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Abstract 
In this paper we describe a class of a problem of goal satis-
faction in mutual exclusion network that can be solved in 
polynomial time. This problem provides a common basis for 
reasoning about various tasks known from artificial intelli-
gence. Namely, tasks arising during construction of concur-
rent solutions for planning problems and Boolean formula 
satisfaction can be viewed as problems of goal satisfaction. 
We experimentally compared a solving algorithm which ex-
ploits the defined tractable class with backtracking en-
hanced by maintaining consistencies on random problems 
and on problems arising in concurrent planning. We ob-
tained significant speedups in both experimental setups. 

Introduction and Motivation  

We are dealing with a class of a problem of goal satisfac-
tion in mutual exclusion network. The problem was origi-
nally introduced in (Surynek, 2007a). The author states that 
generally the problem is NP-complete. However, together 
with this negative result a practically efficient technique 
for solving this problem is proposed by the author. We are 
going further with this problem in this paper. We study a 
special class of the problem for that we design a polyno-
mial time solving algorithm - that is, we describe a tracta-
ble class of the problem. 
 Briefly said, the mutual exclusion network is an undi-
rected graph where each vertex has assigned a finite set of 
symbols. The interpretation of edges is that a pair of verti-
ces connected by an edge cannot be selected together. 
Having a goal, which is a finite set of symbols, the task is 
to select a stable set of vertices in this graph such that the 
union of their symbols covers the given goal. 
 The solving process for the problem proposed in (Sury-
nek, 2007a) is based on maintaining a special type of 
global consistency. The proposed consistency is trying to 
exploit structural information encoded in the problem. It is 
argued that valuable structural information in the mutual 
exclusion network is the knowledge of complete sub-
graphs (cliques). If we know that several vertices in the 
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graph form a clique we also know that at most one of them 
can be selected into the solution. This simple property 
allows us to do further reasoning about the problem. 
 The problem of goal satisfaction in mutex network is 
motivated by two areas of artificial intelligence research. 
First it is motivated by concurrent planning (Blum and 
Furst, 1997) and second it is motivated by Boolean formula 
satisfaction (Cook, 1971). 
 In the basic variant of planning problems (Ghallab et al., 
2004) we are searching for a sequence of actions that, 
when executed one by one starting in the given planning 
world, results into the planning world that satisfies certain 
goal. The concurrent planning itself represents a generali-
zation of this basic variant. Particularly, we allow more 
than one action to be executed in a single time step in con-
current planning. This generalization is motivated by the 
fact that certain actions do not interfere with each other and 
they can be executed simultaneously without influencing 
each other. The frequently asked question which arise 
during solving process of algorithms for concurrent plan-
ning is “What are the sets (or is there any) of non-
interfering actions that satisfies certain goal?” This prob-
lem can be reformulated as a goal satisfaction problem in 
mutex network. 
 Another motivation to study the concept of mutual ex-
clusion networks is Boolean formula satisfiability (Sury-
nek, 2007a). A Boolean formula satisfaction problem (SAT 
problem) can be modeled as a goal satisfaction problem in 
mutex network. The application of basic solving technique 
for goal satisfaction problems on SAT problems is studied 
in (Surynek, 2007b). Nevertheless, we do not study the 
goal satisfaction problem from the SAT perspective in this 
paper. This is just to mention another application than 
concurrent planning. 
* This paper is organized as follows. First we recall the 
basic concepts - mutual exclusion networks, goal satisfac-
tion problem, and associated global consistency technique. 
Upon these preliminaries we describe a class of the goal 
satisfaction problem that can be solved in polynomial time. 
Next we evaluate an algorithm exploiting the tractable 
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class of the problem in comparison with existing compara-
ble techniques. Finally, we briefly comment some similar 
works and summarize our contribution. 

Mutual Exclusion Networks 

The following definitions formalize mutual exclusion net-
work (shortly mutex network) and the associated problem 
of satisfying goals in the mutex network. We assume a 
finite universe of symbols S  for the following definitions. 
 

Definition 1 (Mutual exclusion network). Mutual exclu-
sion network is an undirected graph ( , )N V M= , where 
each vertex v V∈  has assigned a finite set of symbols 
Ø ( )S v S≠ ⊆ . □ 
 

Definition 2 (Goal satisfaction in mutex network). Given 
a goal G S⊆  and a mutex network ( , )N V M=  the prob-
lem of satisfying goal G  in the mutex network N  is the 
task of finding a stable sub-set of vertices U V⊆  such that 

( )u UG S u∈⊆ ∪ . □ 
 

 The problem of goal satisfaction in mutex network is 
computationally hard. It is not difficult to show that the 
problem is NP-complete. The proof is given in (Surynek, 
2007a). In the light of this result there is little hope to solve 
the problem of goal satisfaction in mutex network effec-
tively (in polynomial time). So, the search seems to be the 
only option to solve the problem systematically. However, 
the search may be more or less informed where the more 
informed search leads to the lower number to steps re-
quired for obtaining a solution. 

Making the Search More Informed 
In (Surynek, 2007a) the author studies the usage of main-
taining consistencies to make the search more informed. 
Maintaining consistency means that certain type of consis-
tency is enforced in the problem after each decision step. 
Enforcing consistency in the problem may reduce the size 
of the remaining search space and the problem can be 
solved faster as a consequence. 
 Existing consistency techniques differ in their inference 
strength and resource requirements. The expectable re-
quirement is that the consistency should be strongest as 
possible while its resource requirements should be low. 
These two requirements usually go against each other. 
Therefore a trade-off is necessary to be found. In (Surynek, 
2007a) the author studied the usage of relatively efficient 
local consistency - arc-consistency (Mackworth, 1977), 
and he proposed a new global consistency called projection 
consistency for solving the goal satisfaction problems in 
mutex network. Both consistencies satisfy the low resource 
requirements. However, projection consistency is more 
efficient on the studied problem since it exploits advantage 
of considering the whole problem at once while 
arc-consistency is considering only a small part of the 
problem at a time. 
 We further develop the concept of projection consis-
tency here. Using projection consistency we define a class 

of the problem of goal satisfaction in mutex network that 
can be solved in polynomial time. In the following text we 
refer to this class of the problem as a tractable class. 

Global Consistency for Mutex Network 
The idea of projection consistency is based on a property 
of mutex networks arising in AI applications mentioned in 
the introduction. Such mutex networks are usually well 
structured. Specifically, they can be characterized as a 
relatively small number of large complete sub-graphs plus 
small number of edges not belonging into these cliques. 
The intuitive explanation of arising of such a structure is 
that problems typically reflect situations from the real 
three-dimensional world. There often appear pair-vise 
conflicting sets of properties of objects in the real world 
that induces a clique of mutual exclusions (for example no 
two cars can occupy the same place at the same time). 
 If we explicitly know the structure of the mutex network 
we can reason about the impact of the vertex selection on 
the possibility of goal satisfaction. We know that at most 
one vertex from each clique can be selected to contribute to 
the satisfaction of the goal. Hence, for each clique we can 
calculate the maximum number of symbols of the goal 
which can be covered by the vertices of the clique. When 
we select a vertex into the solution the necessary condition 
on the solution existence is that the number of symbols 
covered by the remaining cliques together with symbols 
associated with the selected vertex must not be lower than 
the number of symbols in the goal. 
 The second part of the idea of projection consistency is 
that if we restrict ourselves on the proper subset of the goal 
the set of vertices ruled out by the above counting argu-
ments can be different. Therefore it is possible to perform 
filtration by the technique with respect to multiple 
sub-goals of the goal to achieve the maximum pruning 
power - these sub-goals are called projection goals. 
 For the following formal description of projection con-
sistency we assume that a clique decomposition 

1 2 nV C C C= ∪ ∪ ∪…  of the mutex network ( , )N V M=  
was constructed (greedily, since we cannot afford optimal-
ity). Each iC  is a clique and i jC C∩ = Ø for i j≠ . Pro-
jection consistency is defined over the above clique de-
composition for a projection goal Ø P G≠ ⊆ . The fact that 
at most one vertex from each clique can be selected into 
the solution allows us to introduce the following definition. 
 

Definition 3 (Clique contribution). A contribution of a 
clique 1 2{ , , , }nC C C C∈ …  to the projection goal 
Ø P G≠ ⊆  is defined as max( ( ) | )S v P v C∩ ∈  and it is 
denoted as ( , )c C P . □ 
 

 The concept of clique contribution is helpful when we 
are trying to decide whether it is possible to satisfy the 
projection goal by selecting the vertices from the clique 
cover. If for instance 1 ( , )n

i ic C P P= <∑  holds then the 
projection goal P  cannot be satisfied. Nevertheless, the 
projection consistency can handle a more general case as it 
is described in the following definitions. 
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Definition 4 (Supported vertex). A vertex iv C∈  for 
{1,2, , }i n∈ …  is supported with respect to a given clique 

decomposition and the projection goal P  if 
1, ( , ) ( )n

j j i jc C P P S v= ≠ ≥ −∑  holds. □ 
 

Definition 5 (Consistent problem). An instance of the 
problem of satisfaction of a goal G  in a mutex network 

( , )N V M=  is consistent with respect to the given clique 
decomposition and the projection goal Ø P G≠ ⊆  if every 
vertex iv C∈  for 1,2, ,i n= …  is supported with respect to 
the given clique decomposition and the given projection 
goal. □ 
 

 It is easy to observe that projection consistency is a 
necessary but not sufficient condition on existence of the 
solution (Surynek, 2007a). 
 To ensure maximum vertex filtration effect we can en-
force the consistency with respect to multiple projection 
goals. However, it is not possible to use all the projection 
goals since they are too many (exactly 2G ). Our experi-
ments showed that projection goals consisting of symbols 
with the constant number of supporting vertices provide 
satisfactory filtration effect. The number of projection 
goals of this form is linear in the size of the goal G . 

Tractable Case 

It is possible to make projection consistency stronger by a 
slight reformulation of the definition of the supported ver-
tex. The definition of the consistent problem remains the 
same. We will require the stronger version of consistency 
to be able to solve certain instances of goal satisfaction 
problem in polynomial time. 
 

Definition 6 (Strongly supported vertex). A vertex 
iv C∈  for {1,2, , }i n∈ …  is strongly supported with respect 

to a given clique decomposition and the projection goal P  
if 1, ( , ( )) ( )n

j j i jc C P S v P S v= ≠ − ≥ −∑  holds. □ 
 

 Let us call the projection consistency that uses the defi-
nition of strongly supported vertices a strong projection 
consistency. Observe that strong projection consistency is 
strictly stronger than projection consistency. That is, there 
exists a goal satisfaction problem which is projection con-
sistent with respect to a projection goal P  and it is not 
strongly projection consistent with respect to the same 
projection goal P . 
 In the following series of definitions and lemmas we 
will gradually develop a polynomial time algorithm for a 
class of the goal satisfaction problem. For the following 
definitions we assume that a set of symbols 

( ) ( )v CS C S v∈=∪  is assigned to each clique C . 
 

Definition 7 (Clique intersection graph). We define a 
clique intersection graph 1 2({ , , , }, )c c

I n IG C C C E= …  for the 
clique decomposition 1 2 nV C C C= ∪ ∪ ∪…  as an undi-
rected intersection graph of corresponding clique symbols. 
That is {{ , } | & ( ) ( )c

I i j i jE C C i j S C S C= ≠ ∩ ≠ Ø} . □ 
 

Lemma 1 (Tractable case: clique intersection graph). 
Let 1 2 nV C C C= ∪ ∪ ∪…  be a clique decomposition of 

the mutex network and let G  be a goal we want to satisfy. 
Next let ( , )c c c

I I IG V E=  be the corresponding clique inter-
section graph. If the graph c

IG  is acyclic then a problem of 
satisfying the goal G  by selecting just one vertex iv  from 
the clique iC  for every {1,2, , }i n= …  into the solution can 
be solved in polynomial time after enforcing strong projec-
tion consistency. ■ 
 

Proof. We need to show that if the defined problem is 
strong projection consistent with respect to the certain 
projection goals then it is necessary to do only little to find 
a solution or to conclude that there is no solution. The 
projection goals we use are 1,( ( ) ( ))n

i jj j iG S C S C= ≠∩ −∪  
for every {1,2, , }i n= …  and ( ) ( )i jG S C S C∩ ∩  for every  
{ , } c

i j IC C E∈ . If 1 ( )n
iiG S C=− ≠∪ Ø holds then there is 

obviously no solution. This condition can be checked in 
( )O G V  steps. 

 If 1 ( )n
iiG S C=⊆ ∪  holds then arbitrary selection of just 

one vertex iv  from the clique iC  for every {1,2, , }i n= …  , 
which preserves relation of strong supports over the edges 
c
IE , solves the problem. This selection can be carried out 

by starting in the root clique of c
IG  and continuing to the 

leaves in breadth first order. It takes ( )O G V  steps to 
select vertices in this way. 
 Consider a symbol s G∈ . There are at most two cliques 
for which the symbol s  is an element of their symbols. 
This is due to the acyclicity of the corresponding clique 
intersection graph c

IG . In the case when there is just one 
such clique iC  a vertex i iv C∈  that satisfies s  must be 
selected. Let 1,( ( ) ( ))n

i jj j iP G S C S C= ≠= ∩ −∪ , for such P  
we have s P∈  and 1, ( , ( )) ( )n

j j i j i ic C P S v P S v= ≠ − ≥ −∑  
since the problem is strong projection consistent with re-
spect to the projection goal P . We also have 

1, ( , ( )) 0n
j j i j ic C P S v= ≠ − =∑  since the sum is empty (no 

other clique intersects the projection goal P  by their sym-
bols). Hence ( ) 0iP S v− =  and  ( )is S v∈ . 
 In the case when there are two cliques iC  and jC  for 
which ( )is S C∈  and ( )js S C∈ . Suppose that a vertex iv  
is selected from the clique iC  and a vertex jv  from the 
clique jC . Consider the projection goal ( )iP G S C= ∩ ∩  

( )jS C , both vertices are strongly supported with respect to 
P . That is 1, ( , ( )) ( )n

k k i k i ic C P S v P S v= ≠ − ≥ −∑  and 
1, ( , ( )) ( )n

k k j k j jc C P S v P S v= ≠ − ≥ −∑ . Suppose that action 
iv  was selected before jv . Since there are only two cliques 

interfering over the projection goal P , we specially have 
( , ( )) ( )j i ic C P S v P S v− ≥ −  after selecting iv . Hence it is 

possible to select the vertex iv  such that 
( ) ( , ( ))j j iP S v c C P S v∩ = − . Altogether we obtained that 

( ) ( )i js S v S v∈ ∪ . ■ 
 

 The question arises whether the strong projection consis-
tency with respect to the projection goals mentioned in the 
proof of the lemma 1 can be enforced over the acyclic 
problem in polynomial time. The answer is positive and we 
can conclude that the problem from the lemma 1 can be 
completely solved in polynomial time. 
 We use the similar idea as that is commonly used to 
enforce arc-consistency in an acyclic constraint network 
(Dechter, 2003). It is possible to enforce arc-consistency in 
such a network by enforcing directed arc-consistency in the 
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direction from the root to the leaves of the network and 
then from the leaves to the root. Almost the same can be 
done for the strong projection consistency. First we enforce 
the consistency for the projection goals ( ( )iG S C∩ −  

1, ( ))n
jj j i S C= ≠∪  for every {1,2, , }i n= …  which is easy be-

cause no interference with other cliques occurs. Then 
cliques of the decomposition are ordered according to the 
breadth first search and the strong projection consistency is 
enforced over the edges of the intersection graph. It is done 
in the direction from the root to the leaves of the clique 
intersection graph first and then from the leaves to the root. 
 The complete algorithm is shown here as algorithm 1. 
Observe that the algorithm can be implemented to run in 
polynomial time in size of the input. The illustration of the 
filtration effect of the algorithm is shown in figure 1. 
  

Algorithm 1: Strong projection consistency propagation algo-
rithm for acyclic clique intersection graph 

function enforceStrongProjectionConsistency 1 2( ,{ , , , })nG C C C… : set 
1: let 1 2({ , , , }, )c c

I n IG C C C E= …  be the clique intersection graph 
2: for 1,2, ,i n= …  do 
3:  1,( ( ) ( ))n

i jj j iP G S C S C= ≠← ∩ −∪  
4:   1 2{ , , , }nC C C ←… propagateSProjection 1 2( ,{ , , , })nP C C C…  
5: π ← breadthFirstSearch ( )cIG  
6: for 1,2, ,i n= …  do 
7:  for each ( ) ( ){ , } c

i j IC C Eπ π ∈  such that ( ) ( )i jπ π<  do 
8:   ( ) ( )( ) ( )i jP G S C S Cπ π← ∩ ∩  
9:    1 2{ , , , }nC C C ←… propagateSProjection 1 2( ,{ , , , })nP C C C…  

10: for , 1, ,1i n n= − …  do 
11:  for each ( ) ( ){ , } c

i j IC C Eπ π ∈  such that ( ) ( )i jπ π>  do 
12:   ( ) ( )( ) ( )i jP G S C S Cπ π← ∩ ∩  
13:    1 2{ , , , }nC C C ←… propagateSProjection 1 2( ,{ , , , })nP C C C…  
14: return 1 2{ , , , }nC C C…  
function propagateSProjection 1 2( ,{ , , , })nP C C C… : set 
15: for 1,2, ,i n= …  do 
16:  for each iv C∈  do 
17:   if 1, ( , ( )) ( )n

jj j i c C P S v P S v
= ≠

− < −∑  then 
18:    { }i iC C v← −  
19: return 1 2{ , , , }nC C C…  
function breadthFirstSearch 1 2(({ , , , }, ))mu u u E… : permutation 
20: π ← breadth first search ordering of vertices 1 2, , , mu u u…  
21: return π  

 
Definition 8 (Mutex intersection graph). A mutex inter-
section graph for the clique decomposition 1 2V C C= ∪ ∪  

nC∪…  and for the set of edges m  not belonging to any 
clique of the decomposition is a graph 1 2({ , , ,m

IG C C= …  
}, )mn IC E , where {{ , } | & ( ,m

I i j i iE C C i j v C= ≠ ∃ ∈  
){ , } }j j i jv C v v m∃ ∈ ∈ . □ 

 

Lemma 2 (Tractable case: mutex intersection graph). 
Let us have a clique decomposition of the mutex network 

1 2 nV C C C= ∪ ∪ ∪… . Let ( , )m m m
I I IG V E=  be the corre-

sponding mutex intersection graph. If the graph m
IG  is 

acyclic then a problem of selecting just one vertex iv  from 
the clique iC  for every {1,2, , }i n= …  such that no two 
selected vertices are connected by an edge from m  can be 
solved in polynomial time. ■ 
 

Sketch of proof. Actually, this is a well known result from 
constraint programming. If each clique of the clique de-

composition 1 2 nV C C C= ∪ ∪ ∪…  is regarded as a CSP 
variable and edges of the set m  are regarded as constraints 
then the defined problem of selecting an independent set of 
vertices is an acyclic constraint satisfaction problem. It is 
sufficient to enforce arc-consistency and label the variables 
in breadth first order to obtain a solution. More details 
about this result can be found in (Dechter, 2003). The solu-
tion can be obtained in polynomial time. ■ 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Illustration of strong projection consistency in a prob-
lem with acyclic clique intersection graph. Only the vertices that 
can be part of the solution remained. 
 
Theorem 1 (Overall tractable case).  Let us have a clique 
decomposition of the mutex network 1 2V C C= ∪ ∪…  

nC∪  and a set of edges outside the clique decomposition 
m . Let ( , )c c c

I I IG V E=  be the corresponding clique inter-
section graph and let ( , )m m m

I I IG V E=  be the corresponding 
mutex intersection graph. If the intersection graph 

1 2({ , , , }, )c m
I n I IG C C C E E= ∪…  is acyclic then the corre-

sponding goal satisfaction problem can be solved in poly-
nomial time. ■ 
 

Sketch of proof. To prove the theorem we use a combina-
tion of results from lemma 1 and lemma 2. The first step 
consists of enforcing strong projection consistency and 
arc-consistency in the problem. Since it is quite easy using 
the above results we describe the process briefly. If the 
interference of cliques is through an edge from c

IE  then 
strong projection consistency is enforced over the intersec-
tion of corresponding clique symbols. If the interference of 
cliques is through an edge from m

IE  then arc-consistency 
with respect to m  is enforced. Again this combined consis-
tency can be enforced in polynomial time by proceeding 
from the root to the leaves of the graph IG  and conversely. 
The extraction of a solution from the consistent problem 
can be also done in polynomial time. The extraction proce-
dure starts by selecting action from the root clique and 
proceeds to the leaves of the graph IG  while strong projec-
tion consistency and arc-consistency relations are pre-
served over the edges of IG . The described solution ex-
traction can be carried out in polynomial time. ■ 
 

 We described the tractable class of the problem of goal 
satisfaction in mutex network in order to utilize the theo-
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retical results in solving real problems. The obstacle is that 
not every instance of the problem belongs to the described 
class (not every problem induces acyclic intersection graph 
defined in theorem 1). However, each decision step (select-
ing a vertex into the solution) can be interpreted as removal 
of a clique from the graph. So, eventually the graph be-
comes acyclic. When the graph becomes acyclic it is pos-
sible to switch from search to the proposed polynomial 
time algorithm to solve the rest of the problem in back-
track-free manner. This is exactly the way how we ex-
ploited the tractable class in the solving algorithm.  

Experimental Evaluation 

Our experimental evaluation is concentrated on two as-
pects of the proposed tractable class. First we want to 
evaluate the solving procedure using the tractable class in 
comparison with the solving procedure using plain projec-
tion consistency. Additionally we compared both solving 
procedures with the solving procedure using 
arc-consistency. This set of experiments was done with 
random goal satisfaction problems in mutex networks. 
 Next we evaluated the usage of the proposed tractable 
class in producing concurrent solutions for planning prob-
lems. We carried out this evaluation by integrating the 
usage of tractable class into the GraphPlan based planning 
algorithm (Blum and Furst, 1997). 
 All the tested algorithms were implemented in C++ with 
equal coding style and were run on a machine with AMD 
Opteron 242 processor (1.6 GHz) and 1 GB of memory 
under Mandriva Linux 10.2. The code was compiled by 
gcc compiler version 3.4.3. 

Random Goal Satisfaction Problems 
Random goal satisfaction problems used in the evaluation 
were of the following setup motivated by the visual obser-
vation of problems arising in concurrent planning (several 
large cliques covered with some noise edges). In a mutex 
network consisting of 120 vertices we constructed several 
complete sub-graphs using uniform distribution with the 
mean value of 20.0. The size of the goal was 60 and each 
vertex has assigned a random set of symbols from the goal 
of the size generated by the normal distribution with the 
mean value of 16.0 and the standard deviation of 10.0. 
Finally we added random edges into the mutex network. 
More precisely, we add each possible edge into the mutex 
network with the probability of p  where p  was a variable 
parameter which ranged from 0.0 to 0.1. For each value of 
the parameter p  we generated 10 goal satisfaction prob-
lems and we solved them using the tested techniques. 
Along the solving process we collected data such runtime, 
number of backtracks etc.  
 The common framework of all our tested solving algo-
rithms was the standard backtracking. We compared the 
impact of usage of consistencies on the overall solving 
speed. The version using arc-consistency enforces 
arc-consistency in the problem after each decision step 

(that is we maintain consistency). The version that uses 
plain projection consistency is similar. It enforces projec-
tion consistency after each decision step. The version that 
exploits the tractable class again enforces plain projection 
consistency after each decision but additionally it detects 
acyclicity of the intersection graph. When the graph be-
comes acyclic the solving algorithm switches from search 
to the algorithm for solving the tractable case. 
 Part of the results obtained from these experimentations 
is shown in figure 2. We can observe that utilization of 
tractable case bring significant improvement compared to 
the plain projection consistency for the values of parameter 
p  ranging from 0.0 to 0.03. For the higher probabilities of 

random edges there is almost no improvement. Neverthe-
less, our additional experimentation gives evidence that 
goal satisfaction problems arising in applications has simi-
lar graphical structure as random problem with low edge 
probability.  
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Runtime for random goal satisfaction problems (aver-
age of 10 problems for each value of random edge probability p). 
Time is shown in logarithmic scale. 

Problems Arising in Concurrent Planning 
We also evaluated the proposed tractable class in solving 
problems that arise in concurrent planning (that is in the 
area for which the projection consistency was designed). 
We used GraphPlan planning algorithm (Blum and Furst, 
1997) for this evaluation. This algorithm often solves a 
sub-problem that can be reformulated to a goal satisfaction 
problem in mutex network. 
 In our evaluation we again used maintaining arc-consis-
tency, projection consistency, and projection consistency 
with tractable case for improving the solving process of the 
goal satisfaction sub-problem arising within the GraphPlan 
algorithm. We used a set of planning problems of three 
domains - dock worker robots domain, towers of Hanoi 
domain, and refueling planes domain. The same problems 
were used in (Surynek and Barták, 2007). The tested prob-
lems were of various difficulties. The length of solution 
plans ranged from 2 to 38 actions. 
 The comparison of runtime of standard GraphPlan and 
enhanced version of the algorithm is shown in figure 3. All 
the planning problems used in this evaluation are available 
at the web site: http://ktiml.mff.cuni.cz/~surynek/re-
search/flairs2008/ (we use our own format of planning 
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problems since we use non-standard representation with 
explicit state variables; the reason why we did not used 
PDDL (McDermott, 1998) is that explicit state variables 
were not supported by the language at the time of writing 
this paper). 
 The improvement obtained by using projection consis-
tency combined with the tractable case is significant with 
respect to all other versions. Additionally, we found that 
goal satisfaction problems arising in these planning prob-
lems are very similar to random goal satisfaction problems 
with the low probability of random edges where the im-
provement obtained by exploiting of the tractable case is 
promising. 
  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Concurrent plan construction time over several plan-
ning problems of various difficulties. Time is shown in logarith-
mic scale. 

Related Works and Conclusion 

Originally, projection consistency was proposed in (Sury-
nek, 2007a). Author gives there a detailed theoretical study 
of the technique. Another closely related work is (Surynek 
and Barták, 2007). Authors studied in the paper the appli-
cation of arc-consistency for solving problems of goal 
satisfaction in mutex network that arise in concurrent plan-
ning. In fact we developed a very specialized replacement 
for the usage of arc-consistency in this context. Projection 
consistency with tractable class should be used instead of 
arc-consistency with greater performance benefit. 
 It seems that concurrent planning is not the only applica-
tion for projection consistency and the related tractable 
class. A study of an adaptation of projection consistency 
for solving difficult Boolean formula satisfaction problems 
is given in (Surynek, 2007b). 
 The ideas of using constraint programming techniques in 
concurrent planning are presented in (Kambhampati et al., 
1997; Kambhampati, 2000). However, only local propaga-
tion techniques are studied there (contrary to our approach 
which is more global). 
 Finally to related works let us note that quite similar idea 
to our exploiting of structural information encoded in the 
problem is given in (Ryan, 2006). The author studies the 
problem of path planning for a group of robots that moves 
within a graph. The knowledge of structures such as com-
plete sub-graphs is used to improve the solving process. 

 We proposed a class of the goal satisfaction problem in 
mutex networks based on projection consistency that can 
be solved in polynomial time. We built a solving algorithm 
exploiting the tractable class and we evaluated it in com-
parison with maintaining arc-consistency and with main-
taining plain projection consistency. The experimentation 
was performed with random problems and with problems 
arising in concurrent planning. In both experimental setups 
the tractable class proved to be useful since it brings sig-
nificant improvement in solving runtime. 
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