
Graph Grammars: An ITS Technology for Diagram Representations

Niels Pinkwart
1
, Kevin D. Ashley

2
, Vincent Aleven

3
 and Collin Lynch

4

1Clausthal University of Technology, Department of Informatics, Germany
2University of Pittsburgh, LRDC and School of Law, Pittsburgh PA, USA

3Carnegie Mellon University, HCI Institute, Pittsburgh PA, USA
4University of Pittsburgh, Intelligent Systems Program, Pittsburgh PA, USA

niels.pinkwart@tu-clausthal.de

Abstract

For many educational applications such as learning tools for
argumentation, structured diagrams are a suitable form of
external representation. However, student-created graphs
pose some problems to ITS designers, especially in defined
domains. This paper demonstrates a graph-grammar-based
approach for ITS construction in domains that benefit from
diagram representations. For these, graph grammars offer
some helpful affordances. They make it easy to express
possible manipulations by which a student might create a
diagram, they facilitate the definition of structurally
complex and pedagogically interesting constellations of
graph elements to which an ITS should respond with
feedback messages, and they offer a general parsing
mechanism that allows the analysis of student-created
diagrams by recognizing these constellations in graphs.

Introduction

Argumentative thinking skills are critical for humans in

many aspects of life (Kuhn, 2001). Consequently, teaching

argumentative skills is a central goal of education – both

on a general level (classroom dialog is a form of group

argumentation), and also in specific application areas such

as science or law, which define rules about what

constitutes an acceptable argument.

Often, argumentation is taught by human teachers through

face to face dialog. Intelligent Tutoring Systems for

argumentation are still relatively rare. The few ITS systems

for argumentation usually allow students to work with

explicitly structured argument representations, often,

visualized in diagram form. This helps both the system and

the learner. From a cognitive perspective, graphical

representations can reduce the students’ cognitive load and

reify important relationships (Larkin and Simon 1987).

From a system design point of view, the explicit structure

can provide a practical means for ITSs to provide

feedback. Examples for systems that follow this approach

are the Belvedere system for scientific argumentation

Copyright © 2008, Association for the Advancement of Artificial

Intelligence (www.aaai.org). All rights reserved.

(Paolucci, Suthers and Weiner 1996) which compares a

student-created argument graph to an ideal solution, the

ArguMed system (Verheij 2003) which provides intelligent

feedback through an argumentation “assistant” that

analyzes structural relations between contributions in

diagrams, and the Araucaria system (Reed and Rowe 2004)

that allows the specification of argument schemes

(premises and feedback messages) instances of which can

be detected in student diagrams. Carneades argument

diagrams (Gordon 2007) can be used to map legal evidence

and allow informing users automatically if a specific claim

satisfies a given proof standard (no specific educational

usage of Carneades has been reported yet). The

ARGUNAUT system (McLaren et al. 2007) analyzes the

graph structure and language of arguments using a

combination of machine learning and text analysis

techniques. This system is not an ITS system in a narrow

sense, since analysis results are used to inform the teacher,

not to give specific feedback to the student.
These existing tools are either based on relatively
straightforward approaches (comparisons between student
and ideal graph, search for explicit elements in student
graphs), or they are very domain specific. A general and
reusable technology for developing Intelligent Tutoring
Systems based on graph structured (argument)
representations has not emerged yet. Two factors can
account for this. Firstly, student-created graphs are
structurally and computationally more complex than
“traditional” user interfaces. This poses problems for some
approaches: for instance, propositional logic is not a
suitable technology for ITSs that analyze diagrams (since
cycles of arbitrary length cannot be detected). Predicate
logic is expressive enough, but difficult to apply in practice
and not especially suited for graph based representations.
Secondly, many forms of argumentation are ill-defined:
typically a “correctness” notion for an argument is
impossible to define or verify formally because the
underlying concepts are open-textured and the quality of an
argument may be subject to discussion or even expert
disagreement. For these reasons, it is very hard (if not
impossible) to develop a detailed and formalized domain
model for an ITS. Such a model that describes the process
of building “good graphs” would be the prerequisite for

Proceedings of the Twenty-First International FLAIRS Conference (2008)

433

applying Cognitive Tutor approaches (Anderson et al.
1995) to argumentation. This second point is more related
to the domain of argumentation than to properties of a
representation – but in this context it is worth noting that
for many educational approaches in ill-defined domains,
graph-structured representations are frequently used - see
Aleven et al. (2007) for an overview of recent approaches.

In order to appropriately deal with structured diagram

representations, an ITS needs components that allow:

a) representing diagram system-internally. This is a

prerequisite in order to enable the ITS to do the tasks

described in b) and c).

b) handling changes in diagrams. This includes a

specification of which diagram changes a user is

allowed to do: if it makes sense pedagogically to

prevent students from making certain “syntax errors”

in diagrams (e.g., by connecting elements that should

not be connected, according to the domain model),

then the ITS should be able to implement this strategy.

This requires a way to express syntax constraints

which is expressive enough for graph structures.

c) analyzing diagrams to give feedback. This can be done

in various forms – e.g., based on full domain models

(if these exist), domain ontologies (with domain

concepts and relations), or using semantic constraints.

This paper describes how, for these typical ITS tasks,

graph grammar technology can be used as a tool that is

specially suitable for extending ITS tutoring to student-

authored graphs and especially useful for ill-defined

domains. We use the domain of legal argumentation and

the LARGO ITS as an illustrating example. While the

general system has been published before (Pinkwart et al.

2006), this paper focuses on the underlying technology and

its general value for the ITS field.

Example Domain: Legal Argumentation

We present a model and example of legal argument that

has been incorporated in an ITS system design based on

graph grammars. The model (Ashley 2007) involves tests

and hypotheticals as key elements: In US Supreme Court

oral arguments, contending attorneys each formulate a

hypothesis about how a set of issues in the problem should

be decided. They may propose a test and identify key

points on which the issue should turn, thus relating the

facts at hand to their hypotheses and choosing how best to

describe them. The Justices test those hypotheses by

posing hypothetical scenarios designed to challenge the

hypotheses’ consistency with past decisions, and the

purposes and principles underlying the legal rules.

The following excerpt from the case of California v.

Carney, 105 S. Ct. 2066 (1985) involved the legality under

the 4th Amendment of a warrantless search of a motor

home located in a downtown parking lot. On appeal, the

State’s attorney, Mr. Hanoian, proposed a “bright line” test

of when the “vehicle exception” to the warrant requirement

should apply:
MR. HANOIAN: If the vehicle has wheels on it, I think that that

makes it mobile and it would be subject to the exception….If it

still has its wheels and it still has its engine, it is capable of

movement and it is capable of movement very quickly.

JUSTICE: Even though the people are living in it as a home and are

paying rent for the trailer space, and so forth?

JUSTICE: Well, there are places where people can plug into water,

and electricity, and do. There are many places, for example, in

the state I came from where people go and spend the winter in a

mobile home. And you think there would be no expectation of

privacy in such circumstances?

MR. HANOIAN: Well, I am not suggesting that there is no

expectation of privacy in those circumstances, Your Honor.

In the excerpt, Mr. Hanoian proposes a test, whether the

vehicle/home is capable of self-locomotion, and then has to

respond to the Justice’s challenge hypothetical: a motor

home that is hooked up to water and electricity. Mr.

Hanoian responds that such a vehicle might still be moved

in a hurry, but concedes the owners would have some

expectation of privacy.

Figure 1. An example LARGO Argument Diagram

Examples of oral argument can give beginning law

students an overview of a process that they may only dimly

perceive, even as they engage in it in a class. The LARGO

system allows students to graphically represent the

dialectical pattern of hypothetical reasoning described

above, and gives feedback on student-created argument

diagrams. Figure 1 shows an example graph created in

LARGO. It contains the tests and hypotheticals from the

above excerpt, an element representing the facts, and five

relationships among these. For example, the “trailer

without tractor” hypothetical is distinguished from the

current fact situation.

Students can also link the single elements in their graph to

passages in a transcript of an oral argument (not shown in

the Figure), using a text highlighting feature. These

“transcript links” enable referencing external sources from

graph elements, a common ITS requirement.

434

Graph Grammars in LARGO

The ITS graph grammar mechanism we propose here,
illustrated with examples from the LARGO ITS, is based
on the grammar format proposed by Rekers and Schürr
(1997). A grammar consists of a set S of symbols (which
can have attributes), a start axiom, and a set of production
rules. Words in the grammar represent student-created
diagrams, while rules of the grammar are used to handle
changes in diagrams and to analyze the diagrams in order
to give feedback. Details on the implementation of these
principles are demonstrated in the next subsections

Diagrams as Grammar Words

The symbols of the grammar contain node and edge types
within graphs, which correspond to the domain concepts
and relations, as well as some help symbols (in Sc):

S = Sn ∪ Se ∪ Sc

Sn = {test, hypothetical, fact}

Se = {distinction, analogy, modification, causality,

 relatedness}

Technically, a word in the grammar (i.e., a diagram) is a 4-
tuple (N, E, M, C). N (nodes) and E (edges) contain the
diagram data. M (metadata) consists of summary
information such as element counters, while C
(characteristics) contains the ITS specific metadata: an
element of C is an aspect of a diagram that the ITS can
give feedback on.
The start axiom of the grammar in LARGO is:

(∅, ∅, M, C)

Here, N and E are initially empty (i.e., the diagram does
not contain elements). M contains a counter for the number
of elements (initially 0) and information about irrelevant
regions in the argument transcript (that LARGO is
supposed to comment on, should these be referenced from
a diagram). C contains a list of initial graph characteristics.
It may appear strange at first sight that the start axiom can
already contain graph characteristics. This makes sense,
however, if one wants to express the absence of specific,
pedagogically relevant, elements in a diagram (which is of
course fulfilled for empty graphs). In LARGO,
characteristics about important regions in the transcript
(not referenced from a diagram) are included in C. These
lists constitute the only task-specific information in the tool
– i.e., using LARGO with another legal case only requires
a change of these two lists.
The diagram shown in Figure 1 has the following
representation (N, E, M, C), assuming that the node of type
“test” with the content “if vehicle has wheels…” is linked
to the characters 1050-1150 of the transcript, and the node
of type “hypothetical” with text “vehicle in motor home
park…” to the characters 1520-1550, respectively. Details
for the second test and the other hypothetical are omitted in
the example for space reasons.
N = {testA, testB, hypotheticalA, hypotheticalB, fact}

E = {modification, relatednessA, relatednessB, causality,

distinction}

with:

testA.conditionText = “IF vehicle has wheels AND capable

 of moving”,

testA.conclusionText = “THEN search without warrant

 permitted”,

testA.linkStart = 1050,

testA.linkEnd = 1150,

hypotheticalA.text = “vehicle in motor home park (with

 water and electricity connections) OUTCOME: search

 permitted”,

hypotheticalA.linkStart = 1520,

hypotheticalA.linkEnd = 1550,

fact.text = “Carney’s van had wheels and was self-

 propelled”,

modification.from = testA,

modification.to = testB,

relatednessA.text = nil,

relatednessA.from = hypotheticalA,

relatednessA.to = testA,

relatednessB.text = nil,

relatednessB.from = hypotheticalB,

relatednessB.to = testB,

causality.from = hypotheticalA,

causality.to = testB,

distinction.text = mobility,

disctincion.from = hypotheticalB,

distinction.to = fact

In our notation, attributes of a symbol are encoded using an
object-oriented notation (symbolname.attributename).
Letter indices for symbols are used to distinguish between
different occurrences of a symbol. The above example
illustrates how each diagram element (node or edge) has an
explicit representation in the grammar expression, and how
information about these diagram elements such as the
contained text or the links to external sources (such as
transcript passages) can be encoded as attributes.
As mentioned, the metadata M and the characteristics C

partially depend on task-specific information, in the case of

LARGO specifically on the transcript locations of

important tests and hypotheticals, and of irrelevant

passages. For example, if there is one irrelevant passage

(characters 100-200 of the transcript), and one important

hypothetical (2500-2600), then M and C are as follows:

M = {counter, irrelevant}

C = {characteristic}

with:

counter.testCount = 2.

counter.hypoCount = 2,

counter.factCount = 1,

counter.relationCount = 5,

irrelevant.linkStart = 100,

irrelevant.linkEnd = 200,

characteristic.linkStart = 2500,

characteristic.linkEnd = 2600,

characteristic.id = missed_hypo,

characteristic.referenceList = ∅

M here contains counters for the total numbers of nodes for
each of the types, and for the total number (here: 5) of
relations in the diagram. Technically, this is not absolutely
needed for the production rules (the numbers could be
calculated on the fly through grammar production rules),
but their availability speeds up the parsing process. The
element “characteristic” means that the diagram does not
contain a hypothetical which references a specific part of
the transcript (in this case, the characters 2500 to 2600).
The accuracy of this information is checked and updated
whenever the user asks for advice (cf. next subsections).

435

Grammar Rules for Editing Diagrams

Production rules of the graph grammar can be used to
allow an ITS to process and analyze argument diagrams.
The approach discussed here contains production rules of
two different types. Rules of the first type (generation
rules) are designed to enable an easy specification of
possible manipulations by which a student might create a
diagram (aspect “b” of the list in the introduction) These
rules are described in detail in the remainder of this
subsection. The second type of rules (feedback rules) is
described in the following subsection.
Technically, a production rule is represented by a structure

L = (NL, EL, ML, CL) � (NR, ER, MR, CR) = R

of two 4-tuples over S, together with some constraints
regarding the attribute values of elements in L and R. A
rule L � R can be applied to a graph G iff G contains a
subgraph G’ which matches L in terms of contained
elements and attribute constraints. The result of the rule
application is the graph (G ∪ R) \ G’. Thus, a rule
application replaces the subgraph that matches the left side
of the rule with the graph in the right side. In our notation
for a production rule, the L � R expression is specified
together with the constraints for rule applicability.
Constraints for the left hand side (L) are listed under a
section “Condition”, and constraints about the right hand
side (R) are listed under a section “Result”. For variables
(i.e., placeholders for a subset of symbols in S), capital
letters are used. Number indices for symbols are used to
indicate that the same symbol appears on the right and left
hand side of a rule, but that its attributes change as a result
of the rule application. Letter indices for symbols are used
to distinguish between different occurrences of a symbol.
I.e., if a rule requires two tests to be contained in a graph,
then the notations testA and testB are used to distinguish
between them.
As mentioned above, the possible user actions in the
system are represented as “generation grammar rules”. As
long as the user edits the diagram, only grammar rules of
this type are used. These allow a fine-granular
specification of the user options in the system with respect
to possible (and impossible) diagram manipulations and
thus define the action space of users in the system by
constraining the graphs that students can create for
pedagogical or domain-specific reasons. Edits have to be
explicitly allowed in form of production rules, otherwise
the user cannot perform them in the system.
Our example system LARGO was designed with the

pedagogical premise not to restrict users in their diagram

creation. As such, there are only very few syntax

restrictions in the LARGO grammar. For example, the

following rule specifies that students can make arbitrary

text changes within hypothetical and fact nodes:

// Rule 10: Change text in hypos and facts is allowed

({N1}, ∅, ∅, ∅) � ({N2}, ∅, ∅, ∅)

with

 N1 ∈ {hypothetical, fact}

Result:

 N2.text ∈ STRING

If the user edits the text content of the fact node in our

example diagram to “van had wheels”, this rule applies. In

the application of the rule, N1 matches the existing fact and

N2 represents the changed fact with the new text.

Another, more complex, example of a generation rule in
LARGO allows edges of any type to be added to the graph:
// Rule 4: Edges can be added anytime

({N1,M1},∅,{counter1},∅) �

({N2,M2},E,{counter2},()

with:

 N, M ∈ Sn and E ∈ Se

Condition:

 N1 ≠ M1

Result:

 E.from = N2,

 E.to = M2,

 counter2.relationCount =counter1.relationCount+1

This example rule expresses that all edge types are allowed
between all node types (N, M ∈ Sn and E ∈ Se). The only
restriction is that loops (edges between a node and itself)
are not allowed. In the argumentation model underlying
LARGO, it is not reasonable to link up an element to itself.
Therefore, the grammar prevents students from doing so.
This is an example of a syntax constraint expressed in
grammar rule format. If, in our example diagram of Figure
1, a user adds a “leads to” edge (causality relation) from
the fact node to the lower test node (testB), this action
matches this example rule 4 and is thus allowed. Here,

• N1 matches the fact node,

• M1 matches testB,

• E represents the new causality relation (to distinguish it

from the existing one, let us name it causalityB here).

As a result of the rule application, the following attribute

values are set:

causalityB.from=fact, causalityB.to=testB,

counter.relationCount = 6

Grammar Rules for Feedback Generation

Production rules of the second type (feedback rules) are
used to analyze the graphs and to detect diagram
characteristics. They express the system’s domain-specific
pedagogical knowledge, namely, interesting patterns
(constellations of graph elements) to which it can respond
with feedback messages to the student. Whenever the user
asks for advice in the system, the graph grammar engine
parses the diagram by applying all possible “feedback
rules” repeatedly and thereby generating “characteristics”
symbols in the fourth component of the 4-tuple.
In LARGO, diagram characteristics stand for weaknesses

in the graph (aspects that might indicate that a student has

not understood the argument model) or opportunities for

reflection (appropriate diagram parts that would be worth

further reflection). The LARGO example graph of Figure 1

has several such characteristics. If none of the hypothetical

nodes marks up the characters 2500-2600 of the transcript,

then the “missing hypothetical” characteristic from the

example in the subsection “diagrams as grammar words”

of this paper applies for this diagram – and thus remains in

the set C. If some hypothetical in the diagram referenced

436

the transcript characters 2500-2600, the following rule

would remove the corresponding characteristic from C.

// Rule 29: Important hypothetical referred to

({hypothetical}, ∅, ∅, {characteristic}) �

({hypothetical}, ∅, ∅, {foundlocation})

Condition:

 characteristic.id = missed_hypo,

 [hypothetical.linkStart, hypothetical.linkEnd] ∩

 [characteristic.linkStart, characteristic.linkEnd] ≠ ∅

Result:

 foundlocation.type = hypothetical,

 foundlocation.linkStart = characteristic.linkStart,

 foundlocation.linkEnd = characteristic.linkEnd

In LARGO (as in most ITS systems that rely on graph
based representations), the primary function of the diagram
analysis component is to find specific, pedagogically
interesting, patterns in student-created graphs. An example
from the legal argumentation domain is a diagram that
contains a hypothetical which is both related to the facts
and to a test, and at the same time also contains another
test. Tests represent proposed decision rules (by attorneys)
while hypotheticals are challenges to these tests (by
Justices). The described diagram constellation is a
pedagogical opportunity to invite the student to reflect
upon how the hypothetical scenario relates to the different
tests in the light of the facts of the case (e.g., by comparing
the decision rules). LARGO can detect the pattern with the
following graph grammar rule:

// Rule 59: Reflection on hypothetical

({hypothetical,fact,test},{E,F},{counter},∅) �

({hypothetical,fact,test},{E,F},{counter},

 {characteristic})

with

 E, F ∈ Se

Condition:

 E.from ∈ {hypothetical, fact},

 E.to ∈ {hypothetical, fact},

 F.from ∈ {hypothetical, test},

 F.to ∈ {hypothetical, test},

 counter.testCount > 1

Result:

 characteristic.id = discuss_hypo_mult_tests,

 characteristic.referenceList =

 {hypothetical, fact, test, E, F}

The attributes of a characteristic contain a reference list
which lists all the diagram elements that a detected
instance of the characteristic in the graph is related to. This
is used to highlight them in the feedback message and to
insert text snippets into the hints (see Figure 2).
In Figure 1, the above example characteristic (rule 59) can

be detected. The example rule applies due to the following

matches and constraint satisfactions:
Rule Symbol Matching graph element

hypothetical hypotheticalB

fact fact

test testB

E distinction

F relatednessB

counter counter

• distinction ∈ Se=> E ∈ Se

• relatednessB ∈ Se=> F ∈ Se

• distinction.from = hypotheticalB=> E.from ∈ {hypothetical, fact}

• distinction.to = fact => E.to ∈ {hypothetical, fact}

• relatednessB.from = hypotheticalB => F.from ∈ {hypothetical, test}

• relatednessB.to = testB =>F.to ∈ {hypothetical, test}

• counter.testCount = 2 => counter.testCount > 1

As a result of applying this rule, a new element

“characteristic” is generated in the fourth component of the

4-tuple. Its attribute values are:

characteristic.id = discuss_hypo_multiple_tests,

characteristic.referenceList = {hypotheticalB, fact,

testB, distinction, relatednessB}

By the end of the parsing process, the system has
catalogued each characteristic about which it can provide
feedback and included them in the set C in the structure.
The system then needs to select which advice to provide.
Providing a means for choosing which advice to provide at
any given time is an important decision because it is very
likely that multiple feedback rules match a graph, or even
that the same rule matches different parts of a graph. Then,
many characteristics can be observed simultaneously. In
pilot studies with LARGO, which has 49 feedback rules,
sometimes more than 100 characteristics were found in one
diagram. Thus, the selection problem is of key importance.

Figure 2. Graph Grammar Based Feedback in LARGO

The graph grammar can be helpful in this selection
process. As described in (Pinkwart et al. 2006), each
characteristic (and each feedback rule) can be associated to
a typical usage phase – e.g., orientation, transcript markup,
diagram creation, analysis, or reflection. The usage phase
of a student can be approximated through an analysis of all
the feedback rules that match his current graph. This can
be based on the heuristic that a large number of detected
characteristics of a specific phase suggest that the student
is in this phase. Using this information and additional tool
interaction data such as visible diagram parts, temporal
interaction sequences, or the feedback history, those
characteristics that match the current usage context of the
student can be prioritized. Figure 2 shows a screenshot of a
feedback message in LARGO. Together with the hint, the
elements in the diagram that the message relates to are
highlighted. These correspond to the referenceList attribute
of a characteristic and help the student understand which
parts of his diagram a system comment refers to.

Conclusion and Discussion

For many educational applications such as learning tools
for argumentation, structured diagrams are a suitable form
of external representation. Yet, student-created graphs pose
some unique problems for ITS development. This paper

437

describes a graph grammar based approach for the
construction of Intelligent Tutoring Systems in domains
that benefit from diagram representations, potentially with
links to external learning resources. Examples of these
domains include database design (Suraweera & Mitrovic
2002), scientific inquiry (Paolocci et al 1996), software
design (Baghaei et al 2007) and causal reasoning
(Easterday et al 2007). For these application areas, graph
grammars are an appropriate technology. They make it
easy to represent diagrams system-internally, they facilitate
the specification of possible manipulations by which a
student might create a diagram, they allow the definition of
structurally complex and pedagogically interesting
constellations of graph elements to which an ITS should
respond with feedback messages to the student, and they
offer a general parsing mechanism that can be used to
analyze student diagrams for occurrences of these graph
constellations in order to give feedback.
The example used in this paper to illustrate the technology
comes from the domain of legal argumentation. In this
domain, the approach has proven to work in practice both
technology-wise and also with respect to learning gains
caused by the system (Pinkwart et al. 2006). The graph
grammar method is general enough to be applied for the
construction of ITSs also for other argumentation domains
and, even beyond, in domains that benefit from structured
graph representations.
To apply the presented approach in other domains, the
concepts of these domains (node and edge types) and the
domain-specific pedagogic feedback rules need to be
adapted – the core grammar parsing engine is independent
of the domain, thus effectively reducing the time and
programming efforts needed for ITS development. To
modify the student options in the ITS system (e.g., to limit
the types of diagrams that can be created in order to
guarantee syntax constraints), a change of the generation
rules is sufficient – no programming effort is required. If
an existing ITS should be used in the same domain but
with other tasks (e.g., the same argumentation model, but a
different topic to argue about), then almost no changes
(except from updating the grammar axiom with links to the
new external learning resources) are required in the ITS.
Compared to existing work in the ITS literature on student-
created argument diagrams, the graph grammar formalism
presented in this paper has some clear advantages. In
contrast to special-purpose systems (e.g., Gordon 2007),
the design approach is general enough to be applied in
other domains. At the same time, graph grammar based
ITS systems do still allow for explicitly specifying domain-
specific pedagogical rules and feedback messages – in
contrast to pure machine learning approaches (e.g.,
McLaren et al. 2007). Graph grammars can plausibly be
used in conjunction with other ITS approaches. Intuitively,
they fit with constraint-based modeling (Ohlsson 1994):
both approaches do not require expert solutions of
problems, as e.g. (Paolucci et al. 1996) does. Instead, they
rely on local conditions in student solutions to give
feedback. For the specifications of these conditions, graph

grammars offer a formalism that is specially suitable for
diagrams, and more powerful than tools that rely on simple
pattern matching (Reed and Rowe 2004; Verheij 2003). In
summary, we believe that graph grammars constitute a
quite powerful and promising ITS technology. Through
their natural use of graphs as atomic structures, they offer
affordances that make it easy to develop ITS systems for
diagram representations.

References

Aleven, V., Ashley, K., Lynch, C., & Pinkwart, N. (Eds.)
2007. Proc. of the Workshop on AIED Applications for
Ill-Defined Domains at AIED. Los Angeles (CA).

Anderson, J., Corbett, A., Koedinger, K., & Pelletier, R.
1995. Cognitive Tutors: Lessons Learned. The Journal of
the Learning Sciences 4(2): 167-207.

Ashley, K. 2007. Interpretive Reasoning with Hypothetical
Cases”, Proc. of FLAIRS, Key West (FL).

Baghaei, N., Mitrovic, A., & Irwin, W. 2007. Supporting
collaborative learning and problem-solving in a
constraint-based CSCL environment for UML class
diagrams. International Journal of CSCL 2(2-3): 159-190

Easterday, M., Aleven, V., & Scheines, R. (2007). 'Tis
better to construct than to receive? The effects of
diagramming tools on causal reasoning. In Proc. of
AIED, 93-100. Amsterdam, IOS Press.

Gordon, T. F. 2007. Visualizing Carneades argument
graphs. Law, Probability and Risk (Advance Access).

Larkin, J., & Simon, H. 1987. Why a diagram is
(sometimes) worth ten thousand words. Cog.Sci 11:65-99

Kuhn, D. 2001. The Skills of Argument. New York (NY),
Cambridge University Press.

McLaren, B. M., Scheuer, O., De Laat, M., Hever, R., De
Groot, R., & Rose, C. P. 2007. Using Machine Learning
Techniques to Analyze and Support Mediation of Student
E-Discussions. In Proc. of AIED. Amsterdam, IOS Press.

Ohlsson, S. 1994. Constraint-based Student Modelling.
Proceedings of Student Modelling, 167-189, Berlin.

Paolocci, M., Suthers, D., & Weiner, A. 1996. Automated
Advice-Giving Strategies for Scientific Inquiry. In
Proceedings of ITS, 372-381. Berlin, Springer.

Pinkwart, N., Aleven, V., Ashley, K., & Lynch, C. 2006.
Schwachstellenermittlung und Rückmeldungsprinzipen
in einem intelligenten Tutorensystem für juristische
Argumentation. In Tagungsband der 4. e-Learning
Fachtagung Informatik, 75-86. Bonn, GI.

Reed, C., and Rowe, G. 2004. Araucaria: Software for
Argument Analysis, Diagramming and Representation.
International Journal of AI Tools 14:961-980.

Rekers, J., & Schürr, A. 1997. Defining and parsing visual
languages with layered graph grammars. Journal of
Visual Languages and Computing 8:27-55.

Suraweera, P., and Mitrovic, A. 2002. KERMIT: A
Constraint-Based Tutor for Database Modeling. In
Proceedings of ITS, 201-216. Berlin, Springer.

Verheij, B. 2003. Artificial argument assistants for
defeasible argumentation. Art. Intelligence 150:291-324.

438

