
 A Framework for Evaluating Semantic Knowledge in Problem-Solving-

Based Intelligent Tutoring Systems

Philippe Fournier-Viger, Roger Nkambou and André Mayers

1Department of Computer Science, University of Quebec at Montreal

C.P. 8888, Succ. Centre-ville, Montréal, Canada H3C 3P8
2Department of Computer Science, University of Sherbrooke

2500 Bld. de l’Université, Sherbrooke, Canada J1K 2R1

{fournier-viger.philippe, nkambou.roger}@uqam.ca

Abstract

We describe a framework for building intelligent tutoring
systems that offer an advanced evaluation of learners'
semantic knowledge. The knowledge model makes a
pedagogical distinction between contextual and general
semantic knowledge. General knowledge is defined as the
knowledge that is valid in every situation of a curriculum,
and that a learner should possess. In opposition, contextual
knowledge is the knowledge obtained from the
interpretation of a situation. Because the model connects the
description of general knowledge to the description of
procedural knowledge through “semantic knowledge
retrieval”, the evaluation of general knowledge is not only
achieved through direct questions, but also indirectly
through observation of problem-solving exercises.

Introduction

To build e-learning systems that can offer highly-tailored
assistance, a well-known approach is to model the
cognitive processes of learners according to cognitive
theories. The most famous examples of this type of
tutoring systems are the Cognitive Tutors by Anderson et
al. (1995). They are based on the assumption that the mind
can be simulated best by a symbolic production rules
system (Anderson 1993). Recently, this idea has been
embedded in a development kit named CTAT (Aleven et al
2006). The cognitive Tutors internally describe an exercise
with a main goal and a set of applicable rules. Each action
done by a learner is seen as the application of a rule that
execute an action and can create sub-goals. A rule can be
marked correct or erroneous, and be annotated with
different tutoring resources. Though these systems obtain
great success, they are focused on teaching procedural
knowledge (rules) in the context of problem-solving
exercises. Anderson et al. (1995) makes this clear: “we
have placed the emphasis on the procedural (…) because
our view is that the acquisition of the declarative
knowledge is relatively problem-free. (…) Declarative
knowledge can be acquired by simply being told and our
tutors always apply in a context where student receive such
declarative instruction external to the tutors. (…)

Production rules (…) are skills that are only acquired by
doing.”.
 We claim that this view is limited in two ways. First,
it supposes that the declarative knowledge can be taught in
an explicit way effectively by human tutors. But, this is not
always the case. For some domains the declarative
knowledge is best learned by doing. As it will be illustrated
here, such domains are the tasks that involve spatial
representations. Complex spatial representations are
viewed by many researchers as being encoded as semantic
knowledge (for example, Tversky 1993). In the remainder
of this paper, we adopt the term “semantic knowledge”
instead of “declarative knowledge” to designate the
declarative knowledge that is not associated with the
memory of events (Tulving 1972). Second, Cognitive
Tutors cannot evaluate semantic knowledge. They assume
that learners will acquire the semantic knowledge before
doing the problem-solving exercises, or that it will be
available during the exercises and that the learners will
know when to use it. The problem is that if a learner
possess erroneous semantic knowledge or don't know when
to use the semantic knowledge, the Cognitive Tutors will
wrongly understand the mistakes made by the learner in
terms of procedural errors, possibly triggering
inappropriate tutoring behavior.
 On the other hand, evaluation of a learner's semantic
knowledge in tutoring systems is generally achieved by
asking direct questions about that knowledge such as
multiple-choice test (for example, Morales & Aguera
2002). Another approach is the automatic scoring of
concepts maps that a learner draws by comparing them
with an expert map (Taricani & Clariana 2006). A concept
map is basically a graph where each node is a concept or
concept instance and each link represents a relationship.
Our hypothesis is that a more accurate evaluation of
semantic and procedural knowledge can be achieved by
making explicit the semantic knowledge that a learner
should learn, and evaluate it not only with questions but
also with procedural knowledge in problem-solving tasks.
This is in accordance with educational researchers that
emphasize the importance of understanding how the
semantic and procedural knowledge are expressed together

Proceedings of the Twenty-First International FLAIRS Conference (2008)

409

in procedural performance (Star 2000). This paper first
presents our framework. Then, we describe how it allows
the RomanTutor tutoring system to offer tailored
assistance.

A Framework to Support Semantic

Knowledge Evaluation

The architecture of our framework (cf. fig. 1(a)) is inspired
by those of classical intelligent tutoring systems (Wenger
1987). The main components are (1) the learning activities
user interface, (2) the domain knowledge, (3) the student
model and (4) the tutoring module. The last two
components are domain-independent.

Figure 1: The architecture of our framework

The Learning Activities User Interfaces

A learning activities user interface has been developed for
a tutoring system that assists learners during exercises on
the simplification of algebraic Boolean expressions by
means of reduction rules (Fournier-Viger et al 2006).
However, this paper presents our latest work, applied in the
RomanTutor (figure 2). The RomanTutor (Kabanza et al
2005) is a software program for training astronauts to the
manipulation of CanadarmII, a robotic arm with seven
degrees of freedom, installed on the international space
station (ISS). Handling the CanadarmII is a demanding
duty since astronauts who control it have a view of the
environment rendered by three monitors. Each one show
the view usually obtained from a single camera at a time
among about ten cameras mounted at different locations on
the ISS and on the arm. Guiding the arm requires several
skills such as selecting cameras for a situation, visualizing
in 3D an environment perceived in 2D and selecting
efficient sequences of manipulations. Astronauts follow a
rigorous protocol that comprises many steps, because one
mistake can engender terrible consequences. The task of
interest in RomanTutor is moving the arm from one
configuration to another, according to the protocol. To
achieve the task, astronauts need to build spatial
representations and to visualize them in a dynamic setting.
The GUI of RomanTutor reproduces part of the
CanadarmII control panel.

The Concept Ontology

The second step after defining the learning activities
interface is to define the domain knowledge. The first part

is the concept ontology. The RomanTutor’s concept
ontology includes about 100 concepts such as the various
ISS modules, the main parts of CanadarmII, the cameras
on the ISS, and some important strategic 3D zones of the
environment surrounding the ISS. The ontology also
specifies the important relationships that can exist between
instances of concepts. In our framework, the concept
ontology inference engine (cf. fig. 1) is the component that
offers reasoning services on the concept ontology. The
concepts in the concept ontology are linked to the concepts
in the cognitive model that is described next. This allows
the separation of the cognitive model in multiple files, its
interpretation as a whole, and provides a basis for logical
reasoning. It permits creating “glass-box learning objects”
(see Fournier-Viger et al 2006 for more details).

Figure 2: The RomanTutor interface

The Cognitive Model

After defining the concept ontology, one must describe the
cognitive processes relevant to the learning activities. Our
cognitive model (Fournier-Viger et al 2006) is a symbolic
model that organizes knowledge as semantic knowledge
and procedural knowledge. It is inspired by the ACT-R
(Anderson 1993) and Miace (Mayers, Lefebvre and
Frasson 2001) cognitive theories.

Semantic Knowledge. The semantic memory contains
descriptive knowledge. Our model regards semantic
knowledge as concepts taken in the broad sense. According
to recent researches (Halford et al 2005), a human can
consider up to four concept instances to perform a task.
However, the human cognitive architecture can group
several of them to handle them as one (Halford et al 2005).
We call “described concepts” these syntactically
decomposable representations, in contrast with primitive
concepts that are syntactically indecomposable. For
example, the expression “PMA03
isConnectedToTheBottomOf Lab02” is a decomposable
representation containing three atomic symbols, which
represents the knowledge that the “PMA03” ISS module is
connected at the bottom of the “Lab02” ISS module on the

Concept Ontology

Cognitive Model

Didactic Knowledge

(1)Learning Activities User Interface

(2) Domain Knowledge

Domain-specific

Curriculum

D
o
m

ain
 in

d
ep

en
d
en

t (3) Student Model

Model tracer

Cognitive Model Interpreter

(4)Tutoring Module

Ontology Inference engine D
o
m

ain
 sp

ecific

410

ISS (assuming the standard ISSACS coordinate system). In
this way, the semantic of a described concept is given by
the semantics of its components. While concepts are stored
in the semantic memory, concept instances occur in
working memory, and are characterized by their mental
and temporal context (Mayers et al 2001). Thus, each
occurrence of a symbol such as “Lab02” is viewed as a
distinct instance of the same concept.

 Furthermore, our model distinguishes –on a pedagogical
basis -between “general” and "contextual” semantic
knowledge. We define general knowledge as the semantic
knowledge (memorized or acquired through experience)
that is valid in every situation of a curriculum. For instance
, such knowledge is that the approximate length of the end
effector of CanadarmII is one meter. A general knowledge
is a described concept, because to be useful it must
represent a relation. To be used properly, general
knowledge must (1) be properly acquired, (2) be recalled
correctly and (3) be handled by valid procedural
knowledge. Conversely, contextual knowledge is the
knowledge obtained from the interpretation of a situation.
It is composed of concepts instances that are dynamically
instantiated during a situation. For example, the
information that the rotation value of the joint “WY” of
CanadarmII arm is currently 42° is a contextual knowledge
obtained by reading the display.

Procedural Knowledge. The procedural memory encodes
the knowledge of how to attain goals automatically by
manipulating semantic knowledge. It is composed of
procedures that fires one at a time according to the current
state of the cognitive architecture (Anderson 1993).
Contrary to semantic knowledge, the activation of a
procedure does not require attention. One procedure can be
for example, to recall the knowledge of the best camera to
view a given ISS module. Another procedure would be to
select a camera in the user interface of the RomanTutor.
Note that according to the ACT-R theory (Anderson 1993),
if two procedures are often applied one after the other to
retrieve the same fact, a new specialized procedure can be
learned that produce the same result without recalling the
fact from long term memory. Furthermore, as Mayers et al.
(2001), we differentiate primitive procedures and complex
procedures. Whereas primitive procedures are atomic
actions, a complex procedure activation instantiates a set of
goals, which might be achieved either by a complex
procedure or a primitive procedure.

 Goals are intentions that humans have, such as the goal
to solve a mathematical equation, to draw a triangle or to
add two numbers (Mayers et al 2001). At every moment,
the cognitive architecture has one goal that represents its
intention. There can be many correct and incorrect ways
(procedures) to achieve a goal. Our model is based on the
proposal of many researchers that goals obey the same
constraints as semantic knowledge. i.e. they are competing
to become the activated goal, they can be forgotten and
their activation vary according to the context. In our
model, this assumption means that cognitive steps may not
always need to be achieved in the same order. Our model

view goals as a special type of described concepts,
instantiated with zero or more concept instances that are
the object of the goal. For example, the concept instance
“Cupola01” could be a component of an instance of the
goal “GoalSelectCamerasForViewingModule”, which
represents the intention of selecting the best camera for
viewing the “Cupola01” ISS module. By setting the
components of a goal, a procedure determines which
procedure(s) can be fired for that goal, and it allows the
next fired procedure to access these concepts instances.
However, the semantic knowledge passed as goal
parameters is often insufficient. A procedure may need to
access semantic knowledge stored in the long term
memory or working memory. For this reason, our model
incorporates a retrieval mechanism similar as the one of
the ACT-R theory of cognition to model the recall process.
Thus, a procedure can request the retrieval of a described
concept by specifying one or more restrictions on the value
of its components. A constraint specifies that a component
is the same or is different from one of the active goal's
components. This mechanism allows, for example, to state
that the execution of a procedure request the recall of the
described concept “X IsAttachedTo Y” where X is the
current goal's camera and Y is the current goal's ISS
module. If the retrieval is successful, a concept instance is
deposited in a special buffer that accepts the last recalled
instance. Then, the next executed procedures can access
the concept instance in the buffer to achieve their goal. In
our model, a procedure can be specified to fire only if the
retrieval buffer contains a specific type of concept
instance. Although, our model only allows the retrieval of
general knowledge, it allows the definition of primitive
procedure that read information from the user interface to
simulate the acquisition of contextual knowledge from
visual perception.

The Computational Representation

We have developed a computational structure to describe
the cognitive processes for a learning activity according to
the cognitive theory described above. The computational
structure defines sets of attributes for describing concepts,
goals and procedures, respectively. The value of an
attribute can be either a set of concept(s), goal(s) or
procedure(s), or arbitrary data such as character strings.

 Primitive concepts have one main attribute. The “DL
Reference” attribute connect the concept to its logical
description in the concept ontology. Described concepts
have four more attributes. The “Components” attribute
indicates the concept type of each concept component. The
“General” attribute indicates whether the concept is general
or not. For general concepts, “Valid” specifies if the
concept is correct or erroneous, and optionally the
identifier of an equivalent valid concept (the model allow
encoding common erroneous knowledge). Moreover, for
general concepts, the “RetrievalComponents” attribute
specifies a set of concepts to be instantiated to create the
concept components when the concept is recalled through
the semantic retrieval mechanism.

411

 Goals have 3 main attributes. “Parameters” indicates the
concept types of the goal parameters. “Procedures”
contains a set of procedures that can be used to achieve the
goal.

 Procedures have 7 main attributes. “Goal” indicates the
goal for which the procedure was defined. “Parameters”
specifies the concepts type of the arguments. For primitive
procedures, “Method” points to a Java method that
executes an atomic action. The “Observable” attribute
specify for primitive procedures whether the procedure
correspond to an action of the user interface or a mental
step. For complex procedures, “Script” indicates a set of
sub-goals to be achieved with optionally one or more
constraints on the order that they should be achieved.
“Validity” indicates if the procedure is valid. The attribute
“Retrieval-request” can request the recall of a general
knowledge. It specifies the identifier of a described
concept to be recalled and zero or more restrictions on the
value of its components.

The Cognitive Model Interpreter

We have developed an interpreter to simulate a behavior
described with the cognitive model. The interpreter is run
by the Model Tracer module (described in the next
section). An interpreter state is defined as a set of goals. At
the beginning, it contains one goal. At each cycle, the
interpreter asks the Model Tracer to choose a current goal
among the set of instantiated goals. The interpreter then
determines which procedures could be executed for the
goal. The Model Tracer must choose a procedure to
continue the simulation. Given the execution of a primitive
procedure, the interpreter calculates the result, and then
removes the goal from the set of goals. Given the
execution of a complex procedure, the interpreter
instantiate the procedure’s subgoals and add them to the set
of instantiated goals. A goal achieved by a complex
procedure is only removed from the list of goals, when all
its subgoals have been achieved. If the execution of a
procedure request the retrieval of a semantic knowledge
and one or more choices are possible, the interpreter ask
the Model Tracer to choose the knowledge to be retrieved.
The interpreter stops when no goals remain.

 In the context of learning activities, an author must
specify one main goal for each problem-solving exercise.
The simulation of solving and exercise with the interpreter
give rise to a structure such as the one showed in figure
3.a. On this figure the main goal was achieved by a
complex procedure “CP1” which instantiated three
subgoals. Whereas, the first goal (“G1”) was realized by
the execution of the complex procedure “CP2”, goals “G2”
and “G3” were achieved by the observable primitive
procedure “OP1” and the complex procedure “CP3”. The
two subgoals of the procedure “CP2” were achieved by
primitive procedures “PP1” and “PP2”, respectively. The
two subgoals of the procedure “CP3” were achieved by the
observable primitive procedures “OP2” and “OP3”,
respectively. Only the primitive procedures tagged as

observable correspond to actions done with the user
interface. Figure 3.b show the list of procedures that would
be visible for the structure presented on figure 3.a. The
next subsection explains how the “Model Tracer” module
allows following a student’s reasoning from its visible
actions.

Figure 3: A goals/sub-goals structure for an exercise

The Model Tracer

The model tracer main task is to find a goals /sub-goals
structure such as the one showed on figure 3.a to explain a
sequence of learner's action. The input is a list S={p1, p2,
… pn} of observable primitive procedures execution along
with their arguments. The algorithm proceeds as follows.
The interpreter is launched starting from the exercise main
goal. When the interpreter offer a choice of several
procedures, goals or the retrieval of many different
semantic knowledge, the algorithm save the current
interpreter state. Then, one possibility is explored and the
other possibilities are pushed on a stack to be explored
next. In other words, the algorithm explores the state space
of the different possibilities in a depth-first way. Every
time the algorithm tries a possibility that match a
subsequence s S (for example {s1, s2}), but cannot find
the next action or if the next action is tagged erroneous, the
algorithm notes the current structure together with the
subsequence s. After trying all the possibilities, if a
structure for S is not found, the goals/sub-goals structure
that matches the longest correct subsequence of S is
returned. To make the search for the goals/sub-goals
structure manageable the algorithm does not explore the
possibilities that match a subsequence that is not a
subsequence of S, and it does not explore further than the
last correct step done by the learner.

The Student Model

During exercises, the student model update probabilities
that indicate the estimated acquisition of each, correct or
erroneous, general knowledge or procedure. Procedures are
evaluated in problem-solving exercises. The model tracer
tries to find a correct goals/subgoals structure for
explaining a learner's partial or complete solution. Two
types of procedural errors can be detected: (1) the learner
applies an erroneous procedure for its current goal or (2)

G CP1

G3

G2

G1 CP2 G4

OP1
G5 PP2

PP1

CP3 G6

G7

OP2

OP3

OP1 OP2 OP3

G= goal

CP= complex procedure

PP=primitive Procedure.

OP=observable primitive procedure

(A)

(B) S={ , , }

412

the learner did not observe the ordering constraints
between subgoals for a complex procedure. For example ,
a learner could forget to adjust a camera zoom/pan/tilt
before moving the arm. In this case, the learner forgot to
achieve the subgoal of adjusting the camera parameters.
Also, we consider that if a learner doesn't react within a
time limit, s/he either doesn't know any correct procedure
for the present goal or doesn't recognize their
preconditions.

The Tutoring Module

The tutoring module takes pedagogical decisions based on
a curriculum. A curriculum is specified as a set of learning
objectives along with minimum mastery levels expressed
as values between 0 and 1 (Fournier-Viger et al 2006).
Different curriculum can be defined to describe different
levels of training. A learning objective is a performance
description that the learner must be able to show following
training (Gagne, Briggs & Wager 1992). A learning
objective can be defined as a skill to master. It is a set of
one or more goals to master. Such an objective is
considered satisfied when the learner shows that s/he
masters at least one procedure for each goal according to
the student model and the curriculum. The procedures
employed are of no importance, since several correct
procedures might achieve the same goal. Learning
objectives can also be stated in term of one or more general
knowledge to master (cf. next section). During a learning
session, the tutoring module compares the curriculum
requirements with the student model estimates, to generate
exercises, questions and demonstrations tailored to the
learner that will involve the knowledge to be mastered.
Whereas pedagogical knowledge is represented as domain-
independent rules in the tutoring module, an author can
define “didactic knowledge” (cf. fig. 1), which is domain-
specific pedagogical knowledge. In our current work, it
consists mostly of pictures or text associated to concepts
and procedures. Currently, the pedagogical model is
simple. It is part of our current work to make it fully take
advantage of the knowledge representation model.

Evaluating Semantic Knowledge

Our framework provides two ways for evaluating general
semantic knowledge. First, it can be tested directly with
questions. For instance , RomanTutor may verify the
mastery of the described concept “CameraCP9
GivesGlobalViewOf JEM” by showing the learner a view
of the “JEM” module and asking him/her to identify which
camera was used. Other types of questions are also
implemented such as to ask to name the closest modules to
a given module, or to ask to select the best cameras for
viewing one or more modules. Second, general knowledge
can be evaluated through problem-solving exercises.
Unlike primitive procedures that are detectable, it is only
possible to detect the recall of general knowledge during
problem-solving indirectly. Thanks to the goal/sub-goals

structure extracted by the Model Tracer, it is possible to
know if a general knowledge was recalled. If the learner
applies procedures to retrieve a valid knowledge several
times, the student model increases its confidence that the
learner can recall that knowledge. In the case of the likely
recall of an erroneous knowledge, the student model
heightens the probability of a recall error with that
knowledge and will decrease its confidence that the learner
masters the valid concept(s). For example , if the system
infers that a learner possesses the erroneous knowledge
that camera “CP10” is a good camera to view the JEM
module, it will likely generate direct questions about the
corresponding valid knowledge or exercises that involve its
recall.

 To describe the cognitive behavior in the RomanTutor,
we have been inspired by results in the field of spatial
cognition. In the light of researches carried out during the
last decades in neuroscience, experimental psychology and
other disciplines, there is no doubt that humans use
allocentric and egocentric spatial representations (Nadel
and Hardt 2004). An egocentric representation describes
the position of an object with regards to oneself. For
example, navigating from one place to another with
egocentric representations would consist of using a set of
stimuli/response associations (Tversky 1993). Usually, this
knowledge is gained through experience, but it can also be
acquired directly (for instance , from textual route
instructions). Route navigation is very inflexible and leaves
little room for deviation. Indeed, choosing correct
directions with landmarks strongly depends on the relative
position of a person to landmarks. Consequently, a path
deviation can easily disturb the achievement of the whole
navigation task. An incorrect encoding or recall can also
compromise seriously the attainment of the goal.
Egocentric representations may be sufficient to travel
through an environment, but they are inadequate to
perform complex spatial reasoning (Tversky 1993). For
reasoning that requires inference, humans build cognitive
maps that do not preserve measurements but keep the main
relationships between elements (allocentric
representations). These representations do not encode any
perspective but makes it possible to adopt several
perspectives. Cognitive maps are also prone to encoding or
recall errors. But, it is generally easier to recover from an
error, when relying on a cognitive map than on an
egocentric representation. Tversky (1993) indicates that a
parallel can be drawn between cognitive maps and the
semantic memory. Since these latter are key to complex
spatial reasoning, tutoring software that diagnose and teach
complex spatial reasoning should possess the ability to
evaluate semantic knowledge.

 According to this view, we have modeled the spatial
knowledge for the Canadarm manipulation task as
semantic knowledge. To achieve this, we discretized the
3D space into 3D sub spaces named elementary spaces
(ES). Spatial relationships are encoded as described
concepts such as (1) a camera can see an ES or an ISS
module, (2) an ES comprise an ISS module, (3) an ES is

413

next to another ES, (4) an ISS module is at the side of
another ISS module or (5) a camera is attached to an ISS
module. The procedural knowledge of how to move the
arm from one position to another is modeled as a loop
where the learner must recall a set of cameras for viewing
the ESs containing the arm, select the cameras, adjust their
parameters (zoom, pan, tilt), retrieves a sequence of ESs to
go from the current ES to the goal, and then move to the
next ES. The model does not go into finer details like how
to choose the right joint to move to go from an ES to
another. In fact, at this level of details, RomanTutor rely on
a special path-planner to track students’ errors (Kabanza et
al 2005).

Discussion

One question about our framework is why not just
representing semantic knowledge as procedural
knowledge? Although it is true that a procedure that
request a semantic knowledge from semantic memory and
a procedure that use it can be replaced by one or many
specialized procedures that perform the same function
without recalling the knowledge, this would require to
define a procedure for each fact that can be recalled. The
benefit of our approach is that the semantic knowledge is
explicit. Thus, it can be recalled and taken as parameters
by procedures. Hence a task model can have fewer
procedures (rules) and these procedures can be more
general. In RomanTutor, this showed to be important as it
allowed to define the main steps of the CanadarmII
manipulation with few procedures, and to annotate these
procedures and the general semantic knowledge with
specific textual hints. Furthermore, the explicit
representation of the general knowledge as relationships is
advantageous because it allows evaluating a general
knowledge in problem-solving learning activities, but also
because it permits generating direct questions about it. For
example, to test the semantic knowledge “CP10 canView
Zone1”, the RomanTutor can generate the questions “?
canView Zone1”, “CP10 canView ?” and “CP10 ? Zone1”.
If that general knowledge was not explicit, answering these
3 questions would be viewed as utilizing at least three
different specialized procedures and a virtual tutor would
not understand that they are related, and that this
knowledge can be used in problem-solving exercises.

Conclusion

We have presented an original framework, which offers a
solution for evaluating and teaching general semantic
knowledge that learners should possess. Because it
connects semantic knowledge to procedural knowledge by
semantic knowledge retrieval, evaluation of the general
knowledge can be achieved directly through questions or
indirectly through observation of problem-solving tasks.
Moreover, the virtual tutors based on our framework
should be able to generate better feed-back, because they

know how the recalled semantic knowledge is connected to
procedures. Furthermore, this paper has explained how the
framework can be used to evaluate spatial representations
by its integration in RomanTutor.

Acknowledgements

The authors thank the Canadian Space Agency, the Fonds
Québécois de la Recherche sur la Nature et les
Technologies and the Natural Sciences and Engineering
Research Council for their logistic and financial support.
The authors also thank Khaled Belgith, Daniel Dubois,
Usef Faghihi, Mohamed Gaha and the other current and
past members of GDAC/PLANIART teams who have
participated in the development of the RomanTutor.

References

Aleven, V., McLaren, B. M., Sewall, J. and Koedinger, K.
2006. The Cognitive Tutor Authoring Tools (CTAT):
Preliminary evaluation of efficiency gains. Proceedings of
ITS 2006, 61-70, Springer Verlag.
Anderson, J.R. (1993). Rules of the mind. NJ: Erlbaum.
Anderson, J.R, Corbett, A.T., Koedinger, K.R. and
Pelletier, R. 1995. Cognitive Tutors: Lessons learned,
Learning Sciences, 4(2):167-207.
Halford, G.S., Baker, R., McCredden, J.E. & Bain, J.D.
2005, How many variables can humans process?,
Psychological Science, 16(1):70-276.
Fournier-Viger P., Najjar, M., Mayers, A. & Nkambou, R.
(2006). From Black-box Learning Objects to Glass-Box
Learning Objects. Proceedings of ITS 2006, 258-267.
Gagné, R.M., Briggs, L. Z and Wager, W. 1992. Principles
of Instructional Design (4th edition). New York: Holt,
Rinehart & Winston.
Kabanza F., Nkambou R. and Belghith K. 2005. Path-
Planning for Autonomous Training on Robot Manipulators
in Space. Proceedings of IJCAI 2005.
Mayers A., Lefebvre B & Frasson C. 2001. Miace: A
Human Cognitive Architecture. Sigcue outlook. 27:61-77.
Morales, R. and Aguera, A.S. 2002. Dynamic sequencing
of learning objects. Proceedings of ICALT 2002. 502-506.
Nadel, L. and Hardt, O. 2004. The Spatial Brain,
Neuropsychology, 18(3):473-476.
Star, J.R. (2000). On the Relationship Between Knowing
and Doing in Procedural Learning. Proceedings of the
Fourth Intern. Conference of the Learning Sciences, 80-86.
Taricani, E. M., and Clariana, R. B. 2006. A technique for
automatically scoring open-ended concept maps. Educ.
Technology Research & Development, 54(1), 61-78.
Tulving, E. 1972. Episodic and semantic memory. In
Tulving, E. and Donaldson, W. (Eds.), Organization of
memory. New York: Academic Press, 1972, 381-403.
Tversky, B. 1993. Cognitive Maps, Cognitive Collages,
and Spatial Mental Models, Proc. of COSIT’93, 14-24.
Wenger, E. 1987. Artificial Intelligence and Tutoring
Systems. Morgan Kaufmann.

414

