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Abstract 
Many intelligent tutoring systems (ITSs) offer feedback and 
guidance through structured dialogs with their students, 
which often take the form of a sequence of hints. However, 
it is often difficult to replicate the complexity and respon-
siveness of human conversation with current natural lan-
guage understanding and production technologies. Although 
ITSs reveal enough information to continue solving a prob-
lem, the conversations are not very engaging. To enhance 
engagement, the current study manipulated tutorial dialog 
by transforming them into a trialog by adding another stu-
dent. Our intention was to advance the help offered by the 
system by putting students in a position to help each other, 
as well as make sense of the help offered by the ITS. The 
present paper attempts to show that conversations, either 
with the system or with a peer, are important design consid-
erations when building an effective ITS. 

Interactive Tutoring1 
Why should we expect that learning from interactive tu-
toring leads to stronger learning gains than non-interactive 
instruction? Intuitively, it makes sense that students should 
form a deeper understanding when they are asked a series 
of questions by the tutor in which they are expected to 
reply in natural language. But what does the empirical data 
suggest? The answer is mixed (VanLehn et al., 2007). 
 There is positive evidence to suggest that interactive 
tutoring leads to stronger learning gains than less interac-
tive learning situations (such as reading). For instance, 
Evens and Michael developed an interactive tutoring envi-
ronment in which medical students learn about the baro-
receptor reflex, which is a part of the circulatory system 
that maintains a constant blood pressure across a variety of 
postures and conditions. Students using their system dem-
onstrated larger learning gains than a control group that 
was asked to read a text written to match the content of the 
tutor (Rovick & Michael, 1992). 
 There is also convincing evidence to the contrary, that 
non-interactive learning situations are equally effective as 
interactive tutoring. For instance, Craig et al. (2006) con-
trasted an interactive tutor, called AutoTutor, with a mod-
ified version of the same system that only presented a 
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didactic lecture. The lecture was non-interactive in the 
sense that students only watched the lecture. They were not 
required to respond to the system. The students 
demonstrated equal learning gains in both conditions. This 
result was surprising, especially because the two systems 
were closely matched for the content that was presented to 
the students. 
 Because there is convincing evidence, both for and 
against interactive tutoring, it appears that several variables 
are interacting, in complex ways, to produce the observed 
learning gains. One possible avenue for further exploration 
is to look at the dialogs and hints produced by the tutoring 
systems themselves.   

Making sense of automatically generated hints 
When an authority speaks, novices tend to listen. However, 
what if the authority does not make sense from the 
student’s perspective? What are novices to do then? 
Consider the following hint provided by Andes, an 
intelligent tutoring system (ITS) for physics: “You should 
finish entering all of the useful given quantities in the 
problem. Why don't you work on entering the given value 
of the magnitude of the electric field at the region due to an 
unspecified agent.” If you are unfamiliar with electric 
fields, you may not be aware that an electric field is a 
vector quantity, which is expressed as both a magnitude 
and a direction. Moreover, you may not be familiar with 
the way in which this particular tutoring system handles 
vectors and their magnitude representations. The bottom 
line is that this hint may not be helpful to the uninitiated. 
 Not surprisingly, novices sometimes find themselves in 
this unfortunate position while using an ITS. For whatever 
reason, the help emanating from an ITS might not be all 
that helpful. When this happens, the student soon learns 
either: a.) to drill down to the terminal (or “bottom-out”) 
hint, or b.) randomly input slightly different entries until 
the system marks it as correct. Because the help system is 
unable to sufficiently guide students around their current 
impasse, these “help abusers” can miss potentially 
important learning opportunities. 
 What can be done to rectify this situation? One approach 
is to observe students’ interactions with the help system 
and modify them to promote positive help-seeking 
behaviors. For instance, Baker, et al. (2006) designed an 
ITS to detect when students abuse the help system. When 
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students begin to game the system, they are given negative 
feedback in a creative way. An animated agent, which is a 
puppy, becomes angry when it detects that the student is 
heavily abusing the help. When the system first detects that 
students are gaming the system, they are shunted off to a 
remedial exercise that targets the material that the student 
initially attempted to bypass. 
 On the other end of the spectrum are students who fail to 
realize that they should ask for help in the first place. In an 
effort to remediate this situation, Roll et al. (2007) 
modified a version of the Cognitive Tutor to help students 
assess their competency and understanding of the target 
domain. They created the “Help-seeking Support 
Environment” by modifying the wording of the tutorial 
hints, as well as adding prompts that hinted at the meta-
cognitive level. They also presented a short classroom 
lesson that stressed productive help-seeking behaviors. The 
results suggested that the modified tutoring environment 
had an impact on the students’ declarative understanding of 
the help-seeking process. 
 Another approach to the problem of making sense of 
automatically generated help by a tutoring system is to 
modify the interactions themselves. Take, for instance, a 
learning situation in which college nursing students (i.e., 
unskilled tutors with domain expertise) were asked to tutor 
a group of eighth graders on the topic of the circulatory 
system (Chi, Siler, Jeong, Yamauchi, & Hausmann, 2001). 
The tutors were very effective in producing large learning 
gains. In a follow-up experiment, the tutors were asked not 
to give away any information. Instead, they were told to 
elicit the information from the students. This manipulation 
of the tutorial interaction proved to be a success because 
the students in the second experiment learned just as much 
as the students in the first. 
 In a similar vein, the present experiment attempted to 
increase the help efficacy by modifying the tutorial 
interactions. Toward that end, we interjected another 
student into the conversation. The reason for adding a peer 
is to harness the beneficial effects of collaboration, which 
are covered in the next section. 

Collaboration and the Andes physics tutor 
Like interactive tutoring systems, collaboration has been 
found to be effective under certain circumstances, yet it 
fails to produce robust learning differences in other 
situations (Hill, 1982). Collaboration is hypothesized to be 
effective when the interaction is structured in some way. 
Efforts to scaffold collaboration include using sentence 
openers (Soller, 2004), including collaboration scripts 
(Rummel & Spada, 2005), and tutoring collaboration itself 
(Walker, Koedinger, McLaren, & Rummel, 2006). Systems 
that guide or script collaboration vary in the explicitness of 
their intervention. For example, requiring a sentence 
opener for each turn is strongly structured and explicit, 
whereas modeling the behavior and periodically reminding 
the dyad to engage in a certain type of interaction is much 
less structured and explicit (Hausmann, 2006). 

 The Andes physics tutor does not script collaboration 
per se. Instead, student conversations were structured in 
two ways. The first is somewhat implicit, while the second 
was more explicit. The implicit structuring of collaborative 
interactions was realized via the step-based nature of the 
tutoring. Andes is a step-based tutoring system, in the 
sense that it offers feedback and help on each step of a 
problem. Users can ask Andes for help on an incorrect 
entry, as well as what to do next. The help is offered in a 
series of hints that decrease in abstraction, with top-level 
hints that are very general and abstract, to bottom-out hints 
that tell the student explicitly which action to take (see Fig. 
1). The implication is that the conversations that students 
have during problem solving were implicitly structured to 
focus on individual problem-solving steps. 

 

 

On-demand Help 

Flag Feedback 

Top-level Hint 

Bottom-out Hint 

 
Figure 1. A screen shot of Andes. 

 
To explicitly structure the dialogs, we chose a form of 

conversation that has been shown to be effective in 
previous studies on collaborative learning. Explanatory 
activities were chosen because they have been shown to be 
useful for both individual (Chi, Bassok, Lewis, Reimann, 
& Glaser, 1989) and collaborative learning (Coleman, 
1998; Ploetzner, Dillenbourg, Praier, & Traum, 1999). To 
structure the conversations in the present experiment, we 
provided instructions that described how collaborative 
explanations should unfold, as well as provided an 
example of a hypothetical dyad producing a “joint 
explanation.” We also designed a set of prompts to remind 
students to provide explanations while studying worked-
out examples. 

The reason for structuring the dialog was to help the 
students solve the physics problems in an effective way. 
Although great care was taken in designing the help system 
and hints for each of the problems in Andes, there are 
unfortunate times when the hints fail to help the student 
take the next correct step in solving the problem. Should 
such an event arise, the student has little recourse. He or 
she can repeatedly request bottom-out hints until the entire 
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solution is revealed. At this point, the student has 
unfortunately lost ownership of the solution and may learn 
little from the experience. 

Alternatively the student might ask a peer for guidance. 
Because peer help typically occurs in classroom life, we 
decided to investigate collaborative problem solving in an 
ITS more systematically. Therefore, we conducted the 
following laboratory experiment, in which we contrasted 
students who were asked to use the system alone with 
those who were asked to work collaboratively. 

Method 

Participants 
Thirty-nine undergraduates (N = 39), enrolled in a second 
semester physics course, were randomly assigned to one of 
two experimental conditions: self-explanation (individuals; 
n = 11) or joint-explanation (dyads; n = 14). Volunteers 
were recruited from several sections of a second-semester 
physics course, which covered Electricity and Magnetism. 
Participants were recruited during the third week of the 
semester, with the intention that the experimental materials 
would coincide with their introduction in the actual physics 
course. The participants were paid $10 per hour. To ensure 
that the participants’ motivation remained high during the 
entire two-hour session, they were offered an incentive of 
an additional $10 for doing well on the tests. All of the 
students received the bonus. 

Materials 
The materials developed for this experiment were adapted 
from an earlier experiment (Hausmann & VanLehn, 2007). 
The domain selected for this experiment was electro-
dynamics with a focus on the definition of the electric 
field, which is expressed by the vector equation: F = qE. 
This particular topic is typically covered within the first 
few weeks of a second-semester physics course. Thus, it is 
an important concept for students to learn because it 
represents their first exposure to the idea that a field can 
exert a force on a body. 
 To instruct the participants, several materials were 
developed. Four electrodynamics problems were created. 
These problems are representative of typical problems 
found at the end of a chapter in a traditional physics 
textbook. The problems covered a variety of topics, 
including the definition of the electric field; Newton’s first 
and second law, the weight law, and several kinematics 
equations. Each of the four problems was implemented in 
Andes. The first problem served as a warm-up problem 
because none of the students had any prior experience with 
the Andes user interface. 
 In addition to the problems, three examples were created 
in collaboration with two physics instructors at the U.S. 
Naval Academy. The examples contained a voice-over 
narration of an expert solving the problems, and they were 

structured such that they were isomorphic to the 
immediately preceding problem. 

Procedure 
The procedure consisted of several activities. The first 
activity was to watch a short, introductory video on the 
Andes user interface. Afterwards, the participants read 
instructions on how to produce explanations, including an 
example. Next, participants were asked to use Andes to 
solve a warm-up problem. The experimenter was available 
to answer any user-interface questions. He was not, 
however, allowed to give away any domain-specific 
information. During the problem solving, the student had 
access to the flag feedback (correct/incorrect), the hint 
sequences, and an equation cheat sheet. Once the student 
submitted a final answer, she then watched and explained 
an example of an expert solution of an isomorphic 
problem. The example solutions were broken down into 
steps, and at the conclusion of each step the student was 
prompted to explain (either individually or jointly). Once 
the explanation was complete, the participant clicked a 
button to go onto the next step. Only the cover story and 
given values differed between the problem-solving and 
example problems. The students alternated between 
solving problems and studying examples until all four 
problems were solved and all three examples were studied, 
or until two hours elapsed. 
 Instead of using a traditional pretest-intervention-
posttest design, the current study employed a micro-genetic 
approach where the density of observations is increased to 
reveal a fine-grained profile of changing behavior (Siegler 
& Crowley, 1991). 

Measures 
Several dependent measures were used to assess problem-
solving performance. We used the log files generated by 
Andes to count the number of errors the students made 
while solving problems, the number of hints requested, and 
specifically the number of bottom-out hints requested. 

Results 
The results are presented in three sections. The first section 
presents the differential use of the hints. The second 
section presents an analysis of the error rates, which are 
then divided into shallow and deep errors. Finally, the third 
section briefly analyzes a segment of dialog taken from a 
dyad’s solution. 

On-demand help: Hints and bottom-out hints 
Before delving into the error and hint analyses, it should be 
noted that more dyads correctly solved the final problem 
than the individuals, χ2(1, N = 25) = 4.81, p < .03. This 
means that, because the experiment was capped at two 
hours, some individuals (8/11 = 72.7%) were unable to 
finish all of the problems (see Fig. 2). 
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Figure 2. Percentage of students completing each problem. 
 
 Symptomatic of their inability to complete the entire 
problem set was the individuals’ reliance on the help 
system to get them through the problems. The individuals 
(M = 94.09, SD = 51.92) asked for nearly twice as many 
hints as the dyads (M = 48.57, SD = 39.59). This 
relationship was statistically reliable with a large effect 
size, F(1, 23) = 6.20, p = .02, d = 1.05. 
 Moreover, the same pattern of results held for the 
number of bottom-out hint requests. The individuals (M = 
13.91, SD = 14.36) requested nearly three times as many 
bottom-out hints as the dyads (M = 4.71, SD = 7.32). 
Again, this difference was statistically reliable with a large 
effect size, F(1, 23) = 4.34, p < .05, d = .88. 

Errors: Deep versus shallow 
Why did the individuals rely so heavily on the hints? We 
tested two potential hypotheses. First, perhaps dyads 
entered fewer deep errors; therefore, they did not require as 
deep of hinting to remediate their errors. Second, the dyads 
may have turned to each other for guidance, instead of 
asking the tutoring system for assistance. Notice that these 
explanations are not mutually exclusive. It could be the 
case that the dyads made fewer deep, conceptual errors and 
they remediate their errors in dialog.  
 To test the first hypothesis, we identified and hand-
coded N = 928 errors committed by the individuals and 
dyads. We coded the errors according to their depth. Slips, 
typos, and user-interface errors were coded as shallow, 
while conceptual errors were labeled deep. Collapsing 
across the experimental conditions, there were n = 443 
shallow errors and n = 475 deep errors. The remaining ten 
errors did not fit into either category and were placed into a 
miscellaneous category. 
 Overall, there were slight differences between the two 
conditions in terms of the total number of errors made, 
while controlling for the total number of student entries. 
Across all four problems, the error rate for the dyads (M = 
.33, SD = .08) was lower than the error rate observed for 
the individuals (M = .40, SD = .10). The difference in error 
rates was marginally significant with a medium to large 
effect size, F(1, 23) = 3.23, p = .09, d = .75. 

 In terms of the depth of errors, the dyads (M = .17, SD = 
.04) and individuals (M = .17, SD = .05) demonstrated an 
equivalent number of shallow errors. There were, however, 
reliable differences in terms of the deep error rates. Dyads 
(M = .15, SD = .08) committed fewer deep errors per entry 
than the individuals (M = .20, SD = .09). Using a repeated-
measures ANOVA, there was a statically reliable 
condition-by-problem interaction, F(3, 63) = 2.72, p = .05, 
ηp

2 = .114. When we analyzed the number of deep errors 
as a function of problem, it became evident that the dyads 
started out with proportionally fewer deep errors, F(1, 21) 
= 6.40, p = .02, d = 1.13. This difference gradually 

Figure 3. Mean number of deep errors per problem. 

diminished over the course of the experiment (see Fig. 3). 

 
This set of results suggests that the first hypothesis was 

Trialog: Collaborative error remediation 
corpus of 

 Table 1), two students are 

ter” on their equation.  
Andes continued to complain because it said, “Units are 

 
partially supported. The dyads’ use of hints may have 
reflected the fact that they did not need them as frequently 
as the individuals because they committed fewer deep 
errors, at least early in the experiment. 

 Because we have not yet coded the entire 
verbal protocols, we sampled the dialogs to detect any 
patterns of interaction (Stahl, 2004). While a complete test 
of the second hypothesis is ongoing, this section presents 
suggestive evidence of a representative exchange between 
a pair of students while they were engaged in problem 
solving in the context of a hint. 
 In the following episode (see
attempting to write the following equation: Fe = abs(qe)*E. 
Before equations can be written in Andes, all variables 
must be defined. Because Andes told the dyad that “E” was 
not yet defined, they set about attempting to draw the 
vector representation of “E.” Unfortunately, Andes turned 
the vector red (line: 1). Because the E-field vector 
contained an error, Andes did not yet recognize it as a 
legitimate variable, so when the dyad entered their 
equation, Andes told them that “E” was not recognized 
(line: 2). This was somewhat unintelligible to the pair (line: 
3 & 4), so they asked Andes for another hint (line: 5). This 
hint was helpful because they both recognized the error 
(lines: 6 & 7) and fixed it (line: 10). 
 Next, they went back and hit “en
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inconsistent” (line: 12). Ziggy determined the correct units 
and announced it to his partner (line: 13). It appears that 
Ozzy did not immediately understand Ziggy because 
evidence of his understanding came a bit later (line: 16). 
Once they both were on the same page, they 
simultaneously stated the equation (lines: 17 & 18) and 
solved for the sought quantity (line: 20). 
 

Table 1. A trialog between Andes and Dyad 24. 

Line
 

 Speaker Statement 
1 Ozzy Oh, it didn't like it. 
2 Andes The variable “E” is not used in any 

4 Ozzy that? [Request next 

u are defining? 

7 Ziggy e source.  

cified." 
 turns the vector green.] 

 
11  es turns 

zzy 
13 Ziggy er Colomb.  

it, Newtons. Yeah, it should be  

 abs(qe)  and Andes turns 
 

zzy 

solution I know of. 
3 Ziggy Aren't we looking for "E" though? 

What's wrong with 
hint.] 

5 Andes Is the electron the source of the electric 
field yo

6 Ozzy The electron 
Oh, the electron's not th

8 Ozzy Okay 
9 Ziggy So we just need to put it as "unspe

[Andes
10 Ozzy That would make sense.  

[Types: E = abs(qe)*Fe and And
the equation red.] 

12 O [Reads hint] "Units are inconsistent" 
F equals Newtons p

14 Ozzy Huh. 
15 Ziggy Newtons per Colomb 
16 Ozzy Oh wa
17 Ziggy /F divided by / 
18 Ozzy /F divided by / 
19  [Types: E = Fe /

the equation green.]
20 O Solve for "E" 

 
 ere  few eatures of this particular 

ialog. First, Andes is not always immediately understood 

Discussion 
During the early devel field, one of the open 
research questions was nts use ITSs alone or 

d, the outlook for 

viduals?” a more appropriate 

demonstrated a fairly 

bottom-out hint. Again, this could be due to the 

g and generation, this may be a potential 

Th  are a  interesting f
tr
by the pair. Instead, the dyad asked Andes for clarification, 
either in the form of another hint in the sequence, or 
another hint altogether. Alternatively, one partner may 
understand what Andes is saying and announce his insight 
to his partner, as was the case in the vague “Units are 
inconsistent” hint. The second interesting feature was that, 
while the dyad was not shy about asking Andes for hints, 
they did not abuse the help. Instead, they thought carefully 
about what it was trying to say. They did not immediately 
drill down to the bottom-out hint. Instead, they chose to 
remediate their errors with high-level hints and lots of 
interaction between themselves. 

opment of the 
, “Should stude

in small groups?” In some cases, the limited number of 
computers in a classroom governed whether students 

worked alone or in pairs. The learning that resulted from 
non-systematic pairing of students was equivalent to the 
students who did not use the tutor (Anderson, Corbett, 
Koedinger, & Pelletier, 1995).  
 When we remove the pragmatic limitations of 
conducting evaluations in the real worl
collaborative use of an ITS is more promising. For 
example, the Sherlock system was originally designed to 
train Air Force technicians. It was then modified to 
capitalize on the strengths of the reflection dialogs that 
occurred after the students used the training system 
(Lesgold, Katz, Greenberg, Hughes, & Eggan, 1992). 
Using the system in a peer group was advantageous for the 
technicians because they were in a position to help their 
partner, as well as to direct their partner’s use of Sherlock 
(Katz & O’Donnell, 1999). 
 Therefore, instead of asking, “Do dyads benefit more 
from using an ITS than indi
question might be, “What are the types of student 
conversations that facilitate learning in an ITS?” Lesgold 
and Katz would suggest the answer is “follow-up reflection 
dialogs.” Our suggested answer is that the trialog should 
focus on remediating errors on steps. 
 To support this claim, we looked at several different 
measures of learning, most of which 
coherent and consistent pattern of results. The dyads 
requested fewer hints and bottom-out hints than the 
individuals. To explain why, we analyzed the types of 
errors that were made while solving problems. At the 
largest grain size, the dyads produced fewer errors per 
entry than the individuals. At a more fine-grained analysis, 
the dyads demonstrated fewer deep errors than the 
individuals. This suggests that the dyads did not require as 
many hints because they were not making as many deep 
errors. 
 When help was requested, dyads were less likely to 
request a 
lower number of deep errors, or it might also be explained 
by the dyads’ use of the hint sequences. For instance, an 
excerpt from one of the dyads demonstrated that their 
conversation was focused on making sense of the Andes 
hint. This segment of speech illustrated the collaborative 
nature of the trialogs. Andes presented a suggestion to the 
dyad, but it becomes the dyad’s mission to make sense of 
the hints. Dyads may have been able to avoid asking for a 
bottom-out hint because they reasoned through the higher-
level hints. 
 Although ITSs do not yet employ full natural-language 
understandin
opportunity for enhancing learning. If the conversations 
between students can be scripted in such a way that they 
encourage students to work together to understand the help 
emanating from the tutoring system, then there may be an 
added advantage of engaging students in the active 
construction of their own knowledge and understanding. 
The implication for the design of an ITS is a consideration 
for the inclusion of support mechanisms for error-
remediation dialogs. 
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