing the “Cupola01” ISS module. By setting the 
components of a goal, a procedure determines which 
procedure(s) can be fired for that goal, and it allows the 
next fired procedure to access these concepts instances. 
However, the semantic knowledge passed as goal 
parameters is often insufficient. A procedure may need to 
access semantic knowledge stored in the long term 
memory or working memory. For this reason, our model 
incorporates a retrieval mechanism similar as the one of 
the ACT-R theory of cognition to model the recall process. 
Thus, a procedure can request the retrieval of a described 
concept by specifying one or more restrictions on the value 
of its components. A constraint specifies that a component 
is the same or is different from one of the active goal's 
components. This mechanism allows, for example, to state 
that the execution of a procedure request the recall of the 
described concept “X IsAttachedTo Y” where X is the 
current goal's camera and Y is the current goal's ISS 
module. If the retrieval is successful, a concept instance is 
deposited in a special buffer that accepts the last recalled 
instance. Then, the next executed procedures can access 
the concept instance in the buffer to achieve their goal. In 
our model, a procedure can be specified to fire only if the 
retrieval buffer contains a specific type of concept 
instance. Although, our model only allows the retrieval of 
general knowledge, it allows the definition of primitive 
procedure that read information from the user interface to 
simulate the acquisition of contextual knowledge from 
visual perception.  

The Computational Representation 

We have developed a computational structure to describe 
the cognitive processes for a learning activity according to 
the cognitive theory described above. The computational 
structure defines sets of attributes for describing concepts, 
goals and procedures, respectively. The value of an 
attribute can be either a set of concept(s), goal(s) or 
procedure(s), or arbitrary data such as character strings. 

 Primitive concepts have one main attribute. The “DL 
Reference” attribute connect the concept to its logical 
description in the concept ontology. Described concepts 
have four more attributes. The “Components” attribute 
indicates the concept type of each concept component. The 
“General” attribute indicates whether the concept is general 
or not. For general concepts, “Valid” specifies if the 
concept is correct or erroneous, and optionally the 
identifier of an equivalent valid concept (the model allow 
encoding common erroneous knowledge). Moreover, for 
general concepts, the “RetrievalComponents” attribute 
specifies a set of concepts to be instantiated to create the 
concept components when the concept is recalled through 
the semantic retrieval mechanism. 
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 Goals have 3 main attributes. “Parameters” indicates the 
concept types of the goal parameters. “Procedures” 
contains a set of procedures that can be used to achieve the 
goal.  

 Procedures have 7 main attributes. “Goal” indicates the 
goal for which the procedure was defined. “Parameters” 
specifies the concepts type of the arguments. For primitive 
procedures, “Method” points to a Java method that 
executes an atomic action. The “Observable” attribute 
specify for primitive procedures whether the procedure 
correspond to an action of the user interface or a mental 
step. For complex procedures, “Script” indicates a set of 
sub-goals to be achieved with optionally one or more 
constraints on the order that they should be achieved. 
“Validity” indicates if the procedure is valid. The attribute 
“Retrieval-request” can request the recall of a general 
knowledge. It specifies the identifier of a described 
concept to be recalled and zero or more restrictions on the 
value of its components.  

The Cognitive Model Interpreter 

We have developed an interpreter to simulate a behavior 
described with the cognitive model. The interpreter is run 
by the Model Tracer module (described in the next 
section). An interpreter state is defined as a set of goals. At 
the beginning, it contains one goal. At each cycle, the 
interpreter asks the Model Tracer to choose a current goal 
among the set of instantiated goals. The interpreter then 
determines which procedures could be executed for the 
goal. The Model Tracer must choose a procedure to 
continue the simulation. Given the execution of a primitive 
procedure, the interpreter calculates the result, and then 
removes the goal from the set of goals. Given the 
execution of a complex procedure, the interpreter 
instantiate the procedure’s subgoals and add them to the set 
of instantiated goals. A goal achieved by a complex 
procedure is only removed from the list of goals, when all 
its subgoals have been achieved. If the execution of a 
procedure request the retrieval of a semantic knowledge 
and one or more choices are possible, the interpreter ask 
the Model Tracer to choose the knowledge to be retrieved. 
The interpreter stops when no goals remain. 

 In the context of learning activities, an author must 
specify one main goal for each problem-solving exercise. 
The simulation of solving and exercise with the interpreter 
give rise to a structure such as the one showed in figure 
3.a. On this figure the main goal was achieved by a 
complex procedure “CP1” which instantiated three 
subgoals. Whereas, the first goal (“G1”) was realized by 
the execution of the complex procedure “CP2”, goals “G2” 
and “G3” were achieved by the observable primitive 
procedure “OP1” and the complex procedure “CP3”. The 
two subgoals of the procedure “CP2” were achieved by 
primitive procedures “PP1” and “PP2”, respectively. The 
two subgoals of the procedure “CP3” were achieved by the 
observable primitive procedures “OP2” and “OP3”, 
respectively. Only the primitive procedures tagged as 

observable correspond to actions done with the user 
interface. Figure 3.b show the list of procedures that would 
be visible for the structure presented on figure 3.a. The 
next subsection explains how the “Model Tracer” module 
allows following a student’s reasoning from its visible 
actions.  

 

 

 

 

 

 

 

 

 

 

Figure 3: A goals/sub-goals structure for an exercise 

The Model Tracer 

The model tracer main task is to find a goals /sub-goals 
structure such as the one showed on figure 3.a to explain a 
sequence of learner's action. The input is a list S={p1, p2, 
… pn} of observable primitive procedures execution along 
with their arguments. The algorithm proceeds as follows. 
The interpreter is launched starting from the exercise main 
goal. When the interpreter offer a choice of several 
procedures, goals or the retrieval of many different 
semantic knowledge, the algorithm save the current 
interpreter state. Then, one possibility is explored and the 
other possibilities are pushed on a stack to be explored 
next. In other words, the algorithm explores the state space 
of the different possibilities in a depth-first way. Every 
time the algorithm tries a possibility that match a 
subsequence s S (for example {s1, s2}), but cannot find 
the next action or if the next action is tagged erroneous, the 
algorithm notes the current structure together with the 
subsequence s. After trying all the possibilities, if a 
structure for S is not found, the goals/sub-goals structure 
that matches the longest correct subsequence of S is 
returned. To make the search for the goals/sub-goals 
structure manageable the algorithm does not explore the 
possibilities that match a subsequence that is not a 
subsequence of S, and it does not explore further than the 
last correct step done by the learner.  

The Student Model 

During exercises, the student model update probabilities 
that indicate the estimated acquisition of each, correct or 
erroneous, general knowledge or procedure. Procedures are 
evaluated in problem-solving exercises. The model tracer 
tries to find a correct goals/subgoals structure for 
explaining a learner's partial or complete solution. Two 
types of procedural errors can be detected: (1) the learner 
applies an erroneous procedure for its current goal or (2) 
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the learner did not observe the ordering constraints 
between subgoals for a complex procedure. For example , 
a learner could forget to adjust a camera zoom/pan/tilt 
before moving the arm. In this case, the learner forgot to 
achieve the subgoal of adjusting the camera parameters. 
Also, we consider that if a learner doesn't react within a 
time limit, s/he either doesn't know any correct procedure 
for the present goal or doesn't recognize their 
preconditions.  

The Tutoring Module 

The tutoring module takes pedagogical decisions based on 
a curriculum. A curriculum is specified as a set of learning 
objectives along with minimum mastery levels expressed 
as values between 0 and 1 (Fournier-Viger et al 2006). 
Different curriculum can be defined to describe different 
levels of training. A learning objective is a performance 
description that the learner must be able to show following 
training (Gagne, Briggs & Wager 1992). A learning 
objective can be defined as a skill to master. It is a set of 
one or more goals to master. Such an objective is 
considered satisfied when the learner shows that s/he 
masters at least one procedure for each goal according to 
the student model and the curriculum. The procedures 
employed are of no importance, since several correct 
procedures might achieve the same goal. Learning 
objectives can also be stated in term of one or more general 
knowledge to master (cf. next section). During a learning 
session, the tutoring module compares the curriculum 
requirements with the student model estimates, to generate 
exercises, questions and demonstrations tailored to the 
learner that will involve the knowledge to be mastered. 
Whereas pedagogical knowledge is represented as domain-
independent rules in the tutoring module, an author can 
define “didactic knowledge” (cf. fig. 1), which is domain-
specific pedagogical knowledge. In our current work, it 
consists mostly of pictures or text associated to concepts 
and procedures. Currently, the pedagogical model is 
simple. It is part of our current work to make it fully take 
advantage of the knowledge representation model. 

Evaluating Semantic Knowledge 

Our framework provides two ways for evaluating general 
semantic knowledge. First, it can be tested directly with 
questions. For instance , RomanTutor may verify the 
mastery of the described concept “CameraCP9 
GivesGlobalViewOf JEM” by showing the learner a view 
of the “JEM” module and asking him/her to identify which 
camera was used. Other types of questions are also 
implemented such as to ask to name the closest modules to 
a given module, or to ask to select the best cameras for 
viewing one or more modules. Second, general knowledge 
can be evaluated through problem-solving exercises. 
Unlike primitive procedures that are detectable, it is only 
possible to detect the recall of general knowledge during 
problem-solving indirectly. Thanks to the goal/sub-goals 

structure extracted by the Model Tracer, it is possible to 
know if a general knowledge was recalled. If the learner 
applies procedures to retrieve a valid knowledge several 
times, the student model increases its confidence that the 
learner can recall that knowledge. In the case of the likely 
recall of an erroneous knowledge, the student model 
heightens the probability of a recall error with that 
knowledge and will decrease its confidence that the learner 
masters the valid concept(s). For example , if the system 
infers that a learner possesses the erroneous knowledge 
that camera “CP10” is a good camera to view the JEM 
module, it will likely generate direct questions about the 
corresponding valid knowledge or exercises that involve its 
recall.  

 To describe the cognitive behavior in the RomanTutor, 
we have been inspired by results in the field of spatial 
cognition. In the light of researches carried out during the 
last decades in neuroscience, experimental psychology and 
other disciplines, there is no doubt that humans use 
allocentric and egocentric spatial representations (Nadel 
and Hardt 2004). An egocentric representation describes 
the position of an object with regards to oneself. For 
example, navigating from one place to another with 
egocentric representations would consist of using a set of 
stimuli/response associations (Tversky 1993). Usually, this 
knowledge is gained through experience, but it can also be 
acquired directly (for instance , from textual route 
instructions). Route navigation is very inflexible and leaves 
little room for deviation. Indeed, choosing correct 
directions with landmarks strongly depends on the relative 
position of a person to landmarks. Consequently, a path 
deviation can easily disturb the achievement of the whole 
navigation task. An incorrect encoding or recall can also 
compromise seriously the attainment of the goal. 
Egocentric representations may be sufficient to travel 
through an environment, but they are inadequate to 
perform complex spatial reasoning (Tversky 1993). For 
reasoning that requires inference, humans build cognitive 
maps that do not preserve measurements but keep the main 
relationships between elements (allocentric 
representations). These representations do not encode any 
perspective but makes it possible to adopt several 
perspectives. Cognitive maps are also prone to encoding or 
recall errors. But, it is generally easier to recover from an 
error, when relying on a cognitive map than on an 
egocentric representation. Tversky (1993) indicates that a 
parallel can be drawn between cognitive maps and the 
semantic memory. Since these latter are key to complex 
spatial reasoning, tutoring software that diagnose and teach 
complex spatial reasoning should possess the ability to 
evaluate semantic knowledge.  

 According to this view, we have modeled the spatial 
knowledge for the Canadarm manipulation task as 
semantic knowledge. To achieve this, we discretized the 
3D space into 3D sub spaces named elementary spaces 
(ES). Spatial relationships are encoded as described 
concepts such as (1) a camera can see an ES or an ISS 
module, (2) an ES comprise an ISS module, (3) an ES is 
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next to another ES, (4) an ISS module is at the side of 
another ISS module or (5) a camera is attached to an ISS 
module. The procedural knowledge of how to move the 
arm from one position to another is modeled as a loop 
where the learner must recall a set of cameras for viewing 
the ESs containing the arm, select the cameras, adjust their 
parameters (zoom, pan, tilt), retrieves a sequence of ESs to 
go from the current ES to the goal, and then move to the 
next ES. The model does not go into finer details like how 
to choose the right joint to move to go from an ES to 
another. In fact, at this level of details, RomanTutor rely on 
a special path-planner to track students’ errors (Kabanza et 
al 2005).  

Discussion 

One question about our framework is why not just 
representing semantic knowledge as procedural 
knowledge? Although it is true that a procedure that 
request a semantic knowledge from semantic memory and 
a procedure that use it can be replaced by one or many 
specialized procedures that perform the same function 
without recalling the knowledge, this would require to 
define a procedure for each fact that can be recalled. The 
benefit of our approach is that the semantic knowledge is 
explicit. Thus, it can be recalled and taken as parameters 
by procedures. Hence a task model can have fewer 
procedures (rules) and these procedures can be more 
general. In RomanTutor, this showed to be important as it 
allowed to define the main steps of the CanadarmII 
manipulation with few procedures, and to annotate these 
procedures and the general semantic knowledge with 
specific textual hints. Furthermore, the explicit 
representation of the general knowledge as relationships is 
advantageous because it allows evaluating a general 
knowledge in problem-solving learning activities, but also 
because it permits generating direct questions about it. For 
example, to test the semantic knowledge “CP10 canView 
Zone1”, the RomanTutor can generate the questions “? 
canView Zone1”, “CP10 canView ?” and “CP10 ? Zone1”. 
If that general knowledge was not explicit, answering these 
3 questions would be viewed as utilizing at least three 
different specialized procedures and a virtual tutor would 
not understand that they are related, and that this 
knowledge can be used in problem-solving exercises. 

Conclusion 

We have presented an original framework, which offers a 
solution for evaluating and teaching general semantic 
knowledge that learners should possess. Because it 
connects semantic knowledge to procedural knowledge by 
semantic knowledge retrieval, evaluation of the general 
knowledge can be achieved directly through questions or 
indirectly through observation of problem-solving tasks. 
Moreover, the virtual tutors based on our framework 
should be able to generate better feed-back, because they 

know how the recalled semantic knowledge is connected to 
procedures. Furthermore, this paper has explained how the 
framework can be used to evaluate spatial representations 
by its integration in RomanTutor. 
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