
Combinators Introduction : n Algorithm A

Adam Joly & Ismaïl Biskri  
 

Département de Mathématiques et Informatique – Université du Québec à Trois-Rivières 
CP 500, Trois-Rivières, (QC) G9A 5H7, Canada 

{ismail.biskri ; adam.joly}@uqtr.ca 
 
 
 

 ASTRACT 
The accurate use of combinatory logic and combinators in 
natural language processing needs a strategy for the removal of 
combinators, but also for their introduction. The tour of 
scientific literature teaches us how to reduce combinators and 
construct from a combinatory expression a normal form without 
combinators, however no strategy has been proposed to 
automate the introduction of combinators and construct from 
one normal form one combinatory expression. We show in our 
paper that such a strategy is possible. An algorithm is also 
described. 

1. Introduction to Applicative Combinatory 
Categorial Grammar 

According to the framework of Applicative and Cognitive 
Grammar (Desclés, 1996) (Desclés, 1990) and Universal 
Applicative Grammar (Shaumyan, 1998), language 
analysis must postulate three levels of representation: (i) 
the morpho-syntactical level, where specific 
characteristics of the language are expressed (such as 
word order, morphological cases, ellipsis, etc). The 
expressions of this level are concatenated linguistic units 
u1 - u2 - u3 obeying the syntagmatic rules of the 
concerned language; (ii) the predicative level, where the 
logical and grammatical representations of the statements 
of the phenotype are expressed. This level uses a formal 
applicative language without variables as a formal meta-
language to describe the languages. It makes it possible to 
express functional semantic interpretation. (iii) The 
cognitive level, where the meanings of the lexical 
predicates are semantically expressed by means of the 
combinators of typed combinatory logic. The 
representations of levels two and three are expressions of 
typed combinatory logic (Shaumyan, 1998) (Curry, Feys, 
1958). This logic was developed to analyze Russell 
paradoxes and the concept of substitution. Just as in the 
lambda-calculus of Church, combinatory logic is 
currently used by specialists in informatics to analyze the 
semantic properties of high level programming languages. 

                                                 
                                                

Copyright © 2008, Association for the Advancement of Artificial  
Intelligence (www.aaai.org). All rights reserved. 

The principal difference between the two logics lies in the 
fact that combinatory logic is a variable-free logic. It 
allows for the avoidance of one of the known problems of 
Lambda-Calculus, which is the telescoping of variables 
(two different variables with the same identifier). 
Combinatory logic uses abstract operators called 
combinators to express complex concepts. They make it 
possible to construct more complex operators starting 
from more elementary operators. Each combinator is 
introduced or eliminated by a β-reduction. For 
illustration, we present the β-reduction rules of Φ, B and 
C*1 (U1, U2, U3, U4 being typed applicative expressions 
which function either like operators or like operands):  
 

(Φ  U1 U2 U3) U4    U1(U2 U4) (U3 U4) 
((B U1 U2) U3)    (U1 (U2 U3)) 
((C* U1) U2)    (U2 U1) 

 
The combinator Φ makes it possible to distribute the 
application of two typed applicative expressions U2 and 
U3 (that function as operators) to the typed applicative 
expression U4 (that functions like an operand). The 
combinator B allows for the composition of two typed 
applicative expressions U1 and U2 (U1 and U2 function 
as operators). The result (B U1 U2) would then be the 
complex operator of the typed applicative expression U3 
(U3 functions like an operand). The combinator C* is 
applied to a typed applicative expression U1 (U1 
functions as the operand of U2). This makes it possible to 
build the complex operator (C* U1) which can be applied 
to the typed applicative expression U2. According to the 
Church-Rosser Theorem, these rules establish a 
relationship, which is independent of the meaning of the 
arguments, between an expression with combinators and a 
single expression (if it exists) without combinators 
equivalent to the first (from a certain point of view).  This 
relationship is called the normal form. In the ACCG 
model, normal forms represent functional semantic 
interpretation. In addition, a paraphrastic reduction to a 
normal form is also possible.  

 
1 There are other combinators. Here we are only interested in 
those used in this paper. For more details the reader might have 
a look at (Desclés, 1990).  

Proceedings of the Twenty-First International FLAIRS Conference (2008)

476



The reduction of a complex combinatory expression in a 
normal form is obtained by eliminating combinators, 
according to the β-reduction rules, from left to right. 
With this strategy, a unique sequence for the elimination 
of combinators is possible. 
 
((B U1 (C* U2)) U3) 
(U1 ((C* U2) U3) 
(U1 (U3 U2)) 
 
The model of Applicative and Combinatory Categorial 
Grammar (ACCG) (Biskri, Desclés, 1997), as do most of 
the categorial models (Dowty, 2000) (Morrill, 1994) 
(Moorgat, 1997) (Steedman, 2000) (Baldridge, Kruijff, 
2003), falls under a paradigm of language analysis that 
favours complete abstraction of grammatical structure 
from its linear representation, due to the linearity of the 
linguistic signs, and a complete abstraction of grammar 
from the lexicon. ACCG conceptualizes languages as a 
sequence of linguistic units, of which some function as 
operators whereas others function as operands. 
Concretely, ACCG assigns syntactical categories to each 
linguistic unit in order to express its function. The basic 
syntactical categories N and S are assigned respectively to 
noun phrases and sentences. The orientated syntactical 
categories, developed from basic types by means of the 
two operators of type construction “/” and “\”, are 
assigned to the linguistic units which function as 
operators. For example, the category (S\N)/N is assigned 
to transitive verbs which are consequently seen as 
operators with two operands, the first being the object of 
type N positioned to its right, and the second one being 
the subject of type N positioned to its left. In our paper, a 
linguistic unit u with the type X will be noted by [X : u]. 
According to the postulate that the representation of  
language is performed on three levels,  ACCG makes it 
possible, by means of rules, to: (1) ascertain syntactic 
correctness; (2) progressively construct the semantic 
functional interpretation; (3) allow a functional analysis 
of a linguistic marker (example: and,…).  
The premise of each rule is a concatenation of linguistic 
units with oriented types. The consequence of each rule is 
an applicative typed expression with the possible 
introduction of one combinator. The type-raising of one 
unit u introduces the combinator C*; the composition of 
two concatenated units introduces the combinator B. 
  

Application rules : 
[X/Y : u1] - [Y : u2]   [Y : u1] - [X\Y : u2] 
-------------------------->;  --------------------------< 
[X : (u1 u2)]   [X : (u2 u1)] 
 
Type raising rules : 
[X : u]    [X : u] 
---------------------->T ;  ----------------------<T 
[Y/(Y\X) : (C

*
 u)]   [Y\(Y/X) : (C

*
 u)] 

[X : u]    [X : u] 
---------------------->Tx   ;  ----------------------<Tx 
[Y/(Y/X) : (C

*
 u)]    [Y\(Y\X) : (C

*
 u)] 

 
functional composition rules : 
[X/Y : u1]-[Y/Z : u2]    [Y\Z : u1]-[X\Y : u2] 
------------------------->B ;  -------------------------<B 
[X/Z : (B

 
u1 u2)]    [X\Z : (B u2 u1 )] 

[X/Y : u1]-[Y\Z : u2]    [Y/Z : u1]-[X\Y : u2] 
--------------------------->Bx;   ------------------------<Bx 
[X\Z : (B u1 u2)]    [X/Z : (B u2 u1)] 
 
An analysis based on ACCG rests on the General 
following steps: 
(i) A first step which consists in assigning syntactic types 
to the lexical units. Those are entries of a dictionary 
where each unit is associated to one or more types.  
(ii) A second step consists in operating the rules of the 
ACCG in the way to check the syntactic correctness on 
the one hand and progressively to build the applicative 
structures by the introduction of combinators with the 
syntactic process. Two results are obtained at the end of 
this step. The first one is the type S (or another basic type) 
which confirms the syntactic correction of the analyzed 
statement. The second one is the applicative expression  
with combinators which after their reduction gives the 
functional semantic interpretation in which each operator 
is followed by its operands. This analysis looks like a 
compilation process. 
 
Let us deal with this example with a non-correlative 
coordination : Jean aime Marie tendrement et Sophie 
Sauvagement (Jean Loves Marie madly and Sophie 
wildly).  
 

1 [N: Jean] - [(S\N)/N : aime]-[N : Marie] - [(S\N)\(S\N) : tendrement]-[(X\X)/X : et]-[N : Sophie]-[(S\N)\(S\N) : sauvagement] 
2 [S/(S\N) : (C* Jean)] - [(S\N)/N : aime]-[N : Marie] - [(S\N)\(S\N) : tendrement] - [(X\X)/X : et] - [N : Sophie] - [(S\N)\(S\N) : sauvagement] (>T) 
3 [S/N : (B (C* Jean) aime)] - [N : Marie] - [(S\N)\(S\N) : tendrement] - [(X\X)/X : et] - [N : Sophie] - [(S\N)\(S\N) : sauvagement] (>B) 
4 [S : ((B (C* Jean) aime) Marie)] - [(S\N)\(S\N) : tendrement] - [(X\X)/X : et] - [N : Sophie] - [(S\N)\(S\N) : sauvagement] (>) 
5 [S : ((C* Jean) (aime Marie))] - [(S\N)\(S\N) : tendrement] - [(X\X)/X : et] - [N : Sophie] - [(S\N)\(S\N) : sauvagement] 
6 [S/(S\N) : (C* Jean)] – [S\N : (aime Marie)] - [(S\N)\(S\N) : tendrement] - [(X\X)/X : et] - [N : Sophie] - [(S\N)\(S\N) : sauvagement] 
7 [S/(S\N) : (C* Jean)] – [S\N : (tendrement (aime Marie))] - [(X\X)/X : et] - [N : Sophie] - [(S\N)\(S\N) : sauvagement] (<) 
8 [S:((C* Jean) (tendrement (aime Marie))]-[(X\X)/X : et]-[N:Sophie]-[(S\N)\(S\N):sauvagement] (>) 
9 [S:((C* Jean) (tendrement (aime Marie))]-[(X\X)/X : et]-[(S\N)\((S\N)/N):(C*Sophie)]-[(S\N)\(S\N):sauvagement] (<T)  
10 [S:((C*Jean) (tendrement (aime Marie))]-[(X\X)/X : et]-[(S\N)\((S\N)/N):(B sauvagement (C* Sophie))] (<B) 
11 [S/(S\N):(C* Jean)]-[S\N:(tendrement (aime Marie))]-[(X\X)/X : et]-[(S\N)\((S\N)/N):(B sauvagement (C* Sophie))] 

477



12 [S/(S\N):(C* Jean)]-[S\N:((B tendrement (C* Marie)) aime)]-[(X\X)/X : et]-[(S\N)\((S\N)/N) : (B sauvagement (C* Sophie))] 
13 [S/(S\N) : (C*Jean)]-[(S\N)/N:aime]-[(S\N)\((S\N)/N) : (B tendrement (C* Marie))]-[(X\X)/X : et]-(S\N)\((S\N)/N) : (B sauvagement (C* Sophie))] 

  14 [S/(S\N) : (C*Jean)]-[(S\N)/N:aime]-[(S\N)\((S\N)/N) : (B tendrement (C*
 
Marie))]-[((S\N)\((S\N)/N))\((S\N)\((S\N)/N)) : (et (B sauvagement (C*

 Sophie)))] (>) 
15 [S/(S\N) : (C*Jean)]-[(S\N)/N:aime]-[(S\N)\((S\N)/N) : ((et (B sauvagement (C* Sophie))) (B tendrement (C* Marie)))] (<) 

  16 [S/(S\N) : (C*Jean)] - [(S\N) : (((et (B sauvagement (C* Sophie))) (B tendrement (C* Marie))) aime)] (<) 
  17 [S : ((C*Jean) (((et (B sauvagement (C*

 
Sophie))) (B tendrement (C*

 
Marie))) aime))] (>) 

 
18 ((C*Jean) (((et (B sauvagement (C* Sophie))) (B tendrement (C* Marie))) aime)) 

  19 ((((et (B sauvagement (C* Sophie))) (B tendrement (C* Marie))) aime) Jean) C* 
  20 ((((Φ ∧ (B sauvagement (C* Sophie))) (B tendrement (C* Marie))) aime) Jean) (et = Φ ∧) 

  21 ((∧ ((B sauvagement (C* Sophie)) aime) ((B tendrement (C* Marie)) aime)) Jean) Φ 
  22 ((∧ (tendrement ((C* Marie) aime)) ((B sauvagement (C* Sophie)) aime)) Jean) B 

23 ((∧ (tendrement (aime Marie)) ((B sauvagement (C* Sophie)) aime)) Jean) C* 
24 ((∧ (tendrement (aime Marie)) (sauvagement ((C* Sophie) aime))) Jean) B 
25 ((∧ (tendrement (aime Marie)) (sauvagement (aime Sophie))) Jean) C* 
 
First of all, this sentence is ambiguous. Two 
interpretations are possible. The first one is : Jean aime 
Marie tendrement et Jean aime Sophie sauvagement (Jean 
loves Marie madly and Jean loves Sophie wildly). The 
second one is : Jean aime Marie tendrement et Sophie 
aime Marie sauvagement (Jean loves Marie madly and 
Sophie loves Marie wildly). We chose to present the 
analysis which carries out towards the first interpretation 
to facilitate the reading of this paper.  
Thus, the analysis starts with the assignment of the 
syntactic categories to the lexemes. For recall, each 
syntactic category describes the way in which a lexeme 
operates on its arguments. The category (X\X)/X assigned 
to the conjunction is in fact a scheme of type which 
describes the conjunction like an operator whose first and 
second operands, of type X, are respectively the second 
member and the first member of the coordination. The 
type of the coordination (S\N)\((S\N)/N) which will be 
substituted to X is known after the construction of the 
second member of coordination (step 10).  
Steps 1 to 17 represent the application of ACCG rules. 
With these steps we verify the correctness of the sentence 
(the type S obtained at 17). 
Steps 18 to 25 are in the predicative level. They reduce 
combinators in order to construct the functional semantic 
interpretation (the normal form): ((∧ (tendrement (aime 
Marie)) (sauvagement (aime Sophie))) Jean), which is 
structured like a conjunctive clause. At the step 20 the 
linguistic predicate et (and) is replaced by its meaning in 
the cognitive level Φ ∧ in order to express the distributive 
and the conjunctive nature of et by respectively the 
combinator Φ and the logical connector ∧. 
A strategy of incremental analysis (from left to right) with 
an "intelligent" backtrack (Biskri & Desclès, 1997) 
supplements the model of the GCCA in order to solve the 
problem of the pseudo-ambiguity which consists in a 
multitude of syntactic derivations (which are from a 
certain point of view equivalent) for the analysis of the 
same statement and which corresponds to the same 
semantic interpretation. However, this strategy leads to 
the construction of false constituents that require 

decompositions (Steedman, 2000) or structural 
reorganization (intelligent back track) (Biskri & Desclès, 
2005; 1997) to bring out the right constituents.  
The decomposition enshrines the principle of parametric 
neutrality to determine the category of the constituent to 
identify. This principle states that the result in a 
categorical rule associated with a premise used to 
determine the other premise. Specifically, the 
decomposition is a calculation on the categorical types 
only. It does not really take into account the functional 
semantic interpretation as a criterion. Therefore, the 
decomposition runs only on simple cases. Cases of 
coordination of non-constituents, for example, cause 
serious problems.  
The structural reorganization uses semantic interpretation, 
in addition to a calculation on the categories, in the 
process of back tracking. This gives it more linguistic 
credibility, in addition to computational one.  
The principle is simple. The functional semantic 
interpretation is constructed using combinators introduced 
in the syntagmatic structure. When a false constituent is 
obtained, it is necessary to reduce a combinator (with 
using its b-reduction rule) and to test if the right 
constituent emerges (see steps 5, 6 for the first structural 
reorganization). The process is repeated until the right 
constituent emerges or there is no combinator to reduce 
(Biskri, Desclés, 1997). This process is complemented by 
some rules (a, b, c, d) of combinators introduction in the 
case of non-constituents coordination analysis (see steps 
11, 12, 13). The analysis, based on the combinatory 
structure of the second member of the coordination must 
extract a combinatory structure for the first member of the 
coordination similar to the one of the second member. We 
apply at step 12 to (tendrement (aime Marie)) the rule (c) in 
order to get ((B tendrement (C* Marie)) aime) in which (B 
tendrement (C* Marie)) is the first member of the coordination. 
 
(a) (u1  (u2  u3))<==>((B u1  u2)  u3) 
(b) ((u1  u2)  u3)<==>((B (C* u3)  u1)  u2) 
(c) (u1  (u2  u3))<==>((B u1  (C* u3))  u2) 
(d) ((u1  u2)  u3)<==>((B (C* u3)  (C* u2))  u1) 
 

478



These rules are static. What about if other cases appear ? 
We need an algorithm that completely automates the 
process of introducing combinators. 

2. Combinators Introduction : an Algorithm 
Every combinatory expression can be translated into a 
binary tree for convenience and visualization. For 
example, ((C* z) (B x y)) becomes: 

 
The number in parenthesis represents the node level, 
which can be a unit, a C* or B combinator or a forward 
application.  We can notice that the level does not 
necessarily represent the deepness level.  In the previous 
example, B, x and y are at the same levels, just like C* and 
z also are. 
What we want is to reach a known combinatory 
expression, starting from its normal form. 
Before inserting the combinators of the combinatory 
expression in the normal form, we must calculate their 
insertion levels.  We will find them by taking in 
consideration how the C* and the B combinator’s 
arguments levels change when we remove them.  
First, let’s take a look at the basic reduction of the C* 
combinator: 
((C* x) y)  (y x) 

 
We can observe that x level decreases by one with the C* 
removal, while y level still the same.  It means that every 
time we reach a C* node, all children’s levels will be 
reduce by one. 
With the B combinator, the basic reduction expression is: 
((B x y) z)  (x (y z)) 

 
Before the B combinator’s insertion, the x argument is 
one level lower, the y level stays the same and the last 
argument level is one level higher. Each time we meet a B 
node, we have to reduce by one the level of every nodes 
representing the x argument.  Likewise, the sidling node 
of the B combinator and its children have to add one level 
each. 
The mechanism of leveling requires a binary tree structure 
and must be done recursively, starting from the root, then 

the right side of the binary tree, and finally the deepest 
node. As we stated before, each node in the tree of the 
combinatory expression has an initial level that will be 
adjust with what we will call a level adjustment factor to 
find the level where the corresponding combinator should 
be added. 
Thereafter, the combinators will be introduced in the 
normal form in the reverse order where they appear in the 
combinatory expression (from the right to the left). The 
introduction levels will be found by taking the arguments 
levels of the combinators to be introduced.   z(1) x(1)

>(0)

C*(1) 

y(1)

B(1) 
Considering that the method takes as inputs a node and a 
level adjustment factor and that forward application’s 
arguments are, x and y, C* combinator’s argument is x 
and B combinator’s arguments are x, y and z, the 
recursive algorithm goes as following: 
 
method calculateNodeLevel 

if the current node is the z argument of a B combinator (see 
the scheme) then 

add 1 to the level adjustment factor 
end if 
current node’s calculated introduction level = initial current 
node level + level adjustment factor 
if the current node is a forward application then 

call calculateNodeLevel method for y and with the level 
adjustment factor 
call calculateNodeLevel method for x and with the level 
adjustment factor 

else if the current node is a B combinator then 
call calculateNodeLevel method for y and with the level 
adjustment factor 
call calculateNodeLevel method for x and with the level 
adjustment factor - 1 

y(0) x(0) 

>(0

x(1) y(0)

>(0)

C*(1) else if the current node is a C* combinator then 
call calculateNodeLevel method for x and with the level 
adjustment factor - 1 

end if 
return 

end of method 
 
If the current node is a unit (not a combinator), it means it 
is a leave and there is no more recursive call for this 
branch. 

y(1) z(1) 

>(1)

x(0)

>(0)

y(1) z(0) 

B(1)

x(1) 

>(0)

The overall process can be translated in a main method 
that has two inputs: a combinatory expression and its 
normal form. 
 
main method 

- build the binary tree corresponding to the combinatory 
expression 
- calculate nodes levels 
- introduce one by one the combinators in the normal form in 
the reverse order they appear in the combinatory expression 

end of method 
 
Leveling in the following example shows the algorithm 
execution, in relation with the nodes normal path. Only 
nodes causing level adjustments will be illustrated and, 

479



for simplification, they will be applied immediately for 
every child nodes, instead of waiting to reach each node 
and add the overall level adjustment factor. 
The combinatory expression we will take as an example is 
((C* y) (B (B (C* z) v) (B w x))).  Below, we have the 
resulting binary tree of the expression: 

 
The normal form of the expression, after the ß-reduction, 
is ((v (w (x y))) z) and can be represented by the 
following tree: 

 
The next step consists to calculate the introduction 
combinators levels. In respect with the recursive 
algorithm, the nodes path will be >, B, B, x, w, B, v, C*, 
z, C* and y. 
First, from the root, we reach the B node at the right.  We 
will have to clear the next right B path first, then the left 
B, but as we said, we immediately reduce levels of all left 
branch nodes by 1 for convenience.  

 
Again, we have a B combinator and the same rule applies.  
So, w level will eventually be reduced by 1.  In addition, 
this B node has a sidling B node to the left, which means 
we have to add 1 level to the B, w and x nodes. 

 

After the x and w nodes, we reach the last B node.  Once 
more, the C* and z nodes will lose one level. 

v(1) w(2)

B(1)

x(3) 

>(0)

y(1) z(1)

B(3)

B(1)

C*(1)C*(1)

v(2) w(2) 

B(2)

x(2) 

>(0)

y(1) z(3) 

B(2)

B(1)

C*(3) C*(1) 

 
The next node will be v, then the C* combinator.  As a 
consequence, z level will be decreased again by one. 

v(1) w(2)

B(1)

x(3) 

>(0)

y(1) z(0)

B(3)

B(1

C*(1)C*(1)

v(1) w(2) 

>(1)

x(3) 

>(0

y(3) z(0) 

>(2)

>(3)  
Finally, after y and back to the root, we take the left path 
and reach the last combinator.  By the same logic, y level 
will go from 1 to 0. 

 

v(1) w(2) 

B(1)

x(3) 

>(0)

y(0) z(0)

B(3)

B(1)

C*(1)C*(1)

Now that we have calculated levels of the combinators, 
we can introduce them, as we said, from the right to the 
left, at their arguments levels. v(1) w(2) 

B(1)

x(2) 

>(0)

y(1) z(2) 

B(2)

B(1)

C*(2) C*(1) 

The top right side combinatory will be the first to be 
introduced.  Because its calculated level is 3, it means that 
before introducing it, its first argument was at level 2 and 
the two others were at level 3.   

 
The second node to be introduced will be the C* 
combinatory with the z argument. Being at level 1, its 
argument is one level below before the C* introduction 
(level 0). 
 

v(1) w(3)

>(1)

x(3)

>

y

(0)

(2) z(0) 

B(3)

>(2)

v(1) w(2) 

B(1)

x(3) 

>(0)

y(1) z(2) 

B(3)

B(1

C*(2) C*(1) 

480



 
The next two B combinators will be introduced at levels 0 
and 1, because their calculated introduction levels are 
both 1. 

 

 
Lastly, the C* combinator will be added at the root (level 
0), because just like the other C* combinator, its argument 
were at level 0 before the combinator was introduced.  

 
The final result is the same combinatory expression we 
had at start. 

3. Conclusion 
The algorithm we presented here is very helpful. To 
reduce combinatory expression with combinators in an 
expression without combinators is a process that can be 
easily implemented. The choice of reducing combinators 
from left to right excludes any kind of ambiguity. To 
introduce combinators in a normal form without 
combinators, is not easy. The order in which the 
combinators are to be introduced is important. We, also, 
must identify their arguments. 
Our algorithm is used in the case of structural 
reorganization. We believe it could be useful in the case 
of how to prove that two sentences are in fact paraphrases. 

References v(1) w(3) 

>(1)

x(3) 

>(0)

y(2) z(1) 

>(2)

B(3)C*(1) Beavers, J., 2004. Type-inheritance Combinatory 
Categorial Grammar. In Proceedings of COLING 2004. 
Geneva, Switzerland. 
Beavers, J., Sag., I.A., 2004. Some Arguments for 
Coordinate Ellipsis in HPSG. In Proceedings of the 2004 
HPSG Conference. Katholike Universiteit Lueven, 
Belgium 
Biskri, I., Begin, C.,  2004, "The analysis of the relative, 
completive and indirect interrogative subordinate 
constructions in French by means of the ACCG", 
Proceedings of FLAIRS 2004, Floride 2004, AAAI press. v(1) w(2) 

B(1)

x(2) 

>(0)

y(1) z(2) 

>(1)

B(2)C*(2) Biskri, I., Desclés, J.P., 1997, Applicative and 
Combinatory Categorial Grammar (from syntax to 
functional semantics). In Recent Advances in Natural 
Language Processing, 71-84. John Benjamins Publishing 
Company. 
Brun, C., 1999. Coordination et analyse du français écrit 
dans le cadre de la grammaire lexicale fonctionnelle. In 
Revue électronique les enjeux de l'information et de la 
communication. 

v(2) w(2) 

B(2)

x(2) 

>(0)

y(0) z(3) 

B(1)

B(2)

C*(3)

Curry, B. H., Feys, R., 1958. Combinatory logic , Vol. I, 
North-Holland. 
Desclés, J.P., 1996. Cognitive and Applicative Grammar: 
an Overview. in C. Martin Vide, ed. Lenguajes Naturales 
y Lenguajes Formales, XII, Universitat Rovra i Virgili. , 
29-60. 
Desclés, J. P, 1990. Langages applicatifs, langues 
naturelles et cognition, Hermes, Paris.  
Dowty, D., 2000, The Dual Analysis of 
Adjuncts/Complements in Categorial Grammar. In 
Linguistics 17.  
Hendriks, P., 2003. Coordination. In P. Strazny (ed.), 
Encyclopedia of Linguistics, Fitzroy Dearborn, New 
York. 
Milward, D., 1994, Non-Constituent Coordination: 
Theory and Practice. In Proceedings of COLING 94 , 
Kyoto, Japan, 935-941. 
Moorgat, M., 1997. Categorial Type Logics. In Johan Van 
Benthem and Alice Ter Meulen eds., Handbook of Logic 
and Language, 93-177. Amsterdam: North Holland. 
Morrill, G., 1994, Type-Logical Grammar. Dordrecht: 
Kluwer. 
Sag, I.A., 2003. Coordination and Underspecification. In 
Procedings of the 2003 HPSG Conference. CSLI 
Publications. 267-291. 
Shaumyan, S. K., 1998, Two Paradigms Of Linguistics: 
The Semiotic Versus Non-Semiotic Paradigm. In Web 
Journal of Formal, Computational and Cognitive 
Linguistics. 
Steedman, M., 2000. The Syntactic Process, MIT 
Press/Bradford Books. 

v(2) w(2) 

B(2)

x(2) 

>(0)

B(1)

B(2)

C*(3)C*

z

(1)

(3) y(1) 

481




