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Abstract 

For many educational applications such as learning tools for 
argumentation, structured diagrams are a suitable form of 
external representation. However, student-created graphs 
pose some problems to ITS designers, especially in defined 
domains. This paper demonstrates a graph-grammar-based 
approach for ITS construction in domains that benefit from 
diagram representations. For these, graph grammars offer 
some helpful affordances. They make it easy to express 
possible manipulations by which a student might create a 
diagram, they facilitate the definition of structurally 
complex and pedagogically interesting constellations of 
graph elements to which an ITS should respond with 
feedback messages, and they offer a general parsing 
mechanism that allows the analysis of student-created 
diagrams by recognizing these constellations in graphs. 

Introduction   

Argumentative thinking skills are critical for humans in 

many aspects of life (Kuhn, 2001). Consequently, teaching 

argumentative skills is a central goal of education  – both 

on a general level (classroom dialog is a form of group 

argumentation), and also in specific application areas such 

as science or law, which define rules about what 

constitutes an acceptable argument.  

Often, argumentation is taught by human teachers through 

face to face dialog. Intelligent Tutoring Systems for 

argumentation are still relatively rare. The few ITS systems 

for argumentation usually allow students to work with 

explicitly structured argument representations, often, 

visualized in diagram form. This helps both the system and 

the learner. From a cognitive perspective, graphical 

representations can reduce the students’ cognitive load and 

reify important relationships (Larkin and Simon 1987).  

From a system design point of view, the explicit structure 

can provide a practical means for ITSs to provide 

feedback. Examples for systems that follow this approach 

are the Belvedere system for scientific argumentation 
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(Paolucci, Suthers and Weiner 1996) which compares a 

student-created argument graph to an ideal solution, the 

ArguMed system (Verheij 2003) which provides intelligent 

feedback through an argumentation “assistant” that 

analyzes structural relations between contributions in 

diagrams, and the Araucaria system (Reed and Rowe 2004) 

that allows the specification of argument schemes 

(premises and feedback messages) instances of which can 

be detected in student diagrams. Carneades argument 

diagrams (Gordon 2007) can be used to map legal evidence 

and allow informing users automatically if a specific claim 

satisfies a given proof standard (no specific educational 

usage of Carneades has been reported yet). The 

ARGUNAUT system (McLaren et al. 2007) analyzes the 

graph structure and language of arguments using a 

combination of machine learning and text analysis 

techniques. This system is not an ITS system in a narrow 

sense, since analysis results are used to inform the teacher, 

not to give specific feedback to the student.  
These existing tools are either based on relatively 
straightforward approaches (comparisons between student 
and ideal graph, search for explicit elements in student 
graphs), or they are very domain specific. A general and 
reusable technology for developing Intelligent Tutoring 
Systems based on graph structured (argument) 
representations has not emerged yet. Two factors can 
account for this. Firstly, student-created graphs are 
structurally and computationally more complex than 
“traditional” user interfaces. This poses problems for some 
approaches: for instance, propositional logic is not a 
suitable technology for ITSs that analyze diagrams (since 
cycles of arbitrary length cannot be detected). Predicate 
logic is expressive enough, but difficult to apply in practice 
and not especially suited for graph based representations. 
Secondly, many forms of argumentation are ill-defined: 
typically a “correctness” notion for an argument is 
impossible to define or verify formally because the 
underlying concepts are open-textured and the quality of an 
argument may be subject to discussion or even expert 
disagreement. For these reasons, it is very hard (if not 
impossible) to develop a detailed and formalized domain 
model for an ITS. Such a model that describes the process 
of building “good graphs” would be the prerequisite for 
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applying Cognitive Tutor approaches (Anderson et al. 
1995) to argumentation. This second point is more related 
to the domain of argumentation than to properties of a 
representation – but in this context it is worth noting that 
for many educational approaches in ill-defined domains, 
graph-structured representations are frequently used - see 
Aleven et al. (2007) for an overview of recent approaches.  

In order to appropriately deal with structured diagram 

representations, an ITS needs components that allow:  

a) representing diagram system-internally. This is a 

prerequisite in order to enable the ITS to do the tasks 

described in b) and c). 

b) handling changes in diagrams. This includes a 

specification of which diagram changes a user is 

allowed to do: if it makes sense pedagogically to 

prevent students from making certain “syntax errors” 

in diagrams (e.g., by connecting elements that should 

not be connected, according to the domain model), 

then the ITS should be able to implement this strategy. 

This requires a way to express syntax constraints 

which is expressive enough for graph structures.   

c) analyzing diagrams to give feedback. This can be done 

in various forms – e.g., based on full domain models 

(if these exist), domain ontologies (with domain 

concepts and relations), or using semantic constraints.   

This paper describes how, for these typical ITS tasks, 

graph grammar technology can be used as a tool that is 

specially suitable for extending ITS tutoring to student-

authored graphs and especially useful for ill-defined 

domains. We use the domain of legal argumentation and 

the LARGO ITS as an illustrating example. While the 

general system has been published before (Pinkwart et al. 

2006), this paper focuses on the underlying technology and 

its general value for the ITS field. 

Example Domain: Legal Argumentation   

We present a model and example of legal argument that 

has been incorporated in an ITS system design based on 

graph grammars. The model (Ashley 2007) involves tests 

and hypotheticals as key elements: In US Supreme Court 

oral arguments, contending attorneys each formulate a 

hypothesis about how a set of issues in the problem should 

be decided. They may propose a test and identify key 

points on which the issue should turn, thus relating the 

facts at hand to their hypotheses and choosing how best to 

describe them. The Justices test those hypotheses by 

posing hypothetical scenarios designed to challenge the 

hypotheses’ consistency with past decisions, and the 

purposes and principles underlying the legal rules. 

The following excerpt from the case of California v. 

Carney, 105 S. Ct. 2066 (1985) involved the legality under 

the 4th Amendment of a warrantless search of a motor 

home located in a downtown parking lot. On appeal, the 

State’s attorney, Mr. Hanoian, proposed a “bright line” test 

                                                 
 

of when the “vehicle exception” to the warrant requirement 

should apply: 
MR. HANOIAN: If the vehicle has wheels on it, I think that that 

makes it mobile and it would be subject to the exception….If it 

still has its wheels and it still has its engine, it is capable of 

movement and it is capable of movement very quickly. 

JUSTICE: Even though the people are living in it as a home and are 

paying rent for the trailer space, and so forth? 

JUSTICE: Well, there are places where people can plug into water, 

and electricity, and do. There are many places, for example, in 

the state I came from where people go and spend the winter in a 

mobile home. And you think there would be no expectation of 

privacy in such circumstances? 

MR. HANOIAN: Well, I am not suggesting that there is no 

expectation of privacy in those circumstances, Your Honor. 

In the excerpt, Mr. Hanoian proposes a test, whether the 

vehicle/home is capable of self-locomotion, and then has to 

respond to the Justice’s challenge hypothetical: a motor 

home that is hooked up to water and electricity. Mr. 

Hanoian responds that such a vehicle might still be moved 

in a hurry, but concedes the owners would have some 

expectation of privacy.  

 

Figure 1. An example LARGO Argument Diagram 

Examples of oral argument can give beginning law 

students an overview of a process that they may only dimly 

perceive, even as they engage in it in a class. The LARGO 

system allows students to graphically represent the 

dialectical pattern of hypothetical reasoning described 

above, and gives feedback on student-created argument 

diagrams. Figure 1 shows an example graph created in 

LARGO. It contains the tests and hypotheticals from the 

above excerpt, an element representing the facts, and five 

relationships among these. For example, the “trailer 

without tractor” hypothetical is distinguished from the 

current fact situation. 

Students can also link the single elements in their graph to 

passages in a transcript of an oral argument (not shown in 

the Figure), using a text highlighting feature. These 

“transcript links” enable referencing external sources from 

graph elements, a common ITS requirement.  
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Graph Grammars in LARGO  

The ITS graph grammar mechanism we propose here, 
illustrated with examples from the LARGO ITS, is based 
on the grammar format proposed by Rekers and Schürr 
(1997). A grammar consists of a set S of symbols (which 
can have attributes), a start axiom, and a set of production 
rules. Words in the grammar represent student-created 
diagrams, while rules of the grammar are used to handle 
changes in diagrams and to analyze the diagrams in order 
to give feedback. Details on the implementation of these 
principles are demonstrated in the next subsections 

Diagrams as Grammar Words 

The symbols of the grammar contain node and edge types 
within graphs, which correspond to the domain concepts 
and relations, as well as some help symbols (in Sc): 

S = Sn ∪ Se ∪ Sc  

Sn = {test, hypothetical, fact} 

Se = {distinction, analogy, modification, causality,     

          relatedness} 

Technically, a word in the grammar (i.e., a diagram) is a 4-
tuple (N, E, M, C). N (nodes) and E (edges) contain the 
diagram data. M (metadata) consists of summary 
information such as element counters, while C 
(characteristics) contains the ITS specific metadata: an 
element of C is an aspect of a diagram that the ITS can 
give feedback on.  
The start axiom of the grammar in LARGO is:  

(∅, ∅, M, C)  

Here, N and E are initially empty (i.e., the diagram does 
not contain elements). M contains a counter for the number 
of elements (initially 0) and information about irrelevant 
regions in the argument transcript (that LARGO is 
supposed to comment on, should these be referenced from 
a diagram). C contains a list of initial graph characteristics. 
It may appear strange at first sight that the start axiom can 
already contain graph characteristics. This makes sense, 
however, if one wants to express the absence of specific, 
pedagogically relevant, elements in a diagram (which is of 
course fulfilled for empty graphs). In LARGO, 
characteristics about important regions in the transcript 
(not referenced from a diagram) are included in C. These 
lists constitute the only task-specific information in the tool 
– i.e., using LARGO with another legal case only requires 
a change of these two lists.  
The diagram shown in Figure 1 has the following 
representation (N, E, M, C), assuming that the node of type 
“test” with the content “if vehicle has wheels…” is linked 
to the characters 1050-1150 of the transcript, and the node 
of type “hypothetical” with text “vehicle in motor home 
park…” to the characters 1520-1550, respectively. Details 
for the second test and the other hypothetical are omitted in 
the example for space reasons. 
N = {testA, testB, hypotheticalA, hypotheticalB, fact} 

E = {modification, relatednessA, relatednessB, causality, 

distinction} 

with: 

testA.conditionText = “IF vehicle has wheels AND capable    

  of moving”, 

testA.conclusionText = “THEN search without warrant  

  permitted”, 

testA.linkStart = 1050, 

testA.linkEnd = 1150, 

hypotheticalA.text = “vehicle in motor home park (with  

  water and electricity connections) OUTCOME: search  

  permitted”, 

hypotheticalA.linkStart = 1520, 

hypotheticalA.linkEnd = 1550, 

fact.text = “Carney’s van had wheels and was self- 

  propelled”, 

modification.from = testA, 

modification.to = testB, 

relatednessA.text = nil, 

relatednessA.from = hypotheticalA, 

relatednessA.to = testA, 

relatednessB.text = nil, 

relatednessB.from = hypotheticalB, 

relatednessB.to = testB, 

causality.from = hypotheticalA, 

causality.to = testB, 

distinction.text = mobility, 

disctincion.from = hypotheticalB, 

distinction.to = fact 

In our notation, attributes of a symbol are encoded using an 
object-oriented notation (symbolname.attributename). 
Letter indices for symbols are used to distinguish between 
different occurrences of a symbol. The above example 
illustrates how each diagram element (node or edge) has an 
explicit representation in the grammar expression, and how 
information about these diagram elements such as the 
contained text or the links to external sources (such as 
transcript passages) can be encoded as attributes.  
As mentioned, the metadata M and the characteristics C 

partially depend on task-specific information, in the case of 

LARGO specifically on the transcript locations of 

important tests and hypotheticals, and of irrelevant 

passages. For example, if there is one irrelevant passage 

(characters 100-200 of the transcript), and one important 

hypothetical (2500-2600), then M and C are as follows: 

M = {counter, irrelevant}  

C = {characteristic} 

with: 

counter.testCount = 2. 

counter.hypoCount = 2, 

counter.factCount = 1, 

counter.relationCount = 5, 

irrelevant.linkStart = 100, 

irrelevant.linkEnd = 200, 

characteristic.linkStart = 2500, 

characteristic.linkEnd = 2600, 

characteristic.id = missed_hypo, 

characteristic.referenceList = ∅ 

M here contains counters for the total numbers of nodes for 
each of the types, and for the total number (here: 5) of 
relations in the diagram. Technically, this is not absolutely 
needed for the production rules (the numbers could be 
calculated on the fly through grammar production rules), 
but their availability speeds up the parsing process. The 
element “characteristic” means that the diagram does not 
contain a hypothetical which references a specific part of 
the transcript (in this case, the characters 2500 to 2600). 
The accuracy of this information is checked and updated 
whenever the user asks for advice (cf. next subsections).  
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Grammar Rules for Editing Diagrams 

Production rules of the graph grammar can be used to 
allow an ITS to process and analyze argument diagrams. 
The approach discussed here contains production rules of 
two different types. Rules of the first type (generation 
rules) are designed to enable an easy specification of 
possible manipulations by which a student might create a 
diagram (aspect “b” of the list in the introduction) These 
rules are described in detail in the remainder of this 
subsection. The second type of rules (feedback rules) is 
described in the following subsection.  
Technically, a production rule is represented by a structure 

L = (NL, EL, ML, CL) � (NR, ER, MR, CR) = R  

of two 4-tuples over S, together with some constraints 
regarding the attribute values of elements in L and R. A 
rule L � R can be applied to a graph G iff G contains a 
subgraph G’ which matches L in terms of contained 
elements and attribute constraints. The result of the rule 
application is the graph (G ∪ R) \ G’. Thus, a rule 
application replaces the subgraph that matches the left side 
of the rule with the graph in the right side. In our notation 
for a production rule, the L � R expression is specified 
together with the constraints for rule applicability. 
Constraints for the left hand side (L) are listed under a 
section “Condition”, and constraints about the right hand 
side (R) are listed under a section “Result”. For variables 
(i.e., placeholders for a subset of symbols in S), capital 
letters are used. Number indices for symbols are used to 
indicate that the same symbol appears on the right and left 
hand side of a rule, but that its attributes change as a result 
of the rule application. Letter indices for symbols are used 
to distinguish between different occurrences of a symbol. 
I.e., if a rule requires two tests to be contained in a graph, 
then the notations testA and testB are used to distinguish 
between them. 
As mentioned above, the possible user actions in the 
system are represented as “generation grammar rules”. As 
long as the user edits the diagram, only grammar rules of 
this type are used. These allow a fine-granular 
specification of the user options in the system with respect 
to possible (and impossible) diagram manipulations and 
thus define the action space of users in the system by 
constraining the graphs that students can create for 
pedagogical or domain-specific reasons. Edits have to be 
explicitly allowed in form of production rules, otherwise 
the user cannot perform them in the system.  
Our example system LARGO was designed with the 

pedagogical premise not to restrict users in their diagram 

creation. As such, there are only very few syntax 

restrictions in the LARGO grammar. For example, the 

following rule specifies that students can make arbitrary 

text changes within hypothetical and fact nodes: 

// Rule 10: Change text in hypos and facts is allowed 

({N1}, ∅, ∅, ∅) � ({N2}, ∅, ∅, ∅)  

with  

  N1 ∈ {hypothetical, fact} 

Result: 

  N2.text ∈ STRING  

If the user edits the text content of the fact node in our 

example diagram to “van had wheels”, this rule applies. In 

the application of the rule, N1 matches the existing fact and 

N2 represents the changed fact with the new text. 

Another, more complex, example of a generation rule in 
LARGO allows edges of any type to be added to the graph: 
// Rule 4: Edges can be added anytime 

({N1,M1},∅,{counter1},∅) � 

({N2,M2},E,{counter2},()  

with: 

  N, M ∈ Sn and E ∈ Se  

Condition:  

  N1 ≠ M1 

Result: 

  E.from = N2,  

  E.to = M2,  

  counter2.relationCount =counter1.relationCount+1 

This example rule expresses that all edge types are allowed 
between all node types (N, M ∈ Sn and E ∈ Se). The only 
restriction is that loops (edges between a node and itself) 
are not allowed. In the argumentation model underlying 
LARGO, it is not reasonable to link up an element to itself. 
Therefore, the grammar prevents students from doing so. 
This is an example of a syntax constraint expressed in 
grammar rule format. If, in our example diagram of Figure 
1, a user adds a “leads to” edge (causality relation) from 
the fact node to the lower test node (testB), this action 
matches this example rule 4 and is thus allowed. Here,  

• N1 matches the fact node, 

• M1 matches testB, 

• E represents the new causality relation (to distinguish it 

from the existing one, let us name it causalityB here). 

As a result of the rule application, the following attribute 

values are set:  

causalityB.from=fact, causalityB.to=testB,  

counter.relationCount = 6 

Grammar Rules for Feedback Generation 

Production rules of the second type (feedback rules) are 
used to analyze the graphs and to detect diagram 
characteristics. They express the system’s domain-specific 
pedagogical knowledge, namely, interesting patterns 
(constellations of graph elements) to which it can respond 
with feedback messages to the student. Whenever the user 
asks for advice in the system, the graph grammar engine 
parses the diagram by applying all possible “feedback 
rules” repeatedly and thereby generating “characteristics” 
symbols in the fourth component of the 4-tuple.  
In LARGO, diagram characteristics stand for weaknesses 

in the graph (aspects that might indicate that a student has 

not understood the argument model) or opportunities for 

reflection (appropriate diagram parts that would be worth 

further reflection). The LARGO example graph of Figure 1 

has several such characteristics. If none of the hypothetical 

nodes marks up the characters 2500-2600 of the transcript, 

then the “missing hypothetical” characteristic from the 

example in the subsection “diagrams as grammar words” 

of this paper applies for this diagram – and thus remains in 

the set C. If some hypothetical in the diagram referenced 
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the transcript characters 2500-2600, the following rule 

would remove the corresponding characteristic from C.  

// Rule 29: Important hypothetical referred to 

({hypothetical}, ∅, ∅, {characteristic}) � 

({hypothetical}, ∅, ∅, {foundlocation}) 

Condition:  

  characteristic.id = missed_hypo,  

  [hypothetical.linkStart, hypothetical.linkEnd] ∩   

  [characteristic.linkStart, characteristic.linkEnd] ≠ ∅ 

Result:  

  foundlocation.type = hypothetical,  

  foundlocation.linkStart = characteristic.linkStart,  

  foundlocation.linkEnd = characteristic.linkEnd  

In LARGO (as in most ITS systems that rely on graph 
based representations), the primary function of the diagram 
analysis component is to find specific, pedagogically 
interesting, patterns in student-created graphs. An example 
from the legal argumentation domain is a diagram that 
contains a hypothetical which is both related to the facts 
and to a test, and at the same time also contains another 
test. Tests represent proposed decision rules (by attorneys) 
while hypotheticals are challenges to these tests (by 
Justices). The described diagram constellation is a 
pedagogical opportunity to invite the student to reflect 
upon how the hypothetical scenario relates to the different 
tests in the light of the facts of the case (e.g., by comparing 
the decision rules). LARGO can detect the pattern with the 
following graph grammar rule:  

// Rule 59: Reflection on hypothetical  

({hypothetical,fact,test},{E,F},{counter},∅) �  

({hypothetical,fact,test},{E,F},{counter}, 

 {characteristic})  

with  

  E, F ∈ Se 

Condition:  

  E.from ∈ {hypothetical, fact},  

  E.to ∈ {hypothetical, fact},  

  F.from ∈ {hypothetical, test},  

  F.to ∈ {hypothetical, test},  

  counter.testCount > 1 

Result:    

  characteristic.id = discuss_hypo_mult_tests,  

  characteristic.referenceList =  

    {hypothetical, fact, test, E, F} 

The attributes of a characteristic contain a reference list 
which lists all the diagram elements that a detected 
instance of the characteristic in the graph is related to. This 
is used to highlight them in the feedback message and to 
insert text snippets into the hints (see Figure 2).  
In Figure 1, the above example characteristic (rule 59) can 

be detected. The example rule applies due to the following 

matches and constraint satisfactions: 
Rule Symbol  Matching graph element 

hypothetical hypotheticalB 

fact fact 

test testB 

E distinction  

F relatednessB 

counter counter 

• distinction ∈ Se=> E ∈ Se 

• relatednessB ∈ Se=> F ∈ Se 

• distinction.from = hypotheticalB=> E.from ∈ {hypothetical, fact} 

• distinction.to = fact => E.to ∈ {hypothetical, fact} 

• relatednessB.from = hypotheticalB => F.from ∈ {hypothetical, test}  

• relatednessB.to = testB =>F.to ∈ {hypothetical, test}  

• counter.testCount = 2 => counter.testCount > 1  

As a result of applying this rule, a new element 

“characteristic” is generated in the fourth component of the 

4-tuple. Its attribute values are: 

characteristic.id = discuss_hypo_multiple_tests,  

characteristic.referenceList = {hypotheticalB, fact, 

testB, distinction, relatednessB} 

By the end of the parsing process, the system has 
catalogued each characteristic about which it can provide 
feedback and included them in the set C in the structure. 
The system then needs to select which advice to provide. 
Providing a means for choosing which advice to provide at 
any given time is an important decision because it is very 
likely that multiple feedback rules match a graph, or even 
that the same rule matches different parts of a graph. Then, 
many characteristics can be observed simultaneously. In 
pilot studies with LARGO, which has 49 feedback rules, 
sometimes more than 100 characteristics were found in one 
diagram. Thus, the selection problem is of key importance.  

Figure 2. Graph Grammar Based Feedback in LARGO  

The graph grammar can be helpful in this selection 
process. As described in (Pinkwart et al. 2006), each 
characteristic (and each feedback rule) can be associated to 
a typical usage phase – e.g., orientation, transcript markup, 
diagram creation, analysis, or reflection. The usage phase 
of a student can be approximated through an analysis of all 
the feedback rules that match his current graph. This can 
be based on the heuristic that a large number of detected 
characteristics of a specific phase suggest that the student 
is in this phase. Using this information and additional tool 
interaction data such as visible diagram parts, temporal 
interaction sequences, or the feedback history, those 
characteristics that match the current usage context of the 
student can be prioritized. Figure 2 shows a screenshot of a 
feedback message in LARGO. Together with the hint, the 
elements in the diagram that the message relates to are 
highlighted. These correspond to the referenceList attribute 
of a characteristic and help the student understand which 
parts of his diagram a system comment refers to.  

Conclusion and Discussion 

For many educational applications such as learning tools 
for argumentation, structured diagrams are a suitable form 
of external representation. Yet, student-created graphs pose 
some unique problems for ITS development. This paper 
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describes a graph grammar based approach for the 
construction of Intelligent Tutoring Systems in domains 
that benefit from diagram representations, potentially with 
links to external learning resources. Examples of these 
domains include database design (Suraweera & Mitrovic 
2002), scientific inquiry (Paolocci et al 1996), software 
design (Baghaei et al 2007) and causal reasoning 
(Easterday et al 2007). For these application areas, graph 
grammars are an appropriate technology. They make it 
easy to represent diagrams system-internally, they facilitate 
the specification of possible manipulations by which a 
student might create a diagram, they allow the definition of 
structurally complex and pedagogically interesting 
constellations of graph elements to which an ITS should 
respond with feedback messages to the student, and they 
offer a general parsing mechanism that can be used to 
analyze student diagrams for occurrences of these graph 
constellations in order to give feedback.  
The example used in this paper to illustrate the technology 
comes from the domain of legal argumentation. In this 
domain, the approach has proven to work in practice both 
technology-wise and also with respect to learning gains 
caused by the system (Pinkwart et al. 2006). The graph 
grammar method is general enough to be applied for the 
construction of ITSs also for other argumentation domains 
and, even beyond, in domains that benefit from structured 
graph representations.  
To apply the presented approach in other domains, the 
concepts of these domains (node and edge types) and the 
domain-specific pedagogic feedback rules need to be 
adapted – the core grammar parsing engine is independent 
of the domain, thus effectively reducing the time and 
programming efforts needed for ITS development. To 
modify the student options in the ITS system (e.g., to limit 
the types of diagrams that can be created in order to 
guarantee syntax constraints), a change of the generation 
rules is sufficient – no programming effort is required. If 
an existing ITS should be used in the same domain but 
with other tasks (e.g., the same argumentation model, but a 
different topic to argue about), then almost no changes 
(except from updating the grammar axiom with links to the 
new external learning resources) are required in the ITS. 
Compared to existing work in the ITS literature on student-
created argument diagrams, the graph grammar formalism 
presented in this paper has some clear advantages. In 
contrast to special-purpose systems (e.g., Gordon 2007), 
the design approach is general enough to be applied in 
other domains. At the same time, graph grammar based 
ITS systems do still allow for explicitly specifying domain-
specific pedagogical rules and feedback messages – in 
contrast to pure machine learning approaches (e.g., 
McLaren et al. 2007). Graph grammars can plausibly be 
used in conjunction with other ITS approaches. Intuitively, 
they fit with constraint-based modeling (Ohlsson 1994): 
both approaches do not require expert solutions of 
problems, as e.g. (Paolucci et al. 1996) does. Instead, they 
rely on local conditions in student solutions to give 
feedback. For the specifications of these conditions, graph 

grammars offer a formalism that is specially suitable for 
diagrams, and more powerful than tools that rely on simple 
pattern matching (Reed and Rowe 2004; Verheij 2003). In 
summary, we believe that graph grammars constitute a 
quite powerful and promising ITS technology. Through 
their natural use of graphs as atomic structures, they offer 
affordances that make it easy to develop ITS systems for 
diagram representations.  
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