
The Coverage of Error Diagnosis in Logic Programming Using Weighted
Constraints - The Case of an Ill-defined Domain

Nguyen-Thinh Le and Wolfgang Menzel
University of Hamburg

Department of Informatics
{le, menzel}@informatik.uni-hamburg.de

Abstract

Programming should be considered as an ill-defined domain
because for a given programming problem there might be
many alternative solution strategies and for each of them a
wide spectrum of solutions can be created. Most program-
ming problems, which are used to tutor beginners, are simple
and might have well-defined start and goal states. The task
statement can be well specified and a solution can easily be
checked for being correct or not. However, the activity of
solving a programming task is a design problem. One can not
only apply different programming techniques to create a so-
lution, but also modularize a program to make the code clear,
easy maintainable and reusable. In this paper, we demon-
strate how we applied weighted constraints to build a diagno-
sis component which serves the student model of an intelli-
gent tutoring system (ITS) for logic programming. This tech-
nology has been integrated into a web-based ITS. We eval-
uated the coverage of error diagnosis with 221 student solu-
tions of past examinations and the system was able to produce
a correct analysis for 87.9% of collected solutions.

Introduction

In the literature, there is no formal definition what consti-
tutes a ”well-defined problem”. Instead, we must be con-
tent with requirements which have been proposed as crite-
ria a problem must satisfy in order to be regarded as well-
defined: 1) a start state is available; 2) there exists a limited
number of transformation steps which can be relatively eas-
ily formalized; 3) evaluation functions are specified and 4)
the goal state is unambiguous (Simon 1973). Most program-
ming problems, which are used to tutor beginners, are simple
and might have well-defined start and goal states. The task
statement is precisely specified and a solution can easily be
checked for being correct or not. However, the activity of
solving a programming task is a design problem. One can
not only apply different solution strategies or different pro-
gramming techniques to create a solution, but also modular-
ize a program to make the code clear, easy maintainable and
reusable. Thus, the second criterion of well-definedness is

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

not satisfied. Hence, programming can be used as a case of
ill-defined domains. We study the treatment of such prob-
lems in the domain of logic programming.

Currently, the two approaches, which have the potential to
deal with ill-defined problems: model tracing (Ogan, Wylie,
& Walker 2006) and constraint-based modelling (CBM)
(Ohlsson 1994). Model tracing is used by cognitive tutors
which are among the most successful ITS today (Koedinger
et al. 1997) and CBM is applied to a variety of domains
among which SQL is the most succesful one (Mitrovic et
al. 2004). However, these approaches have been applied
to problems to a lesser degree of ill-definedness. Typi-
cally, they provide a template-like interface which restricts
the users’ creativity when designing an individual solution.
Another approach is to specify exercise texts so clearly that
”students can make correct decisions” (Baghaei, Mitrovic,
& Irwin 2006), and it remains a task to map between the
exercise requirements and the domain’s primitives. In fact,
such techniques move a task towards the more well-defined
problems, and thus, omit important learning objectives, i.e.
the proper arrangement of constructs within an SQL state-
ment. In this paper, we introduce an approach for dealing
with ill-defined problems by extending CBM with constraint
weights (W-CBM). This technology has been integrated in a
web-based ITS (INCOM) and evaluated partly with student
solutions of past examinations.

In the next section, we depict the training scenario and gen-
eral conditions under which logic programming problems
provided by INCOM should be considered ill-defined. Then,
we introduce knowledge representation techniques which
are required for diagnosis and describe how the diagnosis
procedure is carried out. After that, we evaluate the diagno-
sis with respect to its coverage, i.e. its ability to identify the
solution strategy and the solution elements correctly. There-
after, the advantages of our W-CBM approach are discussed
and we conclude in the last section that W-CBM is very use-
ful in analysing student solutions and identifying the solu-
tion strategy.

Proceedings of the Twenty-First International FLAIRS Conference (2008)

421



Training Scenario

INCOM prompts the student with a programming problem
and provides feedback to coach her composing a correct so-
lution. Given a task, the student is guided to go through
two phases: 1) task analysis and 2) design and implemen-
tation. In the first phase, the student is requested to input
an adequate signature for the predicate to be implemented.
If the signature is not appropriate, INCOM helps her to un-
derstand the task. This way, the student’s ability to analyse
a problem is determined. In the second phase, the student
is invited to compose a solution for the given exercise in
an unrestricted form. The user interface neither requires the
student to adhere to an anticipated solution strategy nor does
it specify the arrangement of solution elements (i.e. no input
templates are used).

The student is allowed to create Prolog programs (Prolog is
a language of logic programming) excluding cuts, disjunc-
tions or if-then-else operators. No assert, retract, abolish or
similar database-altering predicates can be used. The set of
built-in predicates which can be employed by the students
are: =, =.=, =\=, ==, \==, >, >=, <, =<, =.., +, -, *, /, ˆ
and ’is’. Helper predicates are provided explicitly or must
be defined manually.

Under these conditions, the student has a free choice of vari-
able and predicate names, can arrange the parameters within
a subgoal or a clause head freely and define helper predi-
cates as needed. Due to this degree of freedom, solving a
programming task is a design problem, and thus, logic pro-
gramming needs to be considered ill-defined.

Knowledge Representation

In order to cover the solution space for a logic programming
problem under the conditions above, first, we need a means
to represent the semantics required by the problem descrip-
tion. This kind of information is represented in a so-called
semantic table. Second, we need a technique to describe the
solution space for a programming problem. For this purpose,
we apply the CBM approach proposed in (Ohlsson 1994)
to model the relationship between structural elements in a
solution. Furthermore, we extend the CBM approach with
constraint weights to hypothesize the implemented solution
strategy and the programming techniques used. Both CBM
and constraint weights are required to examine the semantic
correctness of the student solution.

Semantic Tables

The semantic table contains two kinds of information:
the declaration and implementation semantic requirements.
They are used to diagnose the predicate signature and the im-
plementation for a given task, respectively. The second one
is specified by means of generalized sample solutions which

Table 1: A semantic table for the sample task
Head Subgoal Description

C1 p(OL,NL) OL=[] Basecase list empty
NL=[] New list also empty

C2 p(OL,NL) OL=[N,S|T] N:Name; S:Salary
NL=[N,Sn|Tn] Build a new list
S=<5000 Salary =< 5000
Sn is S+S*0.03 Salary is increased
p(T, Tn) Recurse old list

C3 p(OL,NL) OL=[N,S|T] N:Name; S:Salary
NL=[N,Sn|Tn] Build a new list
S>5000 Salary>5000
Sn is S+S*0.02 Salary is increased
p(T,Tn) Recurse old list

describe the framework of a predicate definition in relational
form. That is, clauses, subgoals and argument positions are
not restricted to a particular sequential arrangement. In ad-
dition, all unification conditions are expressed explicitly and
clause heads as well as subgoals are represented in normal
form (Table 1). The normal form representation reveals the
underlying programming techniques. Thus, the diagnosis
becomes more adequate on the conceptual level and the re-
sulting feedback turns more useful. A generalized sample
solution is specified for each solution strategy, all of which
compose the semantic table for a particular exercise.

Weighted Constraints

The CBM approach has been proposed in (Ohlsson 1994)
to model general principles of a domain as a set of con-
straints. A constraint is represented as an ordered pair con-
sisting of a relevance part and a satisfaction part: C =<
relevancepart, satisfactionpart >. The relevance part
represents circumstances under which the constraint applies,
and the satisfaction part represents a condition that has to be
met for the constraint to be satisfied. A constraint is used to
describe a fact, a principle or a condition which must hold
for every solution contributed by the student. In addition,
constraints can also be used to specify the requirements of a
task or to handle solution variations. If a constraint is vio-
lated, it indicates that the student solution does not conform
to the principles of a domain or it does not meet the require-
ments of the given task.

For a programming problem in an ill-defined domain like
logic programming there are many or even uncountably
many solutions. We need to create hypotheses about the so-
lution strategy and the programming techniques which have
been implemented in the student solution and evaluate them
according to their plausibility. These two issues (hypothe-
sis generation and hypothesis evaluation) are carried out at
the same time in one and the same decision procedure. For
this purpose, we extend the CBM approach with constraint
weights which can be conceived of as a measure of impor-
tance for a constraint. If the relevance part of the constraint

422



identifies a solution element, the constraint weight reflects
the importance of that solution element. For example, a
clause is composed of a clause head and a set of subgoals,
each of which is composed of a functor and its arguments. A
subgoal contributes more information to the overall correct-
ness of the solution compared to an argument or a functor.
Hence, a constraint which examines an argument should be
specified as being less important compared to a constraint
checking a subgoal. We define a formal representation for
weighted constraints as follows: constraint(Id, Type, Rele-
vance, Satisfaction, Weight, Position, Hint) where Id is a
unique identification of the constraint; Type is a constraint
type which guides its invocation; Relevance is the relevance
part; Satisfaction is the satisfaction part; Weight indi-
cates the importance of the constraint; Position indicates
the error location; and Hint is an instructional message,
which explains the error. We use weighted constraints for
the following purposes:

• Declaration constraints: are used to examine the arity
of a predicate as well as type and instantiation mode of
each argument position. These constraints are employed
exclusively to diagnose the signature of a predicate.

• Semantics constraints: are used to examine whether a
solution fulfills the requirements of the task statement.
Semantic constraints have access to the information from
the semantic table. Given a generalized sample solu-
tion, the relevance part of a semantic constraint refers to
a component of a predicate definition and compares the
student solution with respect to that selected component.
For example, the following constraint examines whether
a clause is a recursive clause according to a requirement.

Constraint 1:

Rel: In the generalized sample solution, there exists a re-
cursive clause.

Sat: In the student solution, there exists a corresponding
recursive clause, (which has a subgoal in the clause body,
with the same functor and argument list as in the clause
head).

• Pattern constraints: Standard solution strategies can be
modelled as patterns. A pattern describes the coarse struc-
ture of a possible student solution. However, patterns are
independent from any task. They are used to create hy-
potheses about the strategy implemented in the student
solution. For that purpose, the student solution is decom-
posed into components which are then compared with the
pattern corresponding to the exercise type. A pattern en-
capsulates the application of several programming tech-
niques, which construct the desired semantics of the pat-
tern, i.e. the recursive processing of list elements. Since a
pattern can be specialised by inheriting the characteristics
of a super-pattern and adding new techniques, patterns
can be organized in a hierarchy. Internally, a pattern is
modelled by so-called pattern constraints which describe
the pattern’s characteristics. Pattern constraints are partly
redundant to semantic constraints. If a pattern constraint
is violated, a strategy related remedial hint can be derived

and returned to the student. Hence, such constraints can
enhance the explanation quality of the diagnostic results
but they are not mandatory. Not always a suitable pattern
can be found for all possible exercise types and solution
strategies. In such a case, no strategy related remedial
hints can be given (Le 2006).

• General constraints: express the general semantic prin-
ciples of the programming language. They are not specific
to any task and must be satisfied by any correct solution.

Transformation Rules

A programming technique or a construct can be instantiated
in many different ways. Especially, arithmetic expressions
exhibit a great variety of equivalent formulations. In order
to represent a space of alternatives for a programming tech-
nique or a construct, we have defined transformation rules.
Currently, we do not consider recursively embedded arith-
metic expressions. Our system just copes with arithmetic ex-
pressions without nesting, for example: A*(B+C). For such
arithmetic expressions, the following transformation rules
are required:

• Rule 1: transforms the normal form to the simplified form
applying the distributive law: A ◦ X ± B ◦ X → (A ±
B) ◦ X , where the operator ◦ is either * or /. If A and
B are numbers, then (A ± B) ◦ X can be transformed to
M ◦ X where M = A ± B. For example: (2 + 3) ∗ X
will be transformed to 5 ∗ X .

• Rule 2: transforms a product term applying the commuta-
tive law: A ∗ B → B ∗ A

Error Diagnosis

According to the two-phase guide of the training scenario,
the diagnosis procedure is separated into two steps: sig-
nature and implementation diagnosis. Invoking declaration
constraints, the signature diagnosis examines the appropri-
ateness of the predicate declaration. Semantic, pattern, and
general constraints are invoked in the subsequent implemen-
tation diagnosis which determines the implemented solution
strategy, the correct implementation of required program-
ming techniques (i.e. implicit or explicit unification) and the
correct application of general semantic principles of Prolog
(i.e. the instantiation conditions for arithmetic evaluations).

In principle, the signature and implementation diagnosis are
carried out as an interaction of hypothesis generation and hy-
pothesis evaluation. Hypotheses are interpretation variants
for the student solution 1. They are generated by mapping
elements of the student solution to the ones of the seman-
tic table. Every hypothesis is evaluated based on the rele-
vant constraints. In addition, the score of the constraints,

1The term ”student solution” means both student’s input for sig-
nature declaration and implementation.

423



which are violated by the selected hypothesis, is computed
based on a multiplicative model. That score is used to take
a decision for the most plausible interpretation. Diagnostic
information about shortcomings of the student solution can
be gained from constraint violations. Superfluous and miss-
ing elements in the student solution are detected from the
hypothesis mapping.

After the declaration diagnosis is finished and the student
has provided an appropriate signature declaration, the stu-
dent is allowed to input her implementation. Once the solu-
tion is submitted to evaluation, the implementation diagno-
sis is carried out as follows: 1) Hypothesis generation: the
student solution is mapped iteratively to each of the gener-
alized sample solutions; 2) Hypothesis evaluation: for each
mapping, the plausibility is computed based on violated con-
straints and the mapping which has the highest plausibility
score represents the best hypothesis. The interaction of hy-
pothesis generation and hypothesis evaluation takes place on
different levels subsequently:

1. Mapping of the clauses;

2. Mapping of the subgoals within a clause;

3. Mapping of arguments and operators;

4. Mapping of summands in a arithmetic expression;

5. Mapping of factors and algebraic signs in a summand.

Suppose, X is a set of expressions on the level to be con-
sidered, which are extracted from the semantic table, i.e. on
the clause head/subgoal level X consists of a clause head
and a set of subgoals and Y is a set of expressions of the
same level extracted from the student solution. From a hor-
izontal perspective, on each level the diagnosis works as a
generate-and-test procedure as follows:

1. Create a set Z of hypothesis mappings between X and
Y : A mapping is a combination of expressions in X and
Y , where the following cases are considered:

• If X is empty and Y is not empty, then take a y ∈ Y
and add map(NIL, y) to the current mapping. If Y is
empty and X is not empty, then take a x ∈ X and add
map(x,NIL) to the current mapping. Otherwise, for
all x ∈ X and y ∈ Y add map(x, y) to the current
mapping.

• If x ∈ X contains transformable expressions, then ap-
ply mathematical transformations to create variants of
x which extend the size of Z.

2. Compute the plausibility of hypothesis mappings:

• Select constraints of the current diagnosis level.

• The plausibility for the mapping z ∈ Z is computed by

the formulae: P (z) =
∏

N

i=1
Si where Si is the weight

score of the constraint which is violated and 0< Si <1.
Compute the plausibility for each mapping z ∈ Z iter-
atively.

Table 2: A student solution for the sample task
SC1 gehalt([], []).

SC2 gehalt([N,B|R],E):-B>5000,
B is B+B*0.02,
gehalt(R,E),
E is [N,B|E].

SC3 gehalt([N,B|R],E):-B is B+B*0.03,
gehalt(R,E),
E is [N,B|E].

• The mapping z, which has the highest plausibility
P (z), is the best hypothesis.

For example, there is one generalized sample solution
for the sample task (Appendix A) in the semantic table
(Table 1) and a sample student solution is given in Ta-
ble 2. According to the procedure above, the diagno-
sis will begin at the clause level. First, it maps clauses
of the semantic table with clauses of the student solu-
tion. The following hypothesis mappings are created: Map-
ping1={map(C1;SC1), map(C2;SC2), map(C3;SC3)} and
Mapping2={map(C1,SC1), map(C2;SC3), map(C3;SC2)}.
As C1 and SC1 are of the same clause type (base case), there
is just one possible mapping whereas C2, C3, SC2 and SC3
are recursive cases, therefore 2*1=2 possible mappings need
to be considered on the clause level. Second, the hypothesis
generation iterates through the subgoal, argument/operator,
summand, factor levels and the amount of mappings rises
with the diagnosis depth. Finally, the generated mappings
are evaluated by invoking the corresponding constraints and
the one with the highest score is selected.

Evaluation of the diagnostic coverage

Since the student might follow a range of many solution
strategies, the ability of the system to interpret and to analyse
a student solution correctly is an indispensable prerequisite
for deriving a precise diagnosis. To measure this ability, we
conducted a preliminary evaluation. We selected appropri-
ate exercises and solutions from past written examinations.
The participants were students who had chosen their major
in different branches of Informatics. The examination candi-
dates had attended a course in logic programming which was
offered as a part of the first semester curriculum in Informat-
ics. The evaluation was meant to determine the number of
student solutions whose strategy was identified correctly by
INCOM.

We selected seven exercise tasks (a sample is described in
Appendix) from the examinations of the years 1999 and
2000, for which there were 221 solutions available. Each of
the exercise tasks requires different skills to master, among
them: arithmetic calculation, arithmetic test, database rela-
tionships, list (de)composition, recursion, and unification.
While collecting student solutions from past examinations,

424



Table 3: Evaluation of the diagnostic coverage
Task Sol Not under- Correctly Incorrectly

standable analysed analysed

1 10 0 10 0

2 11 0 10 1

3 6 2 3 1

4 17 1 16 0

5 58 2 54 2

6 81 0 79 2

7 38 2 34 2

Sum 221 7 206 8

we filtered out solutions which are not sufficiently elab-
orated for applying a diagnosis, i.e. highly fragmentary
clauses. Furthermore, we added appropriate predicate dec-
larations, because during the examination, students were not
asked to provide that information about meaning, types and
modes of each argument position.

To evaluate whether a solution can be analysed correctly by
INCOM, an expert investigates every student solution man-
ually. Student solutions which can not even be understood
by a human expert, are sorted out to the group ”not under-
standable” (an example in Appendix). All ”understandable”
solutions are input into the system which resulted in a list of
violated constraints. The expert examines the list of violated
constraints and decides whether the system has analysed the
student solution correctly. Accordingly, it is assigned to the
category ”correctly analysed” or ”incorrectly analysed”.

Table 3 summarizes the statistics of the evaluation. The
amount of available student solutions is indicated in the sec-
ond column. The third column represents the number of so-
lutions which are sorted to the category ”not understand-
able”. The fourth and the last column show the amount of
solutions which belong to the category ”correctly analysed”
and ”incorrectly analysed”, respectively.

Overall, 87.9% (s=17.1%) of the student solutions have been
analysed correctly by INCOM. Those solutions, which have
been excluded by the human expert, were implemented with
several arbitrary helper predicates. This indicates that the
student is disoriented and does not follow a specific solution
strategy. The reasons for an analysis failure were that stu-
dents defined helper predicates which were not modelled in
the semantic table. In addition, one student solution was im-
plemented using an operator ”;” to concatenate two clauses
which is not supported by our system. In other solutions,
a comma was used instead of a decimal point, which is the
standard for numbers in German, but forced Prolog to break
the arithmetic expression into two subgoals. The ratio be-
tween ”not understandable” and ”incorrectly analysed” so-
lutions is 7:8 which indicates that almost half of the solu-
tions, for which INCOM is not able to produce a correct
analysis, can not be understood by the human expert either.

Discussion

In comparison with other application domains, for which
constraint-based ITS have been developed, the problem
tasks in logic programming poses a challenge for system de-
velopment. From the perspective of a domain model, we are
confronted with novel requirements, because simplified as-
sumptions, which have been made for other application con-
texts, are no longer valid. Those assumptions are: 1) The
absence of a unique ideal solution; 2) The variance, which
arises from the free choice of identifier names; 3) The vari-
ance, which results from different solution strategies and im-
plementation techniques; 4) The ability to determine the so-
lution strategy implemented in the student solution. Accord-
ing to these four criteria, other constraint-based ITS pub-
lished so far provide problem tasks, which are usually sim-
plified to a degree that they become more well-defined. Typ-
ically, an ideal solution is assumed and constraints serve pri-
marily to enumerate the variations of the solution (Baghaei,
Mitrovic, & Irwin 2006). This practice fails, if there are
many or even uncountably many solutions for a problem
task like in the domain of programming. Hence, program-
ming problems should rather be considered to belong to the
class of ill-defined domains, even though any software solu-
tion has a formal semantics. For this situation, we have de-
veloped an approach which avoids ideal solutions as far as
possible. For the purpose of diagnosis, concrete sample im-
plementations are generalized to abstract schemata, which
are then restricted by additional co-reference and general
linearisation conditions. Therefore, the advantages of using
weighted constraints are most convincing in correspondence
with the treatment of possible serialisation variants.

In addition, our approach of using generalized sample solu-
tions in the semantic table results in a preference for simple,
i.e. elegant solutions. For example, in the arithmetic ex-
pression X+1-1+1-1, the system will consider the elements
+1, -1 as superfluous, although the term is semantically cor-
rect. This way, the principle of parsimony, provides the di-
agnosis with a means to deal with yet another aspect of ill-
definedness.

In general, CBM tutoring systems are considered to be un-
able to identify the implementation strategy of a student so-
lution. If a remedial hint makes a wrong assumption about
the student strategy, then the feedback can be misleading
(Martin 2001). This deficiency is compensated in our pro-
totype by the concept of patterns. From a didactic point
of view, patterns fulfil two purposes: 1) they can be used
to make assumptions about the strategy implemented in the
student solution; 2) from those assumptions, strategy related
feedback can be derived (Le 2006). From the perspective of
knowledge representation, the hierarchical organisation of
patterns provides advantages with regard to system develop-
ment and system extension. This is a feature which has not
been proposed for alternative approaches so far and might
even be difficult to realise.

425



Our system provides a two-tiered interaction design which
offers advantages with regard to the diagnosis quality. It
makes available the predicate schema, thus providing the di-
agnosis with essential information about the exercise spe-
cific allocation of arguments, and therefore considerably re-
duces the number of mapping hypotheses that have to be
analysed. Furthermore, the two phases of solution devel-
opment correspond to important stages of the programming
process: signature declaration and implementation of the re-
quired semantics.

Our transformation approach starts with a normalised ex-
pression from the semantic table and produces semantically
equivalent alternatives, which are compared with expres-
sions from the student solution. Thus, the direction of our
transformation is different from the one adopted in compa-
rable works, i.e. (Gegg-Harrison 1993), where expressions
to be examined in the student solution are transformed to
a normal form, for which the semantic equivalence with a
correct solution has to be proven. Such an approach, how-
ever, comes with a serious drawback. Since the transfor-
mation takes place before the proper diagnosis, the localiza-
tion of the error becomes problematic. This results also in
a negative effect on the precision and comprehensibility of
resulting remedial hints. After all, our transformation ap-
proach considers a wide spectrum of alternative variants of
arithmetic expressions. Modelling a comparable diversity of
variants will probably be difficult in other frameworks.

Conclusion and Future Works

We have proposed an extended CBM approach using
weighted constraints to model the solution space for logic
programming problems. Error diagnosis is based on a
knowledge representation for which we applied two fea-
tures: a semantic table which contains mandatory seman-
tic information and weighted constraints which describe the
solution space for a programming problem. The diagnosis
procedure is carried out by an interaction between hypoth-
esis generation and hypothesis evaluation. We conducted
an evaluation of the model’s coverage with 221 student so-
lutions. INCOM was able to produce a correct analysis for
87.9% of student solutions. Next, we are going to extend our
semantic table with helper predicates in order to improve the
diagnosis coverage. In addition, we evaluate the diagnostic
accuracy and conduct an online evaluation to assess the ed-
ucational effectiveness of INCOM.

References

Baghaei, N.; Mitrovic, A.; and Irwin, W. 2006. Problem-
solving support in a constraint-based intelligent tutoring
system for uml. Technology, Instruction, Cognition and
Learning 4(1-2).

Gegg-Harrison, T. S. 1993. Exploiting Program Schemata
in a Prolog Tutoring System. Number 27708-0129.

Durham, North Carolina: Department of Computer Sci-
ence, Duke University.

Koedinger, K.; Anderson, J.; Hadley, W.; and Mark, M.
1997. Intelligent tutoring goes to school in the big city.
International Journal of AI in Education 8:30–43.

Le, N.-T. 2006. Using Prolog design patterns to support
constraint-based error diagnosis in logic programming. In
Ashley, K.; Aleven, V.; Pinkwart, N.; and Lynch, C., eds.,
Proceedings of the Workshop on ITSs for Ill-Defined Do-
mains, the 8th Conference on ITS, 38 – 46.

Martin, B. 2001. Intelligent Tutoring Systems: The Practi-
cal Implementation Of Constraint-based Modelling. Ph.D.
Dissertation, University of Canterbury.

Mitrovic, A.; Suraweera, P.; Martin, B.; and Weerasinghe,
A. 2004. Db-suite: Experiences with three intelligent, web-
based database tutors. Journal of Interactive Learning Re-
search (JILR) 15(4):409–432.

Ogan, A.; Wylie, R.; and Walker, E. 2006. The challenges
in adapting traditional techniques for modeling student be-
havior in ill-defined domains. In Ashley, K.; Aleven, V.;
Pinkwart, N.; and Lynch, C., eds., Proceedings of the Work-
shop on ITSs for Ill-Defined Domains, the 8th Conference
on ITS, 29 – 37.

Ohlsson, S. 1994. Constraint-based student modelling. In
Greer, J. E., and McCalla, G. I., eds., Student Modelling:
The Key to Individualized Knowledge-based Instruction.
Berlin: Springer-Verlag. 167–189.

Simon, H. A. 1973. The structure of ill structured prob-
lems. Artificial Intelligence 4(3):181–201.

Appendix

A sample task: A salary database is implemented as
a list whose odd elements represent names and even
elements represent salaries measured in Euro. For
example: [meier,3600,schulze,5400,mueller,6300,...,bauer,
4200]. Define a predicate which computes a new salary list
based on the given one according to following rules: 1) a
salary below or equal 5000 Euro will be raised by 3%; 2) a
salary above 5000 Euro will be raised by 2%.

A ”not understandable” sample solution:

gehalttarif(Gehaltvorher,Gehaltnachher):-

gtacc(Gehaltvorher,[],Gehaltnachher).

gtacc(GLvor, Acc, GLnach).

gtacc([GLvorName, GLvorDM|GLvorTail], Acc, GLnach):-

gtacc(GLvorTail, [GLvorName,GLneuDM|Acc], GLnach),

(GLneuDM is GLvorDM*103/100, Gehalt<=5000);

(GLneuDM is GLvorDM*105/100, Gehalt>5000).

426




